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Integrating spectral and image
information for prediction of
cottonseed vitality

Qingxu Li1, Wanhuai Zhou1 and Hongzhou Zhang2*

1College of Computer Science, Anhui University of Finance & Economics, Bengbu, China, 2College of
Mechanical and Electrical Engineering, Tarim University, Alar, China
Cotton plays a significant role in people’s lives, and cottonseeds serve as a vital

assurance for successful cotton cultivation and production. Premium-quality

cottonseeds can significantly enhance the germination rate of cottonseeds,

resulting in increased cotton yields. The vitality of cottonseeds is a crucial

metric that reflects the quality of the seeds. However, currently, the industry

lacks a non-destructive method to directly assess cottonseed vitality without

compromising the integrity of the seeds. To address this challenge, this study

employed a hyperspectral imaging acquisition system to gather hyperspectral

data on cottonseeds. This system enables the simultaneous collection of

hyperspectral data from 25 cottonseeds. This study extracted spectral and

image information from the hyperspectral data of cottonseeds to predict their

vitality. SG, SNV, and MSC methods were utilized to preprocess the spectral data

of cottonseeds. Following this preprocessing step, feature wavelength points of

the cottonseeds were extracted using SPA and CARS algorithms. Subsequently,

GLCM was employed to extract texture features from images corresponding to

these feature wavelength points, including attributes such as Contrast,

Correlation, Energy, and Entropy. Finally, the vitality of cottonseeds was

predicted using PLSR, SVR, and a self-built 1D-CNN model. For spectral data

analysis, the 1D-CNN model constructed after MSC+CARS preprocessing

demonstrated the highest performance, achieving a test set correlation

coefficient of 0.9214 and an RMSE of 0.7017. For image data analysis, the 1D-

CNN model constructed after SG+CARS preprocessing outperformed the

others, yielding a test set correlation coefficient of 0.8032 and an RMSE of

0.9683. In the case of fused spectral and image data, the 1D-CNN model built

after SG+SPA preprocessing displayed the best performance, attaining a test set

correlation coefficient of 0.9427 and an RMSE of 0.6872. These findings highlight

the effectiveness of the 1D-CNN model and the fusion of spectral and image

features for cottonseed vitality prediction. This research contributes significantly

to the development of automated detection devices for assessing

cottonseed vitality.
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1 Introduction

China occupies a prominent position in the realm of cotton

production and processing, with its cotton planting area having

surpassed 3,000 hectares over the past five years. Notably, the cotton

planting area in the Xinjiang region constitutes a substantial 90% of

China’s total cotton cultivation (Lu et al., 2022). The quality of

cottonseed holds immense significance in the realm of cotton

production, as superior-quality cottonseed exhibits a heightened

germination rate, ultimately contributing to amplified cotton yields.

Cottonseed quality encompasses both intrinsic and extrinsic

aspects, with vitality serving as a crucial metric for gauging

intrinsic quality. Elevated vitality levels are indicative of improved

cottonseed germination rates (Bai et al., 2020). Currently, the

management of cottonseed quality within the industry primarily

relies upon manual selection. This approach, however, is limited to

identifying surface defects such as breakage or mold presence (Du

et al., 2023). While manual selection effectively eliminates

cottonseeds with apparent cosmetic imperfections, it falls short in

evaluating the inherent viability of these seeds, a factor not

discernible to the naked eye. The vitality of cottonseeds holds

paramount significance, as it directly impacts their potential to

germinate successfully. Inadequate seed vitality precipitates

suboptimal germination rates post-planting, subsequently

undermining overall cotton yield and the financial returns for

cotton cultivators. Consequently, there is an urgent need for

techniques that can accurately ascertain the vitality of cotton

seeds. To ensure the robustness of cotton production, it has

become imperative to develop methodologies capable of

evaluating the vitality of cottonseeds.

The research into cottonseed analysis can be classified into three

main categories: cottonseed appearance assessment, variety

identification, and determination of genetic modification status.

Regarding appearance detection, Zhang et al. (2022) used air-

coupled ultrasound with sound-to-image encoding for microcrack

detection in cottonseeds, achieving a 90.7% accuracy. Wang et al.

(2023) applied machine vision technology with the YOLOV5

framework to detect damaged and mold-infested cottonseeds with

over 99% accuracy. Du et al. (2023) harnessed machine vision with

the ResNet50 architecture for damaged cottonseed identification,

reaching a 97.23% accuracy. For variety detection, Soares et al.

(2016) employed near-infrared hyperspectral imaging to classify

cottonseed varieties with 91.7% accuracy. Building upon this

foundation, Zhu et al. (2019) introduced deep learning algorithms

to further enhance cottonseed variety identification. In the context

of genetically modified detection, Qin et al. (2017) employed

terahertz spectroscopy for genetic modification status, achieving a

95% accuracy. Li and Shen (2020) identified noteworthy spectral

peaks within the spectral ranges of 1.0~1.2 THz and 1.3~1.5 THz in

genetically modified cottonseeds. Rocha et al. (2021) utilized near-

infrared hyperspectral imaging to distinguish transgenic from

conventional cottonseeds.While previous research has not

specifically addressed cottonseed viability assessment, the studies

mentioned earlier in different areas of cottonseed analysis

collectively emphasize the potential use of hyperspectral

technology for evaluating cottonseed quality. Hyperspectral
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technology excels at capturing comprehensive image data across

various wavelength bands and acquiring essential optical absorption

or reflection information across different wavelength ranges (Gao

and Xu, 2022). The utilization of hyperspectral technology has

garnered substantial traction within the realm of cotton and seed

(Feng et al., 2019). For instance, Zhang et al. (2016) used it to detect

foreign fibers in cotton, Li et al. (2023) to measure nitrogen levels in

cotton leaves, Yan et al. (2021) to identify cotton aphid infection,

and Lee et al. (2017) to detect bacterial infection in watermelon

seeds. Zhou et al. (2020) achieved 89% accuracy in classifying beet

seed viability, while Xu P. et al. (2022) reached 89.76% accuracy for

maize seed germination. Cheng et al. (2023) applied hyperspectral

detection to analyze vegetable seeds with 91% accuracy.

In summary, hyperspectral technology has been instrumental in

assessing the viability of various plant seeds. Its successful

implementation has been demonstrated within the realm of

cotton and cottonseed cultivation. Utilizing hyperspectral

technology for cottonseed vitality detection has the potential to

address existing research gaps in this field. With this context in

mind, a hyperspectral data acquisition system was employed to

gather hyperspectral data from cottonseeds. The primary objectives

encompass the acquisition of spectral and image data from cotton

seeds, individualized extraction of spectral and image features

inherent to cotton seeds, subsequent fusion of these extracted

features, and ultimately, the construction of a predictive model

for assessing the vitality of cottonseeds. This predictive model shall

be devised through the utilization of both machine learning and

deep learning methods.
2 Methods and materials

2.1 Sample preparation

200 seeds of the Xinluzao-57 cotton variety, sourced from Tahe

Seed Company in Aral City, were chosen for this study. All

cottonseeds underwent a delinting process to remove cotton

fibers. The selected 200 cottonseeds were numbered. Subsequent

to the comprehensive acquisition of hyperspectral data from the

cottonseeds via the dedicated hyperspectral acquisition system

designed for assessing the vitality of cottonseeds, all cottonseeds

were earmarked for germination to ascertain their vitality. The

germination experiment was executed as follows: Initially, the

cottonseeds were subjected to a 15-minute scalding with boiling

water. Following this, the cottonseed shells were allowed to rupture

and fluff. Once this preparation was completed, the treated

cottonseeds were evenly positioned within a 100 mm ×100 mm

×100 mm germination box, adhering to the pre-established

sequence. A layer of loose sand, approximately 15~20 mm in

thickness, was evenly distributed over the samples. Subsequently,

the germination boxes were introduced into a GXZ-300A

cottonseed incubator.

This process required sand grains within the box to be uniform

in size, ranging from 0.05 to 0.80 mm in diameter. The sand was

washed meticulously for at least 10 hours and sterilized at a high

temperature of 130°C. The moisture content of the sand bed within
frontiersin.org
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the germination box was maintained at 80% of its saturation point.

The incubation conditions were set as follows: A cycle of 12 hours

for both day and night, with a daytime temperature of 27°C and

light intensity at 1250 Lx. For the nighttime period, the temperature

was adjusted to 20°C with no light (0 Lx). After 15 days from sowing

the cottonseeds, the seedling’s height was measured using a

straightedge and documented. In this study, the height of cotton

seedling growth 15 days after sowing was employed as a metric for

assessing the viability of cottonseeds.
2.2 Hyperspectral data acquisition system

The cottonseed hyperspectral data acquisition system is

comprised of several essential components, illustrated in Figure 1,

including a dark box, a hyperspectral camera, two identical tungsten

halogen light sources, a mobile console, and a computer. The

hyperspectral camera, specifically the Zolix HyperSIS-VNIR-CL

model (manufactured by Zolix Hanguang in Beijing), exhibits a

wavelength range spanning from 391 nm to 1043 nm, with a

remarkable resolution of 1.25 nm. Accompanying this, the

tungsten halogen light sources (manufactured by ocean optics),

each possessing a power output of 50 W, operate within the

wavelength range of 350 nm to 2500 nm. The dark box serves a

critical purpose in averting external ambient light from interfering

with the spectral camera’s operation, ensuring precision in data

acquisition. The dark box is constructed from 3mm thick stainless

steel with a painted surface. Concurrently, the mobile console plays

a pivotal role in maneuvering the cottonseed specimens into direct

alignment beneath the hyperspectral camera, facilitating optimal

data capture. This orchestrated system of components collectively

contributes to the meticulous acquisition of hyperspectral data from

the cottonseed samples.

In the process of gathering hyperspectral data from cottonseeds,

a methodical arrangement was employed. The cottonseeds were

positioned in a sequential manner upon the testing plate. On each of

these testing plates, a grouping of 25 cottonseeds was arranged,

leading to a cumulative arrangement across 8 distinct testing plates.

These plates were then situated atop the mobile console, which
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played a pivotal role in facilitating data collection. The acquisition

parameters were configured through the SpectraSENS software

interface. These parameters encompassed an exposure time of

0.20 seconds for the camera, a mobile console moving speed of 1

mm/s, and a predefined mobile console displacement range of 150

mm. The orchestrated interplay of these parameters was crucial in

ensuring optimal data capture fidelity. Upon completion of the data

acquisition procedure, the resulting hyperspectral data was

preserved in raw file format. Each of these raw files encapsulated

both spectral and image particulars associated with the 25

cottonseeds featured on the respective testing plate.
2.3 Dataset preparation

Sample set partitioning plays a pivotal role in influencing the

efficacy and reliability of machine learning and deep learning

models. The proportion of the training set to the entire dataset

significantly impacts model performance, with both excessively

high and overly low ratios having potential repercussions. Striking

a balance is essential. A prevailing convention suggests that a ratio

of 7:3 between the training set and the test set is reasonable (Shao

et al., 2021). The SPXY (Sample Set Partitioning Based on Joint X-Y

Distance) algorithm stands as a widely adopted approach for

sample set partitioning, and at its core lies the concept of

identifying similarity among samples within the feature space to

allocate them to either the training set or the test set. In the context

of our study, the SPXY algorithm was employed to partition a total

of 200 cottonseeds into dedicated training and test sets. The training

set comprised 140 cottonseeds, while the test set encompassed

60 cottonseeds.
2.4 Extraction of hyperspectral data

The hyperspectral camera’s imaging band range is notably

narrow, rendering it susceptible to noise interference during the

collection of hyperspectral images of cottonseeds. If the original

hyperspectral information of the cotton seeds is utilized for analysis
Computer

Hyperspectral 
camera

Light source

Dark box
Mobile console

 

FIGURE 1

Hyperspectral data acquisition system.
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without proper correction, it can significantly undermine the

reliability of the analysis outcomes. Consequently, a crucial step

in ensuring the credibility of the analysis results is to implement a

correction process on the hyperspectral data (Benelli et al., 2021).

The calibration procedure is outlined as follows: Position the empty

test plate atop the mobile console and capture the complete white

image denoted as. Subsequently, deactivate the light sources and

capture the complete black image represented as Y . By substituting

these images into formula (1), the corrected hyperspectral image of

the cotton seed can be obtained.

S =
O − Y
X − Y

(1)

Where, O represents the original image of the cottonseed, and S

corresponds to the black and white corrected image of

the cottonseed.

The corrected hyperspectral data of the cottonseeds necessitate

the extraction of their spectral and image information prior to

analysis and subsequent processing. In this study, the ENVI

software was employed to undertake this information extraction

from the rectified hyperspectral data of the cottonseeds. More

specifically, this encompassed the spectral extraction of the

designated region of interest (the cottonseed region within the

experimental plate), as well as the extraction of images for each

individual wavelength point. The hyperspectral images of the

cottonseeds were obtained, with each cotton seed serving as a

distinct region of interest. Notably, a total of 520 images

corresponding to varying wavelength points were extracted for

each individual cotton seed. Each cottonseed corresponds to a

single line of spectral data.
2.5 Processing of spectral data

2.5.1 Pretreatment for spectral data
When acquiring hyperspectral data for cottonseeds, the

temperature fluctuations resulting from the heat emitted by the light

source and the interference from visible light within the laboratory

environment introduce additional noise to the collected data.

Although the application of black-and-white correction partially

mitigates this noise, its effectiveness is limited. In order to

systematically diminish the detrimental influence of this noise on

the subsequent data analysis processes, this study employed a

combination of methodologies, including the SNV (Standard

Normal Variate Transformation) algorithm, SG (Savitzky-Golay)

convolutional smoothing, and MSC (Multiplicative Scatter

Correction), to process the spectral data obtained from cottonseeds.

Through these approaches, not only is the noise reduced, but the

subsequent modeling tasks are also rendered more straightforward

and user-friendly.

The SNV is primarily employed to mitigate the influence of

light scattering on spectral data. This approach functions by

transforming the original spectral data into standardized normal

distribution variables, thereby rectifying any inherent distortions

(Panda et al., 2022). The SG algorithm, rooted in the principle of

least squares, operates as a polynomial smoothing technique. It
Frontiers in Plant Science 04
leverages data points confined within a defined window to construct

a polynomial curve. By doing so, this process effectively eliminates

stochastic noise while preserving pertinent information intrinsic to

the analyzed signals. The consequence is the enhancement of signal

characteristics within the smoothed data (Yao et al., 2023). The

MSC algorithm operates on the foundational premise of nullifying

the ramifications of multiple scattering. This is accomplished by

rectifying the spectrum of the target sample through division by a

scattering reference spectrum. This corrective procedure heightens

the accuracy and dependability of the spectral data. Typically, the

scattering reference spectrum is an amalgamation of spectra

extracted from a collection of standard samples. It is imperative

that the spectral attributes of this reference align with the multiple

scattering phenomena intrinsic to the target sample (Xu M.

et al., 2022).

2.5.2 Feature selection for spectral data
In this research, the cottonseed spectra were extracted from

hyperspectral data, resulting in a data dimension of 520. However,

utilizing the complete set of spectral data for modeling purposes

introduces a considerable volume of redundant information,

subsequently yielding suboptimal modeling outcomes. Hence,

within the scope of this study, the SPA (Successive Projections

Algorithm) and CARS (Competitive Adaptive Reweighted

Sampling) algorithms were applied to discern the feature

wavelengths within the spectral data of cottonseeds. This

endeavor aimed to identify a set of pivotal wavelength positions

that not only encapsulate the essence of cottonseed vitality but also

expunge extraneous information.

The SPA serves as a forward feature selection technique

employed to address spectral covariance quandaries. SPA operates

by subjecting wavelengths to vector projection, wherein one set of

wavelengths is projected onto another. Subsequently, the

magnitudes of these projection vectors are juxtaposed, and the

wavelength boasting the most substantial projection vector is

chosen. This preliminary selection serves as the basis for further

feature wavelength selection, facilitated through a corrective model.

SPA effectively assembles a subset of variables that minimizes both

redundancy and covariance, thus optimizing information content

(Tang et al., 2018). The CARS algorithm employs a strategy of

adaptive reweighted sampling to pinpoint wavelength positions

characterized by substantial absolute regression coefficients within

the partial least squares model. This approach involves eliminating

wavelength positions with minor weights and leveraging cross-

validation to identify a subset with the least cross-validated mean

squared deviation values. Consequently, this methodology

streamlines the search for an optimal amalgamation of variables,

enhancing overall efficiency (Lin et al., 2019).
2.6 Extraction of image features

Two prevalent techniques for hyperspectral image analysis deserve

mention: Firstly, the conversion of hyperspectral imagery into a color

representation allows for the extraction of features like chromatic

attributes and color-based morphological characteristics. The second
frontiersin.org
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approach involves decomposing the high-dimensional image data into

individual single-channel images. Subsequently, the texture intricacies

within these single-channel images are subjected to extraction. Given

the subtle differentiations in color and morphological attributes within

cottonseed images, this study opted to harness texture features for

prognosticating cottonseed vitality. However, it’s important to note that

each individual cottonseed image in this study comprises 25 distinct

cottonseeds, thus necessitating individual segmentation for accurate

analysis. The segmentation task was executed using the U-Net

architecture, which comprises a compression path and an expansion

path. Within the compression path, four blocks were incorporated,

each consisting of three convolutions and a max pooling

downsampling operation. The number of feature maps was

consistently doubled post each downsampling operation.

Correspondingly, the expansion path, also comprised of four blocks,

initiated with three successive convolutional downsampling operations,

succeeded by an additional Max Pooling downsampling step. In each

block, the feature map’s size was magnified twofold, subsequently

halving its count through inverse convolution. This augmented map

was then amalgamated with the feature map from the symmetrical

compression path on the left, as shown in Figure 2 (Beeche et al., 2022).

Upon accomplishing the segmentation of individual

cottonseeds, the ensuing step involves the extraction of texture

features for each isolated cottonseed. This process entails the

application of the gray-scale co-occurrence matrix, grounded in

the concept that each pixel’s frequency of occurrence within a

specific range of neighboring pixels, all possessing identical gray

levels, is tallied. The resultant counts are subsequently employed as

elements within the Gray-Level Co-occurrence Matrix (GLCM)

corresponding to the given pixel (Hussain et al., 2022). The

mathematical formulation for its implementation is as follows:

G(i, j) =op(i, j) (2)
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This formula, G(i, j) represents the frequency of co-occurrence

of a pixel possessing a gray level i alongside a pixel at a distance j

with the same gray level. Meanwhile, p(i, j) signifies the normalized

GLCM, effectively capturing the proportional distribution of such

co-occurring instances.

The features extracted from the GLCM encompass several

fundamental attributes: Contrast (This descriptor encapsulates the

disparity between distinct gray levels within the image texture,

thereby delineating texture contrasts); Correlation (By characterizing

the interconnectedness of pixel gray levels in the image texture,

correlation offers insights into the interrelationships within the

texture); Energy (Reflecting the extent of textural intricacy, energy

gauges the presence and intensity of detailed textural patterns within

the image); Entropy (This facet captures the intricacy and ambiguity

present within the image texture, signifying its level of uncertainty and

complexity). In this study, individual cottonseed comprises 520 images

spanning various spectral bands. Each of these images is associated

with four distinctive metrics for texture attributes. Consequently, a

cumulative total of 2080 texture features are derived for

each cottonseed.
2.7 Modeling methods

2.7.1 PLSR and SVR
Within this study, the prognostication of cottonseed vitality was

pursued through the application of two distinct regression models:

Partial Least Squares Regression (PLSR) and Support Vector

Regression (SVR). PLSR stands as a statistical analytical technique

primarily employed for establishing regression connections among

multiple variables. This method finds frequent application in

addressing regression challenges arising from high-dimensional

data and multicollinearity. PLSR employs a decomposition
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FIGURE 2

U-Net.
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strategy, breaking down both the predictor and response variables

into latent variables. Subsequently, it establishes a linear association

between these latent variables, achieved by minimizing the

covariance existing between them (Cheng and Sun, 2017). At the

core of SVR lies the principle of minimizing the dissonance between

predicted and actual outcomes, achieved by determining an optimal

hyperplane that seamlessly maps input data to corresponding

output data (Sun et al., 2020). This procedural journey

encompasses the following steps:

1. Input data undergoes the transformation into a feature space

with an elevated dimensionality.

2. Within this augmented feature space, a foundational

hyperplane is erected, serving as the bedrock for prediction-

making and facilitating the regression endeavor.

3. The procedure includes the identification of support vector

data points residing in close proximity to the hyperplane within the

feature space. These vectors play a pivotal role in establishing the

hyperplane’s placement.

4. The optimization of hyperplane parameters is accomplished

by minimizing a designated objective function.

2.7.2 1D-CNN
Convolutional neural networks exhibit robust feature extraction

capabilities and have demonstrated notable achievements in both

classification and regression tasks (Guo et al., 2022). Given the

distinctive characteristics intrinsic to cottonseed spectral and image

texture data, this research employed a one-dimensional convolutional

neural network (1D-CNN) to prognosticate the vitality of cottonseeds.

To enhance the adaptability of the 1D-CNN model for cottonseed

vitality prediction, a tailored 7-layer architecture was constructed,

depicted in Figure 3. This architecture encompasses two sequential

1D convolutional layers, supplemented by two average pooling layers

and two fully connected layers. The initial 1D convolutional layer

incorporates 64 convolutional kernels, while the second layer integrates

128 convolutional kernels. These convolutional layers are pivotal in

extracting essential characteristics from the cottonseed data. The

incorporation of average pooling layers expedites model convergence

and serves as a preventive measure against overfitting. Within the fully

connected layers, the first layer accommodates 256 neurons, while the

subsequent layer is composed of a single neuron, which specifically

signifies cottonseed vitality.

The selection of a suitable loss function profoundly influences

model performance, as it guides the continual refinement of

network parameters throughout the training phase by quantifying

the disparity between predicted and actual values. By acting as a

yardstick for this discrepancy, the choice of an appropriate loss

function holds the potential to expedite convergence while

enhancing model efficacy. Within this study, the mean square

error function was adopted to quantify the disparity between

predicted and actual cottonseed vitality values. The computational

formulation for this function is as follows:

MSE =
o
n

i=1
(ŷ − y)2

n
(3)
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Where ŷ signifies the predicted cottonseed vitality value, y

denotes the actual cottonseed vitality value. ncorresponds to the

count of cottonseed samples.
2.8 Performance evaluation of models

In the process of employing the U-Net for cottonseed

segmentation, this study evaluates the model’s segmentation

performance using two widely employed metrics in image semantic

segmentation tasks: Pixel Accuracy (PA) and Mean Intersection Over

Union (MIoU). These metrics are applied to compare and analyze the

model’s semantic segmentation outcomes against manually annotated

cottonseed images. The formulas for both metrics are presented below:

PA = oN−1
i=0 nii

oN−1
i=0 oN−1

j=0 nij
� 100% (4)

MIoU =
1

N + 1 o
N−1

j=0

nii

oN−1
j=0 nij +oN−1

j=0 nji − nii
� 100% (5)

In these formulas, Nrepresents the count of semantic categories,

which, in this study, is set to 2. nii denotes the tally of accurate pixels

corresponding to category isemantics. Similarly, nij signifies the

count of pixel points in which category isemantics is erroneously

identified as category j, while nji indicates the count of pixel points

where category jsemantics is erroneously identified as category i.

The assessment metrics for the regression model encompass the

correlation coefficient and the root mean square error. Generally, a

model’s predictive efficacy is deemed higher when the correlation

coefficient approaches 1 and the root mean square error approaches

0. The computation of these metrics is outlined below:
Input layer

Convolutional layer 1: 
Conv1D Number of kernels: 64

Convolutional layer 2: 
Conv1D Number of kernels: 128

Average pooling layer

Fully connected layer nodes: 256

Average pooling layer

Fully connected layer nodes: 1

FIGURE 3

1D-CNN for Cottonseed.
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R =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(ŷ i − yi)

2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(ŷ i − ymean)

2

s (6)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(ŷ i − yi)

2

s
(7)

Where, n denotes the count of samples within the dataset. ŷ i

signifies the predicted value for the “ith” sample, yirepresents the

actual value of the same “ith” sample. Additionally, ymean stands for

the mean value computed from the actual values across all samples

encompassed by the dataset.
3 Results and discussion

3.1 Analysis results of spectral data

3.1.1 Sensitive band analysis of cottonseed
After extracting hyperspectral data, a dataset comprising 200

cottonseed samples was compiled, encompassing both spectral and

image data. This section is dedicated exclusively to harnessing

spectral data for predicting cottonseed vitality. Before selecting

feature wavelengths, the cottonseed spectral data undergoes

pretreatment via three distinct algorithms: SNV, MSC, and SG.

These algorithms are employed to counteract the effects of noise

and scattering on the modeling outcomes. Illustrated in Figure 4,

observations discern that following SG pretreatment, the

distribution of cottonseed spectral data exhibits similarities to the

original distribution, albeit with heightened smoothness. With MSC

pretreatment, the distribution of cottonseed spectral data becomes

more concentrated in contrast to the original dataset. Conversely,

the values of cottonseed spectral data undergo modification after

SNV pretreatment, resulting in a distribution akin to that achieved

through MSC pretreatment.
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Following the pretreatment of cottonseed spectral data, the SPA

and CARS algorithms were employed to select feature wavelengths.

This procedure aimed to identify essential sets of wavelength points

that effectively encapsulate cottonseed vitality. The progression of

feature wavelength selection via the SPA is depicted in Figure 5,

utilizing the cottonseed spectral data following SG pretreatment as

an illustrative example. The fundamental tenet of the SPA

algorithm for feature wavelength selection in cottonseed spectral

data is rooted in the minimization of the root mean square error

(RMSE), as depicted in Figure 5A. Notably, the RMSE reaches its

minimum value when 10 features are chosen. The specific feature

wavelengths selected in this process are illustrated in Figure 5B. The

selection of feature wavelength points following MSC and SNV

pretreatment mirrored that of SG. Ultimately, we identified 10

characteristic wavelength points after SG preprocessing, 8 after

MSC, and 6 after SNV, distributed across both the visible and

near-infrared wavelength ranges.

To elucidate the process of extracting feature wavelengths using

the CARS algorithm, the same SG-pretreated cottonseed spectral

data serves as an illustrative example. This study implements 100

Monte Carlo sampling iterations and employs a 5-fold cross-

validation approach. As evidenced in Figure 6A, the count of

selected variables gradually diminishes as the number of sampling

iterations progresses. Figure 6B reveals the behavior of the Root

Mean Square Error of Cross Validation (RMSECV), depicting a

gradual decline followed by an eventual increase. The decrement in

RMSECV indicates the removal of extraneous information from the

cottonseed spectral data, while the subsequent rise in RMSECV

suggests the elimination of vital information. The point at which

RMSECV reaches its minimum value is accompanied by the

presentation of regression coefficients for each variable along the

vertical line in Figure 6C. At this juncture, the number of sampling

iterations is recorded as 20. The choice of feature wavelengths post

MSC and SNV pretreatment closely resembled that of SG.

Ultimately, we identified 45 feature wavelength points after SG

pretreatment, 64 after MSC, and 53 after SNV, distributed across

both the visible and near-infrared wavelength bands.
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Spectral data after pretreated.
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3.1.2 Regression prediction based on PLSR, SVR
Following the identification of feature wavelengths capable of

indicating the vitality of cotton seeds, we employed PLSR and SVR

techniques to formulate a robust predictive model for cotton seed

vitality assessment. Within the framework of this investigation,

three principal components were chosen for PLSR modeling, while

the radial basis function emerged as the optimal choice for SVR

analysis. Detailed outcomes of these models are presented in

Table 1. Among the discriminant models for cottonseed vitality

developed through PLSR, the model constructed utilizing the

synergistic integration of SG pretreatment and SPA treatment

exhibited unparalleled predictive prowess. This model showcased

exceptional predictive efficacy, boasting a correlation coefficient of
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0.8709 and an impressively low RMSE of 0.8027 when evaluated

against the test dataset. In contrast, the model generated by

applying SNV pretreatment in conjunction with SPA treatment

demonstrated a comparatively suboptimal predictive performance.

This model was characterized by a correlation coefficient of 0.6970

and a relatively higher RMSE of 1.0685 when scrutinized against the

same test dataset. Amidst the suite of SVR models crafted, the

model fashioned through the amalgamation of SG pretreatment and

SPA treatment emerged as the apex performer. This exemplary

model exhibited a correlation coefficient of 0.8917 and an RMSE of

0.7435 when subjected to evaluation against the designated test

dataset. In contrast, the model devised by employing SNV

pretreatment in conjunction with SPA treatment displayed
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comparatively less favorable performance metrics. Specifically, this

model registered a correlation coefficient of 0.8064 and an RMSE of

0.9606 when assessed against the same comprehensive test dataset.

3.1.3 Regression prediction based on 1D-CNN
In this study, we employed a 1D-CNN to construct a robust

predictive model for assessing cottonseed vitality. The model

training was executed within a hardware framework comprising

an i9-12900K CPU, NVIDIA GeForce RTX 3090Ti GPU, and

operating on the Windows 10 platform. The software

environment encompassed Pytorch 1.12 coupled with CUDA 11.7

for efficient computational acceleration. Network parameter

optimization was achieved through the SGD optimizer, with an

initial learning rate established at 0.0001 and a predefined

maximum training iteration of 50. Notably, a batch size of 4 was

employed during the training process. The preprocessed cottonseed

data, following pretreatment and feature wavelength selection, were

harnessed as inputs for the 1D-CNN. The dynamics of network

training reflected through the progression of loss, are visually

illustrated in Figure 7. Evidently, following 20 epochs of training,

the loss values across the spectrum of six distinct treatments have

substantially converged to a low magnitude. This convergence

underscores the attainment of model stability. Notably, the model

attained its lowest loss value subsequent to the application of MSC

in conjunction with CARS preprocessing. Conversely, the highest

loss value was observed following the utilization of SNV

pretreatment accompanied by SPA treatment.

The modeling results for the 1D-CNN are summarized in

Table 2. It is evident that the model constructed after applying

MSC+CARS preprocessing exhibits the most outstanding

performance in predicting the vitality of cottonseed. This is

supported by a test set correlation coefficient of 0.9214 and an

RMSE of 0.7017. Conversely, the model developed after employing

SNV+SPA preprocessing demonstrates the poorest performance, as

indicated by a test set correlation coefficient of 0.8215 and an RMSE
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of 0.9451. These findings are also consistent with the results

obtained during the training of the 1D-CNN model, where the

convergence of loss values further validates the observed trends.
3.2 Analysis results of image data

3.2.1 Cottonseed segmentation
In this study, we employed the Labelme annotation tool to

annotate cotton seeds from six test plates. Subsequently, the

cottonseed images were segmented using the U-Net network.

Given the limited number of cotton seed images available for this

study, we initialized the U-Net network with pre-trained weights

from the COCO Stuff dataset. The hardware and software platforms

utilized for training the U-Net network included an Intel i9-12900K
FIGURE 7

Loss curves.
TABLE 1 The results of PLSR, SVR.

Model Pre-Processing VN RC RMSEC RP RMSEP

PLSR

SG + SPA 10 0.9285 0. 6972 0.8709 0.8027

SG + CARS 45 0.9456 0.6783 0.8517 0.8645

MSC + SPA 6 0.9157 0.7137 0.8461 0.9014

MSC + CARS 64 0.9582 0.6624 0.8583 0.8352

SNV + SPA 8 0.7159 1.0216 0.6970 1.0685

SG + SPA 10 0.9637 0.6521 0.8917 0.7435

SVR

SG + SPA 10 0.9637 0.6521 0.8917 0.7435

SG + CARS 45 0.9563 0.6689 0.8422 0.9160

MSC + SPA 6 0.9088 0.7356 0.8632 0.8274

MSC + CARS 64 0.9257 0.6997 0.8816 0.7952

SNV + SPA 8 0.8562 0.8456 0.8064 0.9606

SNV + CARS 53 0.9146 0.7204 0.8347 0.9231
fron
RC, Correlation coefficient of the training set; RMSEC, RMSE of the training set; RP, Correlation coefficient of the test set; RMSEP, RMSE of the test set; VN, number of variables.
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CPU, NVIDIA GeForce RTX 3090Ti GPU, PaddlePaddle 2.5, and

CUDA 11.7. The segmentation results of the model are presented in

Figure 8. It is evident that U-Net achieves results for cottonseed

segmentation, with a PA of 97.88% and an MIoU of 88.53%.

Moreover, the model demonstrates efficient performance with a

single-image detection time of 320ms. These findings indicate a

superior segmentation capability that fully meets the segmentation

requirements for this study.

3.2.2 Texture feature extraction from
cottonseeds

The segmentation of cottonseed images corresponding to

feature wavelength points selected by six distinct processing

methods was conducted using the pre-trained U-Net network

described earlier. Following the completion of segmentation, four

texture features (Contrast, Correlation, Energy, Entropy) were

individually extracted for each cottonseed using the GLCM. For

instance, when considering the feature wavelength point of 711nm

for the cottonseed, the U-Net network was utilized to segment the

corresponding image at 711nm. Subsequently, four texture features

were extracted for each segmented cottonseed, as illustrated in

Figure 9. After completing the extraction of texture features from

cottonseeds, we employed PLSR, SVR, and 1D-CNN to construct

prediction models for cottonseed vitality. The results are presented

in Table 3. For PLSR, the images corresponding to the feature

wavelength points selected with SNV+SPA exhibited the best

performance in predicting cottonseed vitality, achieving a test set
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correlation coefficient of 0.7743 and an RMSE of 0.9936. Similarly,

for SVR, the SNV+SPA preprocessing outperformed others,

yielding a test set correlation coefficient of 0.7524 and an RMSE

of 1.0184. On the other hand, when employing 1D-CNN, the SG

+CARS preprocessing demonstrated superior performance in

predicting cottonseed vitality, with a test set correlation coefficient

of 0.8032 and an RMSE of 0.9683.
3.3 Analysis results of fused spectral and
image data

In hyperspectral data analysis, the fusion of image and spectral

data typically involves two methods: one is the direct fusion of

spectral feature wavelengths with all image features, and the other is

the fusion of a feature wavelength point with its corresponding

image features. In this study, the first method results in image

features with 2080 dimensions, which can potentially lead to

overfitting of the model if applied directly. Hence, we integrated

the extracted spectral feature wavelength point data with the

corresponding image texture features. Following feature fusion,

this study employed PLSR, SVR, and 1D-CNN to construct

prediction models, and the outcomes are presented in Table 4.

From the tables, it is evident that all three models constructed after

the SG+SPA preprocessing exhibited the highest performance in

predicting cottonseed vitality. They achieved a test set correlation

coefficient of 0.8892, 0.9056, and 0.9427, with corresponding RMSE

of 0.7904, 0.7349, and 0.6872 for PLSR, SVR, and 1D-CNN,

respectively. Notably, this performance improvement was notable

when compared to the utilization of spectral data or image texture

features in isolation.
3.4 Comparison of optimal models for
spectral, image, and spectral-image fusion

Among the predictive models for cottonseed vitality based on

spectral data, the 1D-CNN model, established after applying MSC

+CARS preprocessing, demonstrated the highest performance. It

achieved a test set correlation coefficient of 0.9214 and an RMSE of

0.7017, as illustrated in Figure 10. In the case of predictive models

for cottonseed vitality constructed using hyperspectral image data,

the 1D-CNN model, developed following SG+CARS preprocessing,
TABLE 2 The results of 1D-CNN.

Pre-Processing VN RC RMSEC RP RMSEP

SG + SPA 10 0.9532 0.6704 0.9047 0.7386

SG + CARS 45 0.9459 0.6783 0.8637 0.8269

MSC + SPA 6 0.9478 0.6724 0.8503 0.8715

MSC + CARS 64 0.9728 0.3927 0.9214 0.7017

SNV + SPA 8 0.9259 0.6990 0.8215 0.9451

SNV + CARS 53 0.9644 0.6497 0.8459 0.9002
fron
RC, Correlation coefficient of the training set; RMSEC, RMSE of the training set; RP, Correlation coefficient of the test set; RMSEP, RMSE of the test set; VN, number of variables.
FIGURE 8

Cottonseed segmentation results.
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Feature wavelength points were selected using 
the following six methods: SG + SPA, SG + 
CARS, MSC + SPA, MSC + CARS, SNV + 
SPA, and SNV + CARS

For each feature wavelength point, the 
corresponding image is segmented using U-
Net, encompassing both the training and test 
datasets, to yield an individual cottonseed 
image

Extraction of texture features, including 
Contrast, Correlation, Energy, and Entropy, 
for each cottonseed was carried out using the 
GLCM.

+

200 single cottonseeds

Feature wavelength points U-Net

GLCM

Contrast, Correlation, Energy, and Entrop
 

FIGURE 9

Texture feature extraction from cottonseeds.
TABLE 3 The results of PLSR, SVR and 1D-CNN.

Model Pre-Processing VN RC RMSEC RP RMSEP

PLSR

SG + SPA 40 0.8237 0.9402 0.7539 1.0164

SG + CARS 180 0.8069 0.9601 0.6753 1.2767

MSC + SPA 24 0.7958 0.9968 0.6568 1.3984

MSC + CARS 256 0.7012 1.0482 0.5914 1.6323

SNV + SPA 32 0.8369 0.9201 0.7743 0.9936

SNV + CARS 212 0.8058 0.9678 0.6288 1.5108

SVR

SG + SPA 40 0.8491 0.8967 0.7392 1.1573

SG + CARS 180 0.8236 0.9389 0.6647 1.3372

MSC + SPA 24 0.7792 1.0127 0.6329 1.4736

MSC + CARS 256 0.6218 1.5789 0.4788 1.7729

SNV + SPA 32 0.7965 0.9693 0.7524 1.0184

SNV + CARS 212 0.7284 1.2635 0.6342 1.4628

1D-CNN

SG + SPA 40 0.8316 0.9179 0.7906 0.9755

SG + CARS 180 0.8527 0.8566 0.8032 0.9683

MSC + SPA 24 0.8033 0.9705 0.6734 1.2982

MSC + CARS 256 0.8939 0.7493 0.5983 1.6024

SNV + SPA 32 0.7748 1.0194 0.7632 0.9983

SNV + CARS 212 0.8247 0.9397 0.6346 1.4623
F
rontiers in Plant Scienc
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 fron
RC, Correlation coefficient of the training set; RMSEC, RMSE of the training set; RP, Correlation coefficient of the test set; RMSEP, RMSE of the test set; VN, number of variables.
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exhibited the best performance, with a test set correlation coefficient

of 0.8032 and an RMSE of 0.9683, as depicted in Figure 11.

Furthermore, among the models that integrated both spectral and

image data, the 1D-CNN model, established after SG+SPA

preprocessing, outperformed others, boasting a test set correlation

coefficient of 0.9427 and an RMSE of 0.6872, as illustrated in

Figure 12. The optimal performance of the cottonseed vitality

prediction model, incorporating both spectral and image features,

is evident.
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3.5 Discussion

To address the challenge of effectively assessing the vitality of

cottonseeds during the cotton cultivation process, this study

employed hyperspectral technology to develop a data acquisition

system dedicated to cotton seeds. Subsequently, prediction models

for cottonseed vitality are established using spectral data, image

data, and fused spectral-image data. The modeling techniques

encompass both machine learning and deep learning
TABLE 4 The results of PLSR, SVR and 1D-CNN.

Model Pre-Processing VN RC RMSEC RP RMSEP

PLSR

SG + SPA 50 0.9396 0. 6851 0.8892 0.7904

SG + CARS 225 0.9782 0.3643 0.8539 0.8612

MSC + SPA 30 0.9214 0.7011 0.8607 0.8301

MSC + CARS 320 0.9805 0.3428 0.8596 0.8317

SNV + SPA 40 0.8571 0.8439 0.8033 0.9608

SNV + CARS 265 0.9065 0.7392 0.8104 0.9563

SVR

SG + SPA 50 0.9688 0.6493 0.9056 0.7349

SG + CARS 225 0.9806 0.3425 0.8512 0.8693

MSC + SPA 30 0.9329 0.6896 0.8704 0.8167

MSC + CARS 320 0.9863 0.3209 0.8805 0.7973

SNV + SPA 40 0.9017 0.7420 0.8439 0.9016

SNV + CARS 265 0.9733 0.3922 0.8531 0.8688

1D-CNN

SG + SPA 50 0.9667 0.6415 0.9427 0.6872

SG + CARS 225 0.9704 0.3729 0.9069 0.7356

MSC + SPA 30 0.9376 0.6802 0.8674 0.8682

MSC + CARS 320 0.9865 0.3368 0.9295 0.6987

SNV + SPA 40 0.9582 0.6690 0.8544 0.8613

SNV + CARS 265 0.9732 0.3704 0.8629 0.8701
fron
RC, Correlation coefficient of the training set; RMSEC, RMSE of the training set; RP, Correlation coefficient of the test set; RMSEP, RMSE of the test set; VN, number of variables.
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FIGURE 10

Predicted values based on spectral data.
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methodologies. Notably, while there are existing studies focusing on

various qualities of cottonseed, such as Wang et al. (2023) achieving

a 99% accuracy in detecting broken and mold-infested cottonseeds

using YOLOV5, and Du et al. (2023) achieving a 97.23% accuracy in

detecting broken cottonseeds, and also research on the

identification of genetically modified cottonseeds (Li et al., 2020;

Qin et al., 2017), no prior research has addressed cottonseed vitality

detection. This study fills this research gap and additionally

compares the application of hyperspectral detection for assessing

the vitality of other plant seeds, such as vegetable seeds (Cheng

et al., 2023), maize seeds (Xu P. et al., 2022), and beet seeds (Zhou

et al., 2020). Furthermore, we successfully maintained consistency

in achieving predictions even with thicker and harder seed shells, as

demonstrated in cottonseed vitality predictions.
4 Conclusions

In this study, hyperspectral data of cotton seeds was collected,

and we conducted separate extractions of spectral data and

corresponding image data from different bands. The identification

of feature wavelength points for cottonseeds was achieved through a

combination of SG, SNV, and MSC pretreatment algorithms in

conjunction with SPA and CARS techniques. Subsequently, we

developed distinct models for predicting the vitality of cottonseeds

using the following datasets: spectral data alone, image data alone,
Frontiers in Plant Science 13
and a fused dataset combining spectral and image data. In terms of

spectral data analysis, the 1D-CNN model, constructed following

MSC+CARS preprocessing, demonstrated the highest performance,

boasting a test set correlation coefficient of 0.9214 and an RMSE of

0.7017. Turning to image data, the U-Net network exhibited

remarkable capabilities with a PA of 97.88% and an MIoU of

88.53%, ensuring precise cottonseed segmentation. Leveraging the

four texture features extracted from the images, corresponding to

the wavelength points of interest, the 1D-CNN model, established

after SG+CARS preprocessing, yielded the most effective results for

predicting cottonseed vitality, attaining a test set correlation

coefficient of 0.8032 and an RMSE of 0.9683. For fused spectral

and image data, the model’s optimal performance was observed

after SG+SPA preprocessing, delivering a test set correlation

coefficient of 0.9427 and an RMSE of 0.6872. Image information

primarily portrays the external attributes of cottonseeds, whereas

spectral data can reveal crucial insights about the internal

composition of the cottonseed. The vitality of cottonseeds is

influenced by both the shell and kernel. Therefore, the fusion of

spectral and image information leads to improved cottonseed

vitality prediction. Furthermore, it’s worth noting that the 1D-

CNN model’s performance in this study surpassed that of SVR and

PLSR, indicating its suitability for cottonseed vitality prediction.

These findings hold significant promise in providing crucial

technical support for the development of future automated

cottonseed vitality detection devices.
0 10 20 30 40 50 600

1

2

3

4

5

6

7

Sample identification

thgiehs'gnildeeS

real value
predicted value

FIGURE 11

Predicted values based on image data.
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Predicted values based on fused spectral and image data.
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