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Historically, plant and crop sciences have been quantitative fields that

intensively use measurements and modeling. Traditionally, researchers

choose between two dominant modeling approaches: mechanistic plant

growth models or data-driven, statistical methodologies. At the intersection

of both paradigms, a novel approach referred to as “simulation intelligence”,

has emerged as a powerful tool for comprehending and controlling complex

systems, including plants and crops. This work explores the transformative

potential for the plant science community of the nine simulation intelligence

motifs, from understanding molecular plant processes to optimizing

greenhouse control. Many of these concepts, such as surrogate models

and agent-based modeling, have gained prominence in plant and crop

sciences. In contrast, some motifs, such as open-ended optimization or

program synthesis, still need to be explored further. The motifs of simulation

intelligence can potentially revolutionize breeding and precision farming

towards more sustainable food production.
KEYWORDS

simulation intelligence, digital agriculture, phenotyping, quantified plant, digital
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1 Introduction

As computational capabilities have grown, modeling has become a specialized area

of agricultural sciences. These models can accurately simulate the performance of

plants, crops, and greenhouses under various conditions and have therefore been used

extensively for generating scientific hypotheses, informing and accelerating breeding

programs, optimizing crop management and providing policy recommendations (Silva

and Giller, 2020). However, models remain highly species-specific, complex, and

difficult to calibrate due to many interlinked parameters (Wallach et al., 2021). Current

developments and increased availability of phenotyping data provide an extensive

source of data for model development and calibration, required for the extension of

model applicability to novel or ‘forgotten’ crops and to studying impacts of pests and

micronutrients. (Silva and Giller, 2020). However, more modern and powerful
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modeling paradigms are needed to address these issues and to infer

large sets of parameters from phenotyping data. This paper

introduces some fundamental concepts of the emerging field of

simulation intelligence (SI) to plant science. SI is the merger of

scientific computing and artificial intelligence (Lavin et al., 2021).

Specifically for plant science, this will result in a new field that

combines novel phenotyping approaches with modeling.

Phenotyping is quantifying (a subset of) plant traits that result

from the interaction between plant genetics and the environmental

conditions to which plants are exposed (Walter et al., 2015). Due to

internal regulatory mechanisms, these phenotypic responses are

situated at multiple organizational scales (cell, tissue, organ, plant,

field) and across timescales. Biotic and abiotic external drivers also

influence these mechanisms. While phenotyping ideally involves

capturing the entire state of a plant in space and time, only partial

observations are practically feasible, leading to the need for a wide

range of sensory devices that capture part of the phenotype. A more

holistic and dynamic view of phenotyping is necessary to overcome

challenges involved in current approaches, including improving the

temporal resolution and broadening results from specific studies to

more diverse conditions (Das Choudhury et al., 2018).

Most models consist of mathematical equations for predicting

plant behavior, morphology and growth as a function of

environment, genetics, and management. Plant models describe

and connect plant processes typically studied in isolation and

consequently predict integrated responses. As such, models are

often used for hypothesis development and improved

understanding of plant processes, but also as decision support tools

for breeding (e.g., genomic prediction), crop management (e.g.,

irrigation scheduling) and policy-making (e.g., climate change

scenarios) (Peng et al., 2020).

Depending on their objective, models vary at the level with which

processes are included (black-box↔mechanistic axis) and at the scale

they operate in terms of space (molecule ↔ ecosystem axis) and time

(second ↔ century axis). Models are considered ‘process-based’ or

‘mechanistic’ when parameters have a biophysical interpretation and

their equations explicitly describe processes (e.g., photosynthesis, water

transport). They operate at a different spatial and (often also) temporal

scale. At each spatial level, there is an extra level of abstraction, but,

interestingly, the scale does not necessarily determine whether a model

is more or less mechanistic, as plants tend to adapt to their

environment in an integrated way (Tardieu et al., 2020). On the

other end of the spectrum, entirely data-driven models based on

machine learning algorithms often lack interpretable parameters. The

latter group of models is vital in breeding [e.g., genomic prediction

(Korte and Farlow, 2013; Hickey et al., 2017; De Meyer et al., 2023)],

but also in greenhouse climate control (Hemming et al., 2020).

Consequently, models often only operate on a single point in the

tempo-spatial domain, limiting their use beyond their initial

conceptualization. Nevertheless, there are efforts to connect modeling

scales from themolecular level up to the crop system (Peng et al., 2020).

Recently, surrogate plant models have become popular

(Corrales et al., 2022; Cheng et al., 2023; Zhang et al., 2023),

because these allow for creating a “digital twin” of the plant

systems for decision support and control. A surrogate data-driven

model is trained to mimic the mechanistic model’s output
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accurately. When properly trained, such a surrogate can be

several magnitudes faster than the original model while behaving

nearly identically (Gherman et al., 2023). Apart from the complete

replacement of mechanistic models by data-driven models, these

can also be combined. For example, Zhang et al. (2023) demonstrate

how these can be coupled in series (e.g., crop model simulation

outputs as input to a machine learning model), in parallel (e.g., data

assimilation in crop models) or via modules (e.g., part of a crop

model is replaced by a machine learning module). This is a stepping

stone towards SI, leading to cross-pollination between scientific

computing, artificial intelligence, plant modeling and phenotyping.
2 Combining scientific computing
with artificial intelligence

Complex biological systems require powerful tools to study

them. On the one hand, many of these systems require substantial

domain knowledge, often as conservation laws and reaction

mechanisms, for which traditional mechanistic modeling and

simulation paradigms are well suited. This is known as “scientific

computing” and relies mainly on ordinary differential equations,

partial differential equations, agent-based models and their ilk. On

the other hand, many mechanisms are yet to be elucidated while, at

the same time, a plethora of multimodal data is available. This

motivates using a data-driven approach (referred to as “artificial

intelligence” or “machine learning”). Recent advances blur the lines

between traditional methodologies, and so-called scientific machine

learning combines both, for example, in neural ordinary differential

equations (Chen et al., 2018; Innes et al., 2019; Rackauckas et al.,

2021), where the solvers are treated as differentiable programs that

can fit data to learn unknown dynamics of the problems.

The advances in scientific computing and machine learning and

their use in studying complex, dynamical multi-scale systems gave

rise to a more generalized view: the new field of simulation

intelligence (SI). Lavin et al. (2021) outlined nine vital,

interconnected computing technology motifs, visually represented

in Figure 1:
1. Multi-scale and multi-physics modelling (Karniadakis

et al., 2021): integrating different types of simulators;

2. Surrogate modelling and emulation (Purcell and

Neubauer, 2023): replacing a complex model or system

with a different one;

3. Simulation-based inference (Cranmer et al., 2020): using

the simulator to infer parameters or states;

4. Causal modelling and inference (Schölkopf et al., 2021):

including or identifying causal concepts within the model;

5. Agent-based modelling (Zhang and DeAngelis, 2020):

simulating a system as a collection of semiautonomous agents;

6. Probabilistic programming (Schoot et al., 2021):

interpreting code as a stochastic program;

7. Differentiable programming (Baydin et al., 2018):

computing and using derivatives and gradients of

computer code and simulators;
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8. Open-ended optimization (Stock and Gorochowski,

2023): trying to find continuous improvements;

9. Program synthesis (David and Kroening, 2017):

automatically discovering the code to solve a problem.
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We included a reference for each motif that covers this specific

topic more in-depth.

This technology stack has enormous potential to advance fields

such as material science, agriculture, chemistry, medicine, climate,
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FIGURE 1

Overview of the different SI motifs for plants. (A) Multi-scale and multi-physics modeling considers the different scales (from cell to ecosystem or
field) and physical processes (radiation, hydraulics, fluidics). (B) Surrorgate modeling and emulation considers a virtual digital twin of the plant
system. (C) Simulation-based inference, such as approximate Bayesian computing, allows a simulator to infer parameters or states from data.
(D) Causal modeling and inference takes into account the different levels of causal reasoning that are possible. (E) Agent-based modeling simulates
a system as a collection of semiautonomous agents. (F) Probabilistic programming allows for general computing with stochastic components and
performs general inferences about parameters and states. (G) Differential programming computing and simulation with gradients and derivatives.
(H) Open-ended optimization aims at finding continuous improvements and adaptations, for example, in plant breeding. (I) Program synthesis
automatically generates the code to solve a problem, e.g., extract the L-system to describe a plant.
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and synthetic biology. Simulation intelligence can also significantly

impact plant sciences. By combining modeling and phenotyping,

one can uncover mechanisms underlying plant dynamics. For

example, functional-structural plant modeling aims to develop

holistic plant growth and function models, harmonizing

architecture with (eco)physiology. The Quantitative Plant1

initiative collects plant phenotyping data sets, plant analysis tools

and models. The availability of plant phenotypic data repositories

and plant biophysical models are prerequisites for SI.1

Concretely, SI aims to handle the following challenges in using

computational modeling for real-world problems:
1 h

Fron
• Inverse problem solving, where one wants to use a model to

infer hidden states or parameters from observations or

measurements. For example, in root phenotyping, researchers

use electrical resistance tomographymeasurements to infer root

properties non-invasively (Whalley et al., 2017).

• Uncertainty reasoning, which relates to the inherent

uncertainty of dealing with biological systems, both

epistemic (i.e., incomplete knowledge of the processes)

and aleatoric (i.e., the irreducible noise, for example, due

to biological stochasticity) (Hüllermeier and Waegeman,

2021). Quantifying uncertainty is of great importance for

plant breeding and precision crop management (Asseng

et al., 2013; Tao et al., 2018; Folberth et al., 2019; Nelson

et al., 2019; Hernández and López, 2020; Dokoohaki et al.,

2021), especially when dealing with a changing climate.

• Human-machine teaming relates to the interaction

between the model or machine intelligence and the

breeder, farmer or other users. This includes intelligent

dashboards and ways for users to query the simulator for

decision-making and inject data, observations and results

into the model. Bridging the gap between models and users

is a significant challenge in digital agriculture (Antle et al.,

2017; Slob et al., 2023; Zhang et al., 2023).
3 Nine simulation intelligence motifs
for plant science

This section discusses the nine SI motifs outlined in Lavin et al.

(2021) and discusses how they can relate to plant science. We

speculate about the opportunities they could present in digital

agriculture when we find only a few plant-related examples. Due

to the broad scope of these topics, we have to be concise. Our

primary aim is to inform the quantitative plant scientist of available

SI tools. We refer to the work of Lavin et al. (2021) or specific

overview papers for an extensive introduction.
ttps://quantitative-plant.org/(accessed on March 2023).
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3.1 Multi-scale and multi-physics modeling

Plant processes occur on different scales (Figure 1A). These can

be spatial, from the molecular processes in the cell (micrometers) to

the ecosystem (up to kilometers), or temporal, the processes of

interest range from nanoseconds (e.g., photosynthesis) to months

or years (e.g., growth). For example, plants generate and use various

rhythms and oscillations at all scales and organization levels

(Damineli et al., 2022). Plant modelers are aware of the fractal

complexity of plant modeling, where lower-level processes can be

abstracted away in so-called meta-mechanisms (Tardieu et al.,

2020). Meta-mechanisms are, e.g., response curves of plant traits

to environmental conditions, which can be characterized in a high-

throughput fashion. Such meta-mechanisms are largely determined

by physical trade-offs that limit evolution (Kempes et al., 2019).

Meta-mechanisms can be tailored to specific plant species or

cultivars, an open challenge in plant modeling (Silva and

Giller, 2020).

Plant models involve various kinds of physical models, going

from molecular and metabolic processes (Farquhar et al., 1980),

hydraulic functioning (De Swaef et al., 2022), to soil and

atmospheric physics (Liu et al., 2020b). Modern (functional-

structural) plant modeling involves advanced physics simulation

such as ray tracing to assess radiation (De Visser et al., 2014; Bailey,

2018; Retkute et al., 2018) and computational fluid dynamics

(Bartzanas et al., 2013; Jiao et al., 2020). The latter are often

computationally demanding and might require appropriate tools,

such as surrogate modeling (discussed later), to make them feasible

for, e.g., greenhouse control.

Physics-informed machine learning can be a powerful aid in

incorporating the different scales and physics (Karniadakis et al.,

2021). Here, data-driven models are fitted not only to match their

training data but also to adhere to known physical laws and are

ideally suited to integrate data into different physical processes. This

has shown great success in biomedical modeling, for example, in

modeling blood flow in an intracranial aneurysm (Raissi et al.,

2020). In crop science, Cavanagh et al. (2021) used physics-

informed deep learning to study the morphological changes

induced by Asian soybean rust. Similar directions for holistic

plant modeling will undoubtedly be fruitful.
3.2 Surrogate modeling and emulation

A surrogate model is a model that replaces an often expensive

computation or process (Figure 1B). In scientific computing,

expensive simulations, such as computational fluid dynamics, are

often replaced by relatively inexpensive methods of training and

deploying machine learning surrogates, such as Gaussian processes

or artificial neural networks. For example, Cheng et al. (2023) used a

data-driven surrogate model in combination with a multi-objective

genetic algorithm to reduce irrigation and nitrogen fertilization by

44% and 37%, respectively.

Surrogate models play a pivotal role in developing of digital

twins – real-time synchronized virtual representations of products,

processes, or environments. These dynamic digital counterparts
frontiersin.org
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facilitate a bidirectional flow of information, leveraging real-world

data while influencing management and decision-making processes.

Positioned at the forefront of digital agriculture and smart farming

(Verdouw et al., 2021; Slob et al., 2022; Purcell and Neubauer,

2023), digital twins seamlessly integrate with the principles of

Industry 4.0 tailored for agricultural contexts.

Digital twins exhibit versatility, being applied to emulate plants,

greenhouses, or entire supply chains. Their primary utility is

improving cost-efficiency, such as reducing water and fertilizer

consumption and elevating prediction accuracy (Ariesen-

Verschuur et al., 2022). Verdouw et al. (2021) categorizes digital

twins based on their relationship to virtual objects—whether it

pertains to an imaginary entity (e.g., a yet-to-grow cultivar), an

existing object, future states for predictive analysis, or a historical

object. Additionally, digital twins serve distinct purposes, being

employed for both monitoring and prescription.

In recent years, digital twins have demonstrated significant

successes in agriculture. Examples include emulating various

wheat development stages to predict yield (Skobelev et al., 2020),

optimizing yield and minimizing energy requirements in

underground hydroponic farms (Jans-Singh et al., 2020),

exploring virtual replicas of greenhouses through immersive VR

experiences (Slob et al., 2023), monitoring the health and quality of

individual plants in orchards (Moghadam et al., 2020), and fine-

tuning greenhouse control systems (Chaux et al., 2021). Using

simulations to govern systems and explore hypothetical

interventions aligns closely with causal reasoning, as discussed in

Section 3.4.
3.3 Simulation-based inference

In plant modeling, knowledge of the processes of interest is

often encoded in process-based models. Typically, given the initial

conditions and the parameter values, these models can simulate

data that can be compared with quantitative measurements such as

biomass growth, development stage, or transpiration. Generating

this data is called forward modeling. However, when one observes

the data, one would often infer the likely hidden states or parameter

values, a process that is a much more challenging inverse problem

(Figure 1C). The field of simulation-based inference deals with

developing inference methods for highly intricate simulators, i.e., to

extract the parameters of a mechanistic model algorithmically

(Cranmer et al., 2020). Simulation-based inference is often called

likelihood-free inference – as contrasted with classical statistical

estimation problems. The likelihood function implicitly defined

by the simulator is often not tractable, making this a challenging

endeavor. Inverse problems are usually solved using a Bayesian

perspective, where the parameters or states have associated prior

distributions. The simulator acts as an implicit likelihood function,

linking the model with the data and parameters.

Approximate Bayesian Computation (ABC) is a widely utilized

approach for simulation-based inference (Marin et al., 2012; Romero-

Cuellar and Francés, 2023). In ABC, the simulator generates synthetic

data by sampling parameters from a prior distribution or proposal

distribution and using these parameters to perform a simulation.
Frontiers in Plant Science 05
These synthetic datasets are characterized by summary statistics, such

as the total biomass, used to compare the simulated data with

collected observations. Parameter values producing synthetic data

with summary statistics closely aligned with those of the actual data,

often measured using Euclidean distance, are retained. These selected

values provide approximate samples of the posterior distribution.

ABC’s most commonly used variant operates similarly to rejection

sampling, and its sampling properties are well understood. However,

the conventional ABC method becomes inefficient, especially when

dealing with large parameter spaces. Notably, ABC has been

successfully applied in plant science to merge crop growth models

with whole genome data (Technow et al., 2015), to infer root

architecture (Ziegler et al., 2019) and to characterize the

morphodynamic progression of Asian soybean rust (Cavanagh

et al., 2021). The progression of machine learning and SI

techniques, including probabilistic and differentiable programming

(see Section 3.5), has significantly influenced simulation-based

inference. For instance, in a study by Monti et al. (2023), the

parameters of an agent-based model were learned directly from

data by redefining it as a probabilistic program.
3.4 Causal modeling and inference

Data-driven modeling has achieved remarkable success across

various scientific and technological domains. However, purely

statistical models often fail to uncover the underlying causal

mechanisms behind the observed data. As an illustration,

consider a simple linear regression model predicting yield based

on nutrient inputs. This model might erroneously suggest that

fertilization decreases yield, neglecting the confounding effect of

poorer soils where fertilizers are commonly applied.

The significance of understanding causality has been underscored

by Judea Pearl in his work, including “The Book of Why” (Pearl and

Mackenzie, 2018). Pearl introduced a hierarchy of causal reasoning

that data-driven models can accomplish, comprising:
1. Observations: Detecting associations in data, such as

estimating tree biomass from their diameter at

breast height.

2. Interventions: Predicting outcomes resulting from active

manipulations of the system, like projecting the effects of

flower pruning on fruit production.

3. Counterfactuals: Imagining potential scenarios where

conditions or interventions differed, as in assessing

whether larger fruits would have resulted from more

extensive flower removal.
Pearl’s mathematical insights reveal that some models are

inherently limited in performing higher-level causal reasoning.

Thus, plant scientists who aim to predict and manage must

exercise caution when employing data-driven models from

observational data because the causal link between the predictors

is not exploited by default. For example, a data-driven model might

conclude that watering harms a plant’s water status, as irrigation

and water stress are correlated. This scenario highlights the
frontiersin.org
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limitations of relying solely on observational data, representing the

first level of causal reasoning in Judea Pearl’s hierarchy, where

associations in data are detected without considering active

manipulations or counterfactual scenarios. The limitations

contrast with many mechanistic models, which can often be used

directly for interventions and counterfactuals. The crux lies in

developing models incorporating the structural relationships

between variables of interest, advocating for mechanistic and

hybrid models. The evolving field of causal machine learning

continues to gain prominence (Schölkopf et al., 2021) (Figure 1D).
3.5 Agent-based modelling

Agent-based models (ABMs) depict complex systems as

interconnected, autonomous agents (e.g., organs or whole plants)

interacting from the bottom up (Figure 1E). These models

frequently encompass stochastic elements and can replicate

macro-level processes stemming from micro-level interactions.

Consequently, ABMs are a natural fit for elucidating multi-scale

phenomena. In ecology and plant science, ABMs are widely

employed (DeAngelis and Mooij, 2005; McLane et al., 2011;

Zhang and DeAngelis, 2020), offering insights into growth,

carbon allocation, reproduction, and more. These models can

portray individual plants within functional-structural plant

models (FSPMs) or capture entire plant communities, such as

field ecosystems.

Interestingly, ABMs precisely capture individual plant

behaviors due to plants’ modular structure, comprising elements

like roots, leaves, stems, and branches. Each module functions

autonomously, gathering, producing, or distributing resources for

the overall plant’s advantage. Remarkably, plants lack a central

controlling entity, resembling a decentralized “swarm intelligence”

(Balusǩa et al., 2010a; Oborny, 2019; van Schijndel et al., 2022). For

instance, a plant’s root tips exhibit both sensory and command

center roles, independently deciding growth directions and even

forming symbiotic relationships with mycorrhizal fungi (Balusǩa

et al., 2010b). Some liken this to a “solid” brain, where individual

units are fixed. In contrast, others argue for “liquid” brain aspects

(van Schijndel et al., 2022), like in plants with vegetative

propagation, like strawberries, exploring diverse niches to

optimize their niche.
3.6 Probabilistic programming

The language of probability theory is an effective way to

describe biological systems, given their inherent stochastic nature

(Figure 1F). Specifically, Bayesian statistics is a consistent

framework to update the scientist’s prior beliefs (encoded in prior

distributions) with measurements and observations (encoded in the

likelihood) into the so-called posterior distribution (Schoot et al.,

2021). In plant science, Bayesian reasoning is applied in, for

instance, plant pathology and epidemics (Mila and Carriquiry,

2004), modeling life stage events (Humplıḱ et al., 2020), and

predicting maize yield (Lacasa et al., 2020). Though powerful,
Frontiers in Plant Science 06
Bayesian and probabilistic methods can be complex in practice

because conditioning a distribution (e.g., computing the posterior)

requires normalization, often involving computing intractable

integrals or sums. Probabilistic programming is a relatively new,

general approach to making probabilistic methods more accessible

in the scientific community.

A probabilistic programming language (PPL) allows one to

write, in principle, arbitrary complex stochastic programs from

which the scientist can make inferences by sampling. Hence, a

universal PPL provides two constructs: i) a way to sample from the

stochastic program and ii) a way to condition during inference. For

example, one can write a program to simulate flowering vines and

then constrain regions where they are present. This allows one to

sample vines that grow in a specific shape, such as a letter (Ritchie

et al., 2016). PPLs have shown success throughout the biological

sciences, for example, in inferring phylogeny (Ronquist et al., 2020),

protein structure alignment (Moreta et al., 2019) and inferring

signaling pathways (Merrell and Gitter, 2020). There are a plethora

of PPLs available, many interfacing with scientifically popular

programming languages for sciences, for example, Stan (Stan

Development Team, 2023), Pyro (Bingham et al., 2019), or

Turing (Holt and Cordy, 1988).
3.7 Differentiable programming

While probabilistic programming facilitates generic computations

involving probability distributions, differentiable programming (Izzo

et al., 2016; Innes et al., 2019) extends computation by enabling

differentiation of arbitrary computer programs (Figure 1G). This

empowers the fine-tuning of program behavior using gradient-based

optimization techniques. This achievement relies on automatic

differentiation (Baydin et al., 2018) – numerically computing (exact)

derivatives by directly manipulating the computational graph – a

foundational concept in deep learning. Differentiable programming

has exerted a profound scientific influence, acting as a cornerstone for

nearly all deep learning research over the past decade and diverse

domains beyond deep learning. These domains encompass ordinary

differential equations (Chen et al., 2018; Rackauckas et al., 2021; Núñez

et al., 2023), scientific machine learning, robotics Degrave et al. (2019),

physics, protein science (Ingraham et al., 2019; AlQuraishi and Sorger,

2021), combinatorial optimization (Liu et al., 2020a), and geosciences

(Shen et al., 2023). The utility of differentiable programming extends to

harmonizing process-based and data-driven models. Within plant

sciences, differentiable plant models offer an avenue to assess

sensitivity directly, calibrate parameters using gradients, apply

probabilistic programming techniques for uncertainty quantification,

and gain control over conditions for optimizing growth. Concrete

achievements in plant sciences include the creation of 3D digital

twin leaf models from image data (Li et al., 2022) and

solving inverse problems related to photosynthesis (Aboelyazeed

et al., 2023). We also propose that advancements in differentiable

ray tracing (Li et al., 2018), computational fluid dynamics (Bezgin

et al., 2023), and physics engines (de Avila Belbute-Peres et al., 2018;

Degrave et al., 2019) hold substantial promise for enhancing

plant simulations.
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3.8 Open-ended optimization

Open-ended systems possess the ability to achieve limitless

improvement and continuously generate novelty (Stanley and

Lehman, 2015; Banzhaf et al., 2016; Stanley et al., 2017)

(Figure 1H). In such systems, the focus primarily lies on creating

novelty rather than being driven by a specific objective function

(Stanley and Lehman, 2015). Open-endedness is a characteristic

observed in various complex systems, including natural evolution

and technological innovation. Its principles have been explored for

diverse applications such as designing new computer architectures

(Ackley and Small, 2014), software development (Fix et al., 2021),

artificial neural networks (Guttenberg et al., 2018), and novel cancer

treatment strategies (Balaz et al., 2021).

Our other work delves into how open-endedness and quality-

diversity algorithms can contribute to biotechnology and synthetic

biology (Stock and Gorochowski, 2023). Expanding this

perspective, we propose that open-endedness can significantly

impact plant breeding, a critical aspect in ensuring global food

security (Lenaerts et al., 2019). Conventional breeding approaches

often prioritize incorporating positive traits into populations,

potentially at the expense of diversity (Louwaars, 2018). A

noteworthy exception occurred in the 1970s when Zelder, a

breeding company, intentionally bred wheat varieties to enhance

diversity as a defense against yellow rust (Groenewegen, 1977).

Embracing the open-ended optimization viewpoint, one could

design breeding schemes capable of continually generating new

cultivars with novel and desirable traits. Insights from the field of

quality-diversity optimization (Pugh et al., 2016), which focuses on

generating new variants that combine functionality and diversity,

have the potential to revolutionize breeding strategies for

developing crops and cultivars suited to a dynamically changing

world. In silico evolution experiments can help to understand the

allometric relations observed in plants due to environmental

conditions (Eloy et al., 2017). As such, they might help to design

new cultivars.
3.9 Program synthesis

Program synthesis automates software creation to tackle specific

problems (David and Kroening, 2017) (Figure 1I). Here, the focus shifts

towards generating optimized code by capturing users’ intentions. A

notable application of this concept is evident in the recently released

ChatGPT, where users use natural language queries to program or

create computer code. This synthesis technique plays a pivotal role in

simplifying intricate mathematical system descriptions.

Program synthesis offers avenues for extracting insights from

biological experiments in mathematical modeling. For instance,

Koksal et al. (2013) automatically generated biological models from

mutation experiments and recommended new experiments to

differentiate between potential models. This approach holds

promise for analyzing high-throughput CRISPR-Cas-based

knockout experiments, offering valuable insights for plant

breeding (Van Huffel et al., 2022). Symbolic regression uses

genetic programming to automatically discover a white-box
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model of one system (Angelis et al., 2023; Cranmer, 2023) – ideal

to find the earlier-discussed meta-mechanisms. The DreamCoder

system can uncover simple programs that generate example datasets

(Ellis et al., 2023). These programs encompass diverse forms, such

as regular expressions, graphics, symbolic equations, and physical

laws. These techniques aid in discovering allometric laws and meta-

mechanisms to support model building. They also facilitate the

automatic extraction of rules for L-systems, enabling the creation of

virtual plants based on a limited set of examples. In summary,

custom computer algebra systems (Ma et al., 2022) and language

compilers can streamline equations and code, resulting in concise

and numerically stable plant models.
4 Discussion and outlook

The sections above discussed SI and its (potential) impact on

the plant sciences. Here, we will give a more holistic point of view of

why SI can be instrumental in discovering new and improving

current practices in plant sciences. SI provides a holistic, top-down

look at plant science and a systemic approach for leveraging

fragmented phenotypic data and ecophysiological knowledge

contained in process-based models.

Process-based plant models (including FSPMs) are continuously

under development and updated with relevant knowledge. These are

applied for decision support and (climate) scenario analysis, but also

for answering scientific, plant-physiological questions, often in

combination with plant phenotypic data. High-throughput plant

phenotyping data of crop performance and development is now

also being applied in crop breeding (Araus and Cairns, 2014; Gill

et al., 2022). Still, the impact of these phenotypic data often needs to

be more specific to the objectives of the experiments wherein these

were collected. Therefore, SI concepts can facilitate the connection

between phenotypic data and ecophysiological plant models and, as

such, broaden the use of these phenotypic data and expand

knowledge of the processes they rely on.

We identify three key prerequisites to embrace SI’s philosophy

in plant sciences fully. (1) The development of cheap sensor

technology for environmental monitoring and plant phenotyping

enables continuous monitoring of larger populations in real-time.

(2) Open datasets and code, following the FAIR principles

(Wilkinson et al., 2016), which is finding its way into plant

sciences (Saint Cast et al., 2022) but is already much more

prevalent in other scientific domains (Scheffler et al., 2022). (3)

Interdisciplinary collaborations bridge potential knowledge gaps

and enable cross-disciplinary approaches to succeed faster.

The increased amount of open data, along with AI, allows the

processing of larger amounts of combined data and models and

opens up new or improved applications in plant breeding or

greenhouse control, as seen in other domains, e.g. Degrave et al.

(2022) who leveraged simulation and experimental data to learn a

closed-loop controller a tokamak reactor. Recent research explores

similar hybrid approaches to control plant and crop systems (Kang

andWang, 2017; Ifrim et al., 2021; Mahmood et al., 2023). Simulation

and scientific computing is centered around creating mechanistic

computational models to simulate real-world phenomena, while
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machine learning focuses on leveraging learning algorithms to extract

knowledge and insights from scientific data. Both approaches have

strengths and can be combined to enhance scientific understanding

and decision-making.

Throughout our literature survey, we identified the SI motifs

embedded in numerous plant-related projects. This finding aligns

with the core objectives of SI, which are geared towards addressing

the issues inherent in modeling complex systems:
Fron
• Solving inverse problems;

• Integrating mechanistic knowledge with data;

• Navigating uncertainty, and;

• Fostering effective communication between the model and

the user.
In applied domains, such as plant and crop modeling,

advancements often trail the cutting edge of computational

methodologies. Consequently, it is unsurprising that relatively

mature SI motifs, such as surrogate models, agent-based modeling,

and differentiable programming, showcase the highest prevalence in

plant-related examples. In contrast, motifs in their infancy, such as

probabilistic programming, open-ended optimization, and program

synthesis, exhibit fewer concrete applications in plant and crop

science. These emerging SI topics can advance plant and

agricultural sciences toward a more sustainable future.
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