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malonyl ginsenoside
biosynthesis in Panax ginseng
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Yingping Wang, Xiujuan Lei, He Yang, Nanqi Zhang,
Wanying Li, Peng Di* and Limin Yang*

State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of
Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
Introduction: The BAHD (benzylalcohol O-acetyl transferase, anthocyanin

O-hydroxycinnamoyl transferase, N-hydroxycinnamoyl anthranilate benzoyl

transferase and deacetylvindoline 4-O-acetyltransferase), has various

biological functions in plants, including catalyzing the biosynthesis of

terpenes, phenolics and esters, participating in plant stress response,

affecting cell stability, and regulating fruit quality.

Methods: Bioinformatics methods, real-time fluorescence quantitative PCR

technology, and ultra-high-performance liquid chromatography combined

with an Orbitrap mass spectrometer were used to explore the relationship

between the BAHD gene family and malonyl ginsenosides in Panax ginseng.

Results: In this study, 103 BAHD genes were identified in P. ginseng, mainly

distributed in three major clades. Most PgBAHDs contain cis-acting elements

associated with abiotic stress response and plant hormone response. Among

the 103 genes, 68 PgBAHDs are WGD (whole-genome duplication) genes.

The significance of malonylation in biosynthesis has garnered considerable

attention in the study of malonyltransferases. The phylogenetic tree results

showed 34 PgBAHDs were clustered with genes that have malonyl

characterization. Among them, seven PgBAHDs (PgBAHD4, 45, 65, 74, 90,

97, and 99) showed correlations > 0.9 with crucial enzyme genes involved in

ginsenoside biosynthesis and > 0.8 with malonyl ginsenosides. These seven

genes were considered potential candidates involved in the biosynthesis of

malonyl ginsenosides.

Discussion: These results help elucidate the structure, evolution, and functions

of the P. ginseng BAHD gene family, and establish the foundation for further

research on the mechanism of BAHD genes in ginsenoside biosynthesis.
KEYWORDS

Panax ginseng, BAHD gene family, malonyltransferase, malonyl ginsenoside,
biosynthesis
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1 Introduction

The BAHD acyltransferase family mainly uses coenzyme A

thioesters as acyl donors and alcohols or amines as acceptors to

catalyze acylation reactions to form various acylation products. (St-

Pierre and Luca, 2000). A comprehensive comparative analysis of

the amino acid sequences of the currently identified BAHD

acyltransferase family members reveals that the family proteins’

amino acid sequences all contain two conserved regions, HXXXD

and DFGWG (Molina and Kosma, 2015). The HXXXD conserved

region located in the active center of the enzyme is also distributed

in other acyltransferase families, such as chloramphenicol

acetyltransferase type I, II, III (chloramphenicol acetyltransferase,

CAT) and choline/carnitine O-acyltransferase. The DFGWG

conserved region is located at the C-terminal. In addition,

acyltransferases related to anthocyanin/flavonoid biosynthesis also

contain YFGNC conserved sequences (Suzuki et al., 2004; Unno

et al., 2007; Yu et al., 2009).

Acylation modifications mediated by acyltransferases are

prevalent in the structural modification of natural products. They

are essential for enriching the structural diversity of plant secondary

metabolites, enhancing the stability, lipid solubility, and improving

the bioavailability of compounds (Matern et al., 1986; Ardhaoui et al.,

2004; Mellou et al., 2006; Taguchi et al., 2010). The BAHD

acyltransferase family is a class of proteins unique to plants for

acylation modification of secondary metabolites. It is vital in the

biosynthesis of a wide range of active acylated natural products (Yu

et al., 2009). Researchers have explored the role of BAHD

acyltransferase in the biosynthesis of saponin adjuvants from the

soapbark tree. Identified one enzyme (encoded by Qs0206480) that

generated a product consistent with the addition of an acetyl group,

and two enzymes (encoded by Qs0023500 and Qs0213660) that likely

corresponded to the addition of L-rhamnose and D-glucose,

respectively. The study provides insights into the biosynthetic

pathway of saponin adjuvants and highlights the role of BAHD

acyltransferases in the modification of the heptasaccharide scaffold

(Reed et al., 2023). There is research explored the role of BAHD

acyltransferase in the biosynthesis of aescin and aesculin in horse

chestnut. AcBAHD3 and AcBAHD6 were able to acetylate the

hydroxyl group of aescin precursor, yielding a product called 22-O-

acetylprotoaescigenin, and also found that these enzymes could use

acetyl-CoA as a donor to catalyze the desacetylation of aescin,

resulting in the formation of aesculin. This study provides evidence
Abbreviations: HMMs, Hidden Markov Models; CDD, Conserved Domain

Database; MW, Molecular weight; pI, Isoelectric point; aa, amino acid; kDa,

Kilodaltons; CDS, Coding sequences; MEME, Multiple expectation maximization

for motif elicitation; TPM, Transcripts Per Million; HMM, Hidden Markov

model; MEGA, Molecular evolutionary genetics analysis; MYA, Million years

ago; AR, adventitiou roots; CT, callus; RG, fibrous roots; SA, Salicylic acid; IAA,

Indole-3-acetic acid; GA3, Gibberellin; MeJA, Methyl Jasmonate; ABA, Abscisic

acid; chr, Chromosome; Ka, Non-synonymous; KS, Synonymous; WGD, Whole-

genome duplication; TD, tandem duplication; PD, proximal duplication; SD,

singleton duplication; DSD, dispersal duplication; RNA-Seq, RNA sequencing;

qRT-PCR, Quantitative real-time PCR; H-ESI, High Energy Spark-Induced

Breakdown Ionization.
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for the involvement of BAHD acyltransferase in the acylation and

deacetylation of triterpenoid compounds in horse chestnut.

Highlighted the role of BAHD enzymes in the diversification of

triterpenoid compounds in plants (Sun et al., 2023). In the study

conducted by GAME36, a BAHD-type acyltransferase, it was found

that SGA-acetylation occurs in both cultivated and wild tomatoes.

This process involves the conversion of a-tomatine to Esculeoside A,

which is non-bitter and less toxic. The researchers successfully

elucidated the biosynthesis pathway of core Esculeoside A in ripe

tomatoes (Sonawane et al., 2023).

Panax ginseng is a perennial herbaceous plant with a long

growth period. Modern pharmacological studies have shown that

ginsenosides are the main medicinal components of ginseng.

Malonyl ginsenosides are natural ginsenosides that contain a

malonyl group attached to a glucose unit of the corresponding

neutral ginsenosides (Wang et al., 2016). In ginseng, the proportion

of malonyl ginsenosides m-Rb1, m-Rb2, m-Rc, and m-Rd in the

total ginsenosides ranged from 35% to 60% (Liu et al., 2012). More

than 20 malonyl ginsenosides have been identified by high-

resolution mass spectrometry (Sun et al., 2012; Wan et al., 2015).

The role of BAHD acyltransferase, a key enzyme in the acylation of

secondary metabolites, in the biosynthesis of malonyl ginsenosides

has not yet been reported, so the identification and analysis of the

ginseng BAHD genes is of great significance.

In this study, a total of 103 BAHD family genes were identified,

and the analysis of evolutionary relationships indicated that

PgBAHDs could be divided into five evolutionary clades. The

gene structure, chromosomal localization, inter-gene, and inter-

species collinearity of PgBAHDs were further investigated. In

addition, the expression profiles of PgBAHD genes in different

tissues and the trend of response to various abiotic treatments were

investigated. Co-expression analysis of ginsenoside biosynthesis

pathway genes with PgBAHD genes and secondary metabolite

malonyl ginsenoside with PgBAHD genes was performed.

Eventually eight PgBAHDs were identified as genes that may be

involved in malonyl ginsenoside biosynthesis. This study provides a

reliable basis for further metabolic regulation of the ginsenoside

biosynthetic pathway and for conducting corresponding synthetic

biology studies and molecular breeding.
2 Materials and methods

2.1 BAHD sequence retrieval
and identification

The candidate BAHD genes were initially acquired from the

Ginseng Genome Data resource (Wang et al., 2022). The Hidden

Markov Models (HMMs) for the conserved BAHD domain (Pfam:

PF02458) were extracted from the Pfam database (http://

pfam.xfam.org). The HMMER 3.2.1 software was employed to

detect the BAHD genes obtained from the ginseng genome, with

an E-value threshold set at 10−2. To ensure the presence of the BAHD

PF02458 domain, all candidate PgBAHDs were further validated

using the SMART data resource (http://smart.embl.de/), NCBI-

Conserved Domain Database (CDD), and PlantTFDB (Plant
frontiersin.org
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Transcription Factor Database) (http://planttfdb.cbi.pku.edu.cn).

Subsequently, their HXXXD and DFGWG motifs were examined.

Furthermore, the online Sequence Manipulation Suite was

utilized to predict the theoretical pI and MW of PgBAHD proteins

(http://www.detaibio.com/sms2/reference.html) (Stothard, 2000).
2.2 Phylogenetic analysis

Mafft (https://mafft.cbrc.jp/alignment/software/) was used with

default parameters to perform multiple alignments of ginseng

BAHD sequences and multiple alignments of BAHD, among

other species. The ginseng BAHD phylogenetic tree was

constructed using the maximum likelihood method IQ-TREE

based on the JTTDCMut+F+R4 model (Nguyen et al., 2015), and

the nodes were tested 1000 times using bootstrap analysis. Further

annotation of the phylogenetic tree results was conducted using

Evolview (https://evolgenius.info/).
2.3 Gene structure and cis-acting
elements analysis

TBtools 1.053 was employed to demonstrate the gene structure

(Chen et al., 2020). Conserved motifs of PgBAHDs were identified

using MEME (Multiple expectation maximization for motif

elicitation) native software (version 4.12.0) in Linux with a

maximum of 10 mismatches and an optimal motif width of 6-100

amino acid residues.

The sequence of 2000 bp upstream of the start codon of

PgBAHDs was obtained for promoter analysis. PlantCARE

(http://bionformatics.psb.ugent.be/webtools/plantcare/html) was

used to predict cis-acting elements in the promoter region, and

PlantTFDB software (http://planttfdb.cbi.pku.edu.cn/) was used

online to predict the distribution of promoter transcription factor

binding sites (p-value ≤ 1e−6).
2.4 Chromosomal location, duplication,
synteny and evolution analyses

The MCScanX program was utilized to conduct inter- and

intra-species collinearity analysis of proteins, using an E value

threshold of 1e-5. Furthermore, the Duplicate Gene Classifier

script within the MCScanX program was employed to quantify

different types of duplication. The results were visualized using

Circos (Krzywinski et al., 2009; Wang et al., 2012).

Using KaKS-Calculator-2.0, this study calculates replicated gene

pairs’ Ka and KS. The analysis aims to assess the environmental

selection pressure by examining the Ka/KS ratio (Wang et al., 2010).
2.5 Meta-expression analysis

To analyze gene expression among different tissues and

responses to various abiotic treatments, RNA-Seq datasets from
Frontiers in Plant Science 03
14 different tissues were obtained from NCBI (accession number

PRJNA302556) (Wang et al., 2015). Additionally, 15 RNA-Seq

datasets for abiotic treatment were retrieved (No.24-38 in the

ginseng transcriptome data resource, http://ginsengdb.snu.ac.kr/

transcriptome.php) from the Ginseng Genome Data Resource

(http://ginsengdb.snu.ac.kr/). The clean reads were aligned to the

ginseng genome using Hisat2 software. Assembly and calculation of

expression values for each transcript were performed using Hisat2,

StringTie, and Ballgown.

In a previous study, the RG, AR, and CT cDNA libraries were

established. These nine cDNA libraries were subsequently

sequenced on HiSeq 2500 (Illumina) with the PE125 strategy. The

TPM was calculated using the same protocol as the other 16 RNA-

Seq datasets. Finally, the heatmap was generated using the R

package ‘Heatmap’.
2.6 Quantitative real-time PCR analysis

Total RNA was extracted from the samples using an EasyPure

Plant RNA Kit (TransGen Biotech), with the inclusion of RNase-free

DNase I (TransGen Biotech) to eliminate DNA contamination. The

concentration and quality of the RNA samples were assessed using a

NanoPhotometer N50 (Implen, GER). Subsequently, the Perfect-

Start Uni RT-qPCR Kit (TransGen Biotech) was employed to

reverse transcribe RNA into cDNA, followed by two-step

quantitative real-time PCR using a Roche Light Cycler 96 (SYBR-

GREEN I; No Passive Reference Dye). The b-Actin gene was utilized

as the internal control (Hou et al., 2014). Data analyses involved the

use of the 2−DDCT method for determining the relative expression of

PgBAHD genes (Livak and Schmittgen, 2023). Primers for qRT-PCR

were synthesized by Sangon Biotech (ShangHai, China), and their

sequences are listed in Supplementary Table S7.
2.7 Metabolome samples and
chemicals preparation

Each dried powdered sample, weighing 0.5 g and with a mesh

size of < 40, was accurately weighed. The samples were then

sonicated with 10 ml of 80% ethanol for 40 min (100 W, 40 KHz)

and centrifugation at 10,000 rpm for 10 min. This process was

repeated three times, and the resulting supernatants were combined

and transferred into a 10 ml volumetric flask. The volumetric flask

was adjusted to a final volume of 10 ml using 80% ethanol and

thoroughly mixed. Before injection, the solution was filtered twice

through a 0.45 mm organic membrane.

Reference standards of ginsenosides, purchased from Shanghai

Yuanye Biotechnology Co., Ltd (Shanghai, China) with purities not

less than 98.0%, were used. Approximately 5 mg of each standard

was taken into a 5 ml volumetric flask, dissolved with methanol, and

diluted to the scale to obtain a reserve solution of each standard

with a 1 mg/ml concentration. An appropriate amount of each stock

solution was dispensed, diluted with methanol, and adjusted to a

final concentration of about 50 mg/ml to create the mixed

standard solution.
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2.8 UHPLC-orbitrap MS conditions

The sample components were separated using a Thermo Fisher

Vanquish liquid chromatography system (Thermo Fisher Scientific,

San Jose, CA, USA). The chromatographic column used was a

Hypersil Gold Vanquish UHPLC column (100×2.1 mm, 1.9 mm;

Thermo). In this experiment, the mobile phase consisted of

acetonitrile (A) and 0.1% formic acid in water. The gradient

elution program followed the following steps: 0-34.0 min, 15%-

55% A; 34-35 min, 55%-98% A; 35-36 min, 98% A; 36-37 min, 98%-

15% A; 37-40 min, 15% A. The column temperature was

maintained at 35°C, the flow rate was set at 0.30 ml/min, and the

injection volume for each sample was 1 ml. During the separation

process, the column temperature remained at 35°C, and the flow

rate used was 0.30 ml/min, with an injection volume of 1 ml for
each sample.

MS spectrometric detection was performed on an Orbitrap

Fusion mass spectrometer (FSN10450, Thermo Fisher, USA)

equipped with an H-ESI source operating in negative ion modes

(Neg Ion Spray Voltage) at 2700 V. Each sample was analyzed

separately using an orbitrap full scan in the first stage (full scan,

with a resolution of 60,000, RF Lens 50%). For quantitative

characterization, MS/MS data were acquired using data-

dependent ms2 scans (DDA, resolution 15000, HCD Collision

Energy 40%). Ion source conditions were as follows: sheath gas

flow, 40 Arb (Arbitrary units); auxiliary gas flow, 5 Arb; ion transfer

tube temperature, 320°C; vaporizer temperature, 320°C. Full-scan

MS data were collected from 150 to 1500 m/z. Mass data were

recorded with Xcalibur 4.0 software.
2.9 Correlation coefficient analysis

The TPM (Transcripts Per Million) values of PgBAHDs and

ginsenoside biosynthesis pathway genes from AR (adventitiou

roots), CT (callus), and RG (fibrous roots) were used to calculate

the Pearson’s correlation between these types of genes using the R

package ‘Hmisc’. Similarly, the TPM values of PgBAHD genes and

malonyl ginsenoside from AR, CT, and RG were used to calculate

the Pearson’s correlation between PgBAHD genes and metabolites

using the R package ‘Hmisc’.
3 Results

3.1 Identification and phylogenetic analysis
of the PgBAHD gene families

To identify ginseng BAHD family genes, a search of the ginseng

genome using a Hidden Markov Model (HMM) of the transferase

family identified 103 genes. All 103 BAHD proteins contained the

conserved structural domains HXXXD and DFGWG that

characterize the BAHD family. The complete data of these genes,

including gene ID, protein length, gene length, molecular weight

(MW), and isoelectric point (pI), are shown in Supplementary

Table 1. The lengths of these BAHD genes ranged from 741 bp
Frontiers in Plant Science 04
(PgBAHD3 and 80) to 2682 bp (PgBAHD84), while protein lengths

ranged from 246 to 893 amino acids (aa). The molecular weight

(MW) varied from 27.27 kDa (PgBAHD3) to 98.77 kDa

(PgBAHD84). The isoelectric point (pI) is an indicator used to

determine the pH, and it varied among PgBAHD proteins from 5.22

(PgBAHD25) to 9.30 (PgBAHD65). Overall, 75 proteins were

predicted to have low isoelectric points (pI < 7).

A phylogenetic tree of 103 ginseng BAHDs was constructed to

categorize and explore the evolutionary relationships of PgBAHD

genes (Figure 1). The analysis included PgBAHD genes and

gene t i ca l l y and b iochemica l l y charac t e r i z ed BAHD

acyltransferases (the information on foreign genes in the

phylogenetic tree can be found in Supplementary Table 2)

(D’Auria, 2006). The phylogenetic tree results showed that all

genes were divided into five clades, of which 103 PgBAHD genes

were clustered in three. Clade I contain functionally characterized

members that are almost all related to the structural modification of

phenolic glycosides, and most of these genes are involved in the

acylation of anthocyanins. For example, Dv3MaT is an

anthocyanin-like malonyltransferase, and in addition, NtMAT1

catalyzes the malonylation of phenolic glycosides and flavonoid

glycosides in Nicotiana tabacum (Suzuki et al., 2002; Taguchi et al.,

2005). Twenty-six of the 103 PgBAHD genes were in this clade.

Clade III, focuses on acyltransferases related to the biosynthesis of

volatile esters in mature fruits and tissues such as flowers and leaves,

and 35 of the 103 PgBAHD genes are in this clade (Shalit et al.,

2003). In this clade, there are 8 PgBAHD genes closely related to

Ss5MaT2 (PgBAHD14, 30, 46, 61, 62, 73, 74 and 88). In clade V,

benzyl alcohol/phenylethanol benzoyltransferase (BPBT), methanol

acyltransferase (AMAT), and tigloyl transferase (HMT/HLT) were

mainly related to the biosynthesis of volatile ester compounds

(Wang and Luca, 2005; Okada et al., 2005). There were also genes

associated with the biosynthesis of paclitaxel and the biosynthesis of

r-coumaryl shikimate/quinate esters, and 42 PgBAHD genes were

in this clade. In addition, clade II contains only Glossy2 from Zea

mays and CER2 from Arabidopsis thaliana (Xia et al., 1997;

Costaglioli et al., 2005). Clade IV has only one gene derived from

Hordeum vulgare, agmatine coumaroyltransferase (ACT)

(Burhenne et al., 2003). This study focuses on 35 PgBAHD genes,

including 26 PgBAHDs in cladeI and eight PgBAHDs closely

related to Ss5MaT2.
3.2 Gene structure and cis-regulatory
element analysis of PgBAHDs

All PgBAHDs contained motif 2and motif 4, annotated as the

classic BAHD DNA-binding domain HXXXD and DFGWG,

respectively. The 103 PgBAHDs contain three to 10 conserved

motifs (Figures 2A; Supplementary Figure 1). Of these, 98

PgBAHDs incorporated six to eight motifs. In addition, the

PgBAHD80 has three motifs, the PgBAHD3, 32, and 55 have five

motifs, and the PgBAHD93 contains 15 motifs. The PgBAHDs

belonging to the same clade have a similar motif composition. For

example, in clade I, among the 16 PgBAHD genes, all possess motif

7, and none contain motif 6. Additionally, within this clade, only
frontiersin.org
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seven genes have motif 6. Motif 8 is unique to clade V. Motif 9

exclusively occurs in clade III, but PgBAHD44, 77, 82 and 98 in this

clade do not contain motif 9.

To further investigate the gene structure of PgBAHDs, an exon/

intron structure diagram was constructed. Of the 103 PgBAHDs,

the majority had one to two exons, and 80 PgBAHDs (77.7%) had

this structure. A total of 19 PgBAHDs (18.5%) had three to four

exons. In addition, PgBAHD15 contained eight exons, PgBAHD32

and 102 contained nine exons, and PgBAHD84 contained 15 exons

(Figure 2B). The PgBAHD genes had relatively similar

exon numbers.

Several key response elements were identified in the promoter

region of PgBAHDs (Supplementary Table 3). The most salient

response factors included those related to stress (37%), hormones

(27%), light (29%), and growth (7%) (Figure 3A), but no

corresponding promoters were identified in PgBAHD37. Several

hormone regulatory sites were identified in the study, such as SA

(Salicylic acid), IAA (Indole-3-acetic acid), GA3 (Gibberellin),

MeJA (Methyl Jasmonate), and ABA (Abscisic acid) (Figure 3B).

It was found that the PgBAHD genes might be more guided by ABA

and MeJA, depending on the distribution of cis-acting elements in

its promoter region. In addition, regulatory elements were identified

for various conditions such as dehydration, low temperature, salt

stress-responsive, anoxic specific inducibility, wounding

responsiveness, and anaerobic induction (Figure 3C).
Frontiers in Plant Science 05
3.3 Duplication, synteny and evolution
analyses of PgBAHD gene members

In Figure 4A, PgBAHD genes are irregularly distributed on all

24 ginseng chromosomes. Subgenome A includes chr2, 3, 4, 5, 6, 7,

8, 9, 11, 13, 18, 23, and subgenome B includes chr1, 10, 12, 14, 15,

16, 17, 19, 20, 21, 22, 24. Among them, chr 5 had the highest density

of PgBAHD genes with 10 PgBAHD genes, followed by chr 12 with

nine PgBAHD genes. In addition, the vast majority of chromosomes

possessed genes ranging from two to six in number. Most genes are

distributed primarily at the ends of chromosomes. In addition, to

investigate the collinearity of ginseng genes with members of the

same family, the genomic collinearity of BAHD was analyzed in P.

ginseng and Panax quinquefolium, and P. ginseng and Panax

notoginseng (Figure 4B). Seventy-six PgBAHD genes showed

collinearity with P. quinquefolium BAHD genes, and 63 PgBAHD

genes showed collinearity with P. notoginseng BAHD genes. The

results indicated that the PgBAHD genes was more closely related

to the P. quinquefolium BAHD genes.

The 103 PgBAHD in ginseng showed 29 pairs of genes with

collinearity. By calculating the non-synonymous substitution rate

(Ka) and synonymous substitution rate (KS) of the two protein-

coding genes (Supplementary Table 4), the KS value reflects the rate

of substitution of background nucleobase during the evolutionary

process, and the Ka/KS value determines the selective pressure of
FIGURE 1

Phylogenetic analysis of PgBAHD genes with genetically or biochemically characterized BAHD acyltransferases.
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these genes during the genetic evolutionary process. The KS values

of the PgBAHD gene families ranged from 0.0273 to 0.8226. The

Ka/KS values ranged from 0.0692 to 0.8231, indicating that the

PgBAHD gene families evolved under purify selection.

Different patterns of gene duplication collectively contribute to

the evolution of gene families and are responsible for their functional

expansion and diversification. These include whole-genome

duplication (WGD) or segmental duplication, tandem duplication

(TD), proximal duplication (PD), singleton duplication (SD), and

dispersal duplication (DSD). Duplicated BAHD family gene pairs in

the ginseng genome were analyzed, and all BAHD gene family

members were assigned to WGD, PD, TD, or DSD. Sixty-eight

(66.0%) of the 103 ginseng BAHD genes were WGD, 21 (20.4%)
Frontiers in Plant Science 06
were TD, eight were PD, and the remaining six PgBAHDs were DSD.

WGD and TD are the duplication patterns that have mainly

influenced the evolution of the BAHD superfamily in ginseng.
3.4 Expression profiles of PgBAHD genes in
different tissues

TPM data from existing transcriptome data (Wang et al., 2015)

were used to calculate the expression profiling of the PgBAHD

genes in the main root cortex, main root epiderm, leaf blade, leaflet

pedicel, fruit peduncle, stem, leaf peduncle, rhizome, leg root, fiber

root, arm root, fruit pedicel, fruit flesh, and seed in different tissues.
A B

FIGURE 2

Conserved motif and gene structure analysis of PgBAHDs. (A) Motif distribution of PgBAHDs. (B) Gene structure of 103 PgBAHDs. The Motif
composition of PgBAHD was analyzed by the MEME tool. The detailed information of the ten motifs is in Supplementary Figure 1.
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A heat map of BAHD gene expression was produced (Figure 5A;

Supplementary Table 5). The results showed that 24 of the 103

PgBAHD genes were not expressed in any tissue (≈ 23.3%; TPM <

1). A total of 56 PgBAHD genes were expressed in at least one tissue

(≈ 54.4%; TPM ≥ 1). A total of 23 PgBAHD genes were expressed in

all tissues (≈ 22.3%; TPM ≥ 1). The expression patterns of

PgBAHDs are low-level, tissue-distinct, and constitutive (Cheng

et al., 2019; Liu et al., 2020a). Twelve PgBAHD genes were highly

expressed in tissues of the above-ground portion (average TPM >

25), PgBAHD4, 9, 39, 57, 79, 95 and 99 were highly expressed in fruit

flesh (TPM > 50). PgBAHD60 was highly expressed in the leaf

peduncle (TPM = 91.5). Fruit pedicel had PgBAHD4, 79 and 95

expressions with TPM values greater than 110. In addition, the

genes that were highly expressed in the stem were PgBAHD65

(TPM = 72.2), and the genes that were highly expressed in the

rhizome were PgBAHD39, 65 and 103 (TPM > 65). While thirteen

PgBAHD genes had high expression (TPM > 20) in five tissues in

the underground, among them PgBAHD103 was expressed in the

leg root, fiber root, and arm root with TPM > 98. Similarly,

PgBAHD6 was highly expressed in these three tissues (TPM >

50). PgBAHD18 in the arm root also had high expression (TPM =
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91.5). PgBAHD57 was expressed in the main root cortex with

TPM = 59.3. PgBAHD6 was low expressed in the main root

cortex. PgBAHD family genes expression was mainly in fruit

pedicel, fruit flesh, arm root, and fiber root.

Among the three different morphology samples (fibrous roots,

RG; adventitiou roots, AR; and callus, CT) of ginseng samples

(Figure 5B; Supplementary Table 6), A total of 27 of 103 PgBAHD

genes were expressed in at least one sample (TPM ≥ 1). Forty-four

PgBAHD genes were expressed in all samples (≈ 33.9%; TPM ≥ 1).

There were 65 PgBAHD genes expressed in AR, 61 in RG, and 50 in

CT (TPM ≥ 1). In addition, only 32 genes were not expressed

(TPM < 1) in all three samples. The highest expression of PgBAHD4

was found in AR (TPM = 150.9), and this gene also had an enriched

expression in RG (TPM = 131.7). The gene with the highest

expression in CT was PgBAHD65, with an TPM value of 324.1.

However, the expression level of this gene is relatively low in the

other two tissues. Overall, most genes showed high expression levels

in AR and CT samples. Among the 35 key PgBAHD genes

mentioned in result 3.1, a total of 13 genes (PgBAHD4, 19, 36, 39,

45, 65, 71, 74, 79, 90, 97, 99 and 102) in this section had a TPM > 20

in at least one tissue, and a TPM > 5 in at least one type of ginseng
A

B C

FIGURE 3

Distribution of cis-regulatory elements into promoter regions of PgBAHD genes. (A) Classification of identified regulatory elements based on
function and their response to hormone, light, stress, and growth. (B) Distribution of different types of hormone-related cis-regulatory elements.
(C) Cis-regulatory elements are related to various types of stresses.
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sample. Further qRT PCR analysis was performed on the candidate

PgBAHD genes. The results showed that the expression patterns of

seven candidate genes (PgBAHD4, 45, 65, 74, 90, 97, and 99) were

basically consistent with RNA seq data (Supplementary Figure 2).
3.5 Expression analysis of PgBAHD genes
under different abiotic stresses

Different abiotic treatments of ginseng, such as cold, heat,

drought, and salt, were applied in a previous study to investigate
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the response of PgBAHD genes to abiotic stresses. These treatments

offer valuable insights for further studies in this area

(Supplementary Figure 33; Supplementary Table 8). The results

showed that the expression of seven PgBAHDs (TPM = 0; Fold

change = 0) remained unchanged under four different stress

conditions, and four of these genes (PgBAHD13, 22, 48, and 77)

did not have any expression in the 14 ginseng tissues and in the

different morphology samples described in the previous two section

as well. In the previous section, we focused on 13 PgBAHD genes

that were significantly upregulated under three weeks of high

temperature and drought stress. Among them, PgBAHD39, 45, 65,
A

B

FIGURE 4

(A) Chromosomal locations and collinearity analysis of the PgBAHD gene family. The red lines indicate probably duplicated PgBAHD gene pairs.
(B) Collinearity relationship of BAHD genes among P. ginseng, P. quinquefolium and P. notoginseng.
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and 71 were also relatively upregulated under low temperature and

salt stress. However, one week of high temperature stress seemed to

have no effect on these genes.

About 43 (≈ 41.8%) genes were up-regulated in expression

under cold treatment compared to the control, of which 14 genes

showed more significant changes (fold change > 2), and six genes

showed more than five-fold changes. In addition, an 11.4-fold

change was observed in the PgBAHD43 gene, while PgBAHD35

and 69 only showed relatively high expression (fold change > 6)

under cold treatment. About 36 (≈ 35.0%) PgBAHDs had up-

regulated gene changes under drought treatment compared to

control, of which about 19 genes had more than two-fold changes

and ten genes showed about five-fold changes after drought

treatment. There were also five genes with more than ten-fold

change in expression, including PgBAHD20 with 85.4-fold change.

Salt treatment resulted in the up-regulation of the expression of 33
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(≈ 32.0%) PgBAHD genes compared to the control, of which eight

PgBAHDs were up-regulated (fold change >2), four PgBAHDs were

significantly up-regulated (fold change >5), and in addition, the

expression of the gene PgBAHD39 was very significantly up-

regulated (fold change >15). While the other PgBAHDs were

slightly changed. The findings indicate that the expression

patterns of PgBAHDs significantly changed under drought

treatments, while they only showed slight changes in response to

cold and salt treatments.

PgBAHDs exhibited varying response patterns to different

treatments. Among the heat treatments, eight PgBAHDs (fold

change >2) displayed significant changes between the control and

one-week heat treatments. Notably, PgBAHD43 exhibited a

remarkable change of more than 23-fold. In the three-week heat-

treated group, about 27 genes showed significant up-regulation of

expression (fold change >2) compared to the control group, of
A

B

DC

FIGURE 5

(A) Expression heat map of PgBAHD genes in different ginseng tissues. 14 samples were used for expression analysis, including main root cortex, main
root epiderm, leaf blade, leaflet pedicel, fruit peduncle, stem, leaf peduncle, rhizome, leg root, fiber root, arm root, fruit pedicel, fruit flesh, and seed.
Expression values from RNA-seq data were log2-transformed and are displayed as filled blocks in blue to red. (B) Heatmap of PgBAHD genes in different
morphology samples of AR, CT and RG based on transcriptome data. Three biological replicates were set up in this samples. Note: Blue: Low expression
level; Red: High expression level; The gene expression values present as log2-transformed normalized TPM values. (C) Coexpression between PgBAHD
genes and ginsenoside biosynthesis pathway genes. Red indicates high correlation, and blue indicates low correlation. (D) Correlation between PgBAHD
genes and malonyl ginsenosides. Red indicates high correlation, and blue indicates low correlation (*p < 0.05, **p < 0.01).
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which 19 PgBAHDs had more than four-fold changes, with

PgBAHD39, 43, 65, and 79 changes most especially above 20-fold.

A total of 20 PgBAHDs were found to be changed at both one and

three weeks of treatment, and 32 genes with a significantly higher

amount of gene change (fold change > 2) were found in the three-

week heat treatment compared with the one-week heat treatment.

The expression trend analysis indicates that several PgBAHDs

might play a role in the response to heat treatment after three

weeks. Expression profiles also confirmed that PgBAHDs have a

variety of functional and physicochemical properties.
3.6 Co-expression analysis of PgBAHD
genes with ginsenoside pathway genes and
malonyl ginsenosides

To investigate the relationship between PgBAHD genes and

ginsenoside biosynthesis, co-expression analysis of PgBAHDs and

ginsenoside biosynthesis pathway genes was performed. This

pathway includes the upstream MEP and MVA pathways and the

downstream pathway (Figure 5C; Supplementary Table 9). This

section focuses on the 13 key PgBAHD genes mentioned earlier.

Among them, a total of 12 genes have a correlation greater than 0.9

with at least one pathway gene. Among these, PgBAHD39, 45, and

97 were predominantly localized within modules a1 and a3,

PgBAHD19, 74, and 99 exhibit primary concentration within

module b4, whereas PgBAHD4, 36, 65, 79, and 90 were primarily

situated in module c2. PgBAHD45 was mainly highly correlated

with CDP-MEK (g4656) and PMK (g11659), while PgBAHD97 was

highly correlated with Beta-AS (g23322) and CDP-MEK (g62078).

In c2 module, PgBAHD4 and 90 were highly correlated with MVD

(g49214) and HMGR(g66927), and PgBAHD65 with HMGS

(g65415), HMGS(g7489), SQE(g35386) and PPTS(g51801) were

highly correlation. PgBAHD74 and 99 were highly correlated with

Beta-AS (g47947), DXR (g26494), and IDI (g51489). In addition,

PgBAHD74 is also highly correlated with Beta-AS (g70387), DXS

(g69173), FPPS (g14488), and DXR (g9859).

To research the metabolites associated with malonyl

ginsenoside biosynthesis, this study used ultra-high-performance

liquid chromatography combined with an Orbitrap mass

spectrometer (UHPLC-Orbitrap MS) for non-targeted detection

of ginsenosides in ginseng tissues of different types (fibrous roots,

RG; adventitious root, AR; and callus, CT). A total of 16 metabolites

(malonyl ginsenosides) were identified in nine samples

(Supplementary Table 10). To further validate the relationship

between PgBAHD genes and malonyl ginsenoside biosynthesis,

coexpression analysis was performed (Figure 5D; Supplementary

Table 11). Selected PgBAHD4, 45, 65, 74, 90, 97, and 99 as candidate

genes, which have a correlation greater than 0.8 with at least one

malonyl ginsenoside. The two genes PgBAHD45 and 97 screened in

the a1 and a3 modules mentioned above were mainly distributed in

the a module in the analysis of their correlation with saponins

(Figure 5D). They were highly correlated with m-Rc or isomer-B,

m-Rb, and 2malonyl-Rd or isomer. Among them, 45 was also highly

correlated with m-Rd or isomer-C, m-Rc or isomer-A, m-Rb2, and

m-Rd or isomer-D. The PgBAHD74 and 99 screened by the b4
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isolmer, and they are distributed in module b in Figure 5D. The

genes in module c in Figure 5D correspond to module c2 in 5C,

where PgBAHD4, 65, and 90 are highly correlated with 2malonyl-

Rb1 or isomer, and PgBAHD4 is also highly correlated with m-Re5.

The results suggest that PgBAHDs are related to the metabolism of

malonyl ginsenosides, and these PgBAHDs may promote the

biosynthesis of malonyl ginsenosides in ginseng.
4 Discussion

BAHD acyltransferase plays a widespread role in acylation

modification (Kusano et al., 2019; Luo et al., 2007; Grienenberger

et al., 2009; Li et al., 2018). It is important for the biosynthesis of

various active acylated natural products (Liu et al., 2017). Acylation

products include lignin monomers, anthocyanins, terpenes, and

esters. It also involves plant growth and development,

environmental stress response, and fruit ripening (D’Auria, 2006;

Zheng et al., 2009). Therefore, there is a need to analyze the possible

roles of BAHD gene families in ginseng systematically. In this study,

103 BAHD genes were identified from ginseng. The number of

genes in gene families also varied by species (Abdullah et al., 2021).

In previous studies, 52 BAHD genes were identified in A. thaliana

with a genome size of 0.125 Gb, Prunus avium (125; 0.125 Gb),

Rubus mesogaeus (69, 0.24 Gb), Brachypodium distachyon (15; 0.26

Gb), Musa acuminata (46; 0.43 Gb), P. ginseng (103; 2.98 Gb),

Hordeum vulgare (116; 5.1 Gb). Therefore, The number of BAHD

genes did not seem to be correlated with genome size, which is in

line with the results of the previous studies (Xu et al., 2021).

The BAHD family genes of ginseng were clustered into five

evolutionary clades (I, II, III, IV, and V), and the results were

consistent with the previously reported evolutionary clades of the

plant BAHD acyltransferase family (D’Auria, 2006). Based on the

results of sequence alignment of the encoded proteins, D’Auria J C

performed a phylogenetic analysis of the relationships of 46 BAHD

acyltransferase genes that have been functionally characterized

(D’Auria, 2006). The clades were distinguished from each other

based on differences in substrate and enzyme activities. This

distinction revealed the evolutionary progression of BAHD family

members’ functions and aided in predicting the activities of

enzymes with unknown functions. NtMAT1 catalyzes the

malonylation of phenolic and flavonoid glycosides in N. tabacum

and belongs to the clade I. In addition, based on a conserved

sequence, YFGNC (motif 3), is shared by all the clade members. The

motif is an acyltransferase associated with the biosynthesis of

anthocyanins/flavonoid compounds (Unno et al., 2007; Yu et al.,

2008). Successfully cloned a new enzyme Dv3MaT from Ahlia

variabilis flowers, which is a cDNA coding 3-glucoside-specific

malonyltransferase for anthocyanins (Suzuki et al., 2002). The

hydroxycinnamoylation at positions three and five of the glycan

chain of anthocyanins deepens the color, while malonylation

increases stability (D’Auria et al., 2007; Luo et al., 2007).

Nicotiana benthamiana BAHD family malonyltransferase

NbMaT1 displays significant substrate tolerance to a wide range

of natural products with different glycosyl substitutions at different
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positions in the flavonoid, coumarin, and phenylethylchromone

skeletons (Liu et al., 2017). There are 26 ginseng BAHD genes in

clade I, so it is assumed that these PgBAHD genes are closely related

to the malonylation of ginsenosides. Malonyltransferase Ss5MaT2,

although also associated with acyl modification, is classified in clade

III because it does not contain conserved sequences common to

clade I. Therefore, attention will also be paid to PgBAHD14, 30, 46,

61, 62, 73, 74 and 88. Based on sequence structure, physicochemical

properties, function, and distribution on chromosomes, the

identified PgBAHDs showed a high degree of diversity, which is

consistent with previous reports on BAHD gene families (Moglia

et al., 2016; Zhang et al., 2019; Ahmad et al., 2020; Liu et al., 2020b).

Gene sequences and molecular weights differed significantly,

but the characteristic structural domains and constituent motifs

were relatively conserved. The exon/intron composition analysis

showed that most 103 PgBAHDs had one to four exons. The exon

numbers of PgBAHD genes within the same group were relatively

similar, which is a phenomenon that most plants have(D’Auria,

2006; Tuominen et al., 2011; Liu et al., 2020b). Conservative motif

and gene structure analyses showed that the identification and

grouping of PgBAHDs was reliable. The presence of cis-acting

elements related to stress responses in the promoter region of the

PgBAHD gene indicates that this gene family may be activated by

transcription factors associated with stress stimuli, as observed in

previous studies (Ahmadizadeh and Heidari, 2014; Heidari et al.,

2019). At the promoter site, a high frequency of the cis-acting

elements related to responsive hormones such as ABA and MeJA

were detected, indicating that stress-related hormonal signals

primarily induce the PgBAHD gene.

Gene duplication patterns can be classified into five distinct types

(Maher et al., 2006; Qiao et al., 2015). Each gene duplication pattern

contributes differently to the expansion of gene families (Freeling,

2009). WGD, TD, and DSD are considered significant features of

eukaryotic genome evolution, primarily propelling the emergence of

novel functionalities within genomes and genetically evolved systems

(Friedman and Hughes, 2001; Moore and Purugganan, 2003). Studies

have estimated that WGD account for approximately 90% of the

genetic expansion observed in the Arabidopsis lineage (Maere et al.,

2005). The Hydroxycinnamoyltransferase and SWEET gene families

have primarily expanded throughWGD and DSD (Li et al., 2017; Ma

et al., 2017).TD is the primary driving force behind the expansion of

the AP2/ERF gene family (Du et al., 2013; Guo et al., 2014). Research

results indicate that WGD and TD are the primary expansion modes

for the ginseng BAHD gene family. Ginseng possibly experienced two

WGD events between 2.2 million and 28 million years ago (Kim et al.,

2018; Liu et al., 2022). TD and SD contribute to the domestication,

survival, and resistance to both biotic and abiotic stresses in plants.

These duplications lead to the creation of structural and functional

diversity within genes (Schilling et al., 2020; Zan et al., 2020; Liu et al.,

2021). The Ka, KS results show that the KS values of the PgBAHD

gene pairs are all less than one. Among them, 17 gene pairs have

relatively low KS values (< 0.1), suggesting that these genes have

undergone fewer mutations in a short period and may possess stable

functions during the evolutionary process. On the other hand, 12

gene pairs have relatively high KS values (> 0.1), indicating that these
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period, potentially facilitating functional evolution and family

expansion. The Ka/KS ratio is less than one, suggesting that

purifying selection pressure has been acting on the ginseng BAHD

gene family, leading to relatively stable expression. This implies that

the gene family plays an important role in the growth and

development of ginseng.

The molecular weight of BAHD proteins ranges from 48-55

kDa. They utilize CoA thioesters as acyl donors to transfer acetyl,

malonyl, tigloyl, benzoyl, and hydroxycinnamoyl moieties, thereby

regulating the structure and content of compounds in secondary

metabolic pathways, ultimately influencing and modifying their

properties (Kuate et al., 2008). Malonyl transferase is a class of

acyltransferases that transfer malonyl molecules to sugar moieties,

forming a wide range of biologically active natural acylated

glycosidic constituents. Some malonyl ginsenosides have been

isolated in ginseng in studies. For example, reports indicate the

presence of malonyl ginsenosides Rb1, Rb2, Rc, and Rd in both P.

ginseng and P. quinquefolius (Nakai and Yamamoto, 1984). Malonyl

notoginsenoside R4 and malonyl-ginsenoside Ra3 have been

isolated from the fresh roots of P. ginseng, respectively (Ruan

et al., 2010). The malonyl ginsenosides isolated above are all

derived from protopanaxadiol (PPT) type ginsenosides (Wan

et al., 2015). Wang et al. isolated the PPT-type M-Re (malonyl-

ginsenoside Re) from the flower buds of P. ginseng for the first time

(Wang et al., 2016). The malonylation of plants primarily serves

several purposes: stabilizing unstable structures, increasing the

solubility of target compounds in water, and facilitating the

transfer of target compounds into the vacuoles (Suzuki et al.,

2002; Luo et al., 2007; Zhao et al., 2011; Matern et al., 1983).

During ginsenoside biosynthesis, malonylation may also be

associated with the transfer of ginsenosides into the vacuoles, thus

affecting the accumulation of total ginsenosides in ginseng.

Therefore, the specific functions and modes of action of different

PgBAHDs in ginseng need to be further investigated.
5 Conclusion

This study subjected the BAHD gene family in ginseng to

identification, phylogenetic construction, gene structure analysis,

chromosomal localization, expression pattern analysis, and co-

expression analysis. The results showed a high correlation

between PgBAHDs and the critical enzyme genes of the

ginsenoside biosynthesis pathway and with malonyl ginsenosides.

This study provides a reliable basis for further metabolic regulation

of the ginsenoside biosynthesis pathway, synthetic biology research,

and molecular breeding.
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