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Lodging resistance in rice is a complex trait determined by culm morphological

and culm physical strength traits, and these traits are a major determinant of yield.

We made a detailed analysis of various component traits with the aim of deriving

optimized parameters for measuring culm strength. Genotyping by sequencing

(GBS)-based genome-wide association study (GWAS) was employed among 181

genotypes for dissecting the genetic control of culm strength traits. The VanRaden

kinship algorithm using 6,822 filtered single-nucleotide polymorphisms (SNPs)

revealed the presence of two sub-groups within the association panel with kinship

values concentrated at<0.5 level, indicating greater diversity among the genotypes.

A wide range of phenotypic variation and high heritability for culm strength and

yield traits were observed over two seasons, as reflected in best linear unbiased

prediction (BLUP) estimates. The multi-locus model for GWAS resulted in the

identification of 15 highly significant associations (p< 0.0001) for culm strength

traits. Two novelmajor effectmarker–trait associations (MTAs) for sectionmodulus

and bending stress were identified on chromosomes 2 and 12 with a phenotypic

variance of 21.87% and 10.14%, respectively. Other MTAs were also noted in the

vicinity of previously reported putative candidate genes for lodging resistance,

providing an opportunity for further research on the biochemical basis of culm

strength. The quantitative trait locus (QTL) hotspot identified on chromosome 12

with the synergistic association for culm strength trait (section modulus, bending

stress, and internode breakingweight) and grain number can be considered a novel

genomic region that can serve a dual purpose of enhancing culm strength and

grain yield. Elite donors in the indica background with beneficial alleles of the

identified major QTLs could be a valuable resource with greater significance in

practical plant breeding programs focusing on improving lodging resistance in rice.
KEYWORDS

genotyping by sequencing (GBS), association mapping, lodging resistance, culm
strength, marker trait associations (MTAs), candidate gene, Epistatic interactions
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1 Introduction

Lodging is a major constraint in rice, affecting both grain yield and

quality, particularly in coastal areas prone to cyclonic weather. Lodged

plants exhibit limited photosynthetic ability and drymatter production,

as the stooping canopy causes losses in crop yield (Islam et al., 2007;

Kashiwagi et al., 2010; Mariani and Ferrante, 2017). In severe cases,

lodging can result in more than 50% yield loss or complete loss of the

crop (Setter et al., 1997; Lang et al., 2012; Luo et al., 2022). It can also

lead to pre-harvest sprouting of the panicles due to the high moisture

content of the lodged plants. Lodging also poses difficulties in harvest

operations, increases the cost of grain drying, and leads to rice

mycotoxin contamination (Kashiwagi et al., 2005; Nakajima et al.,

2008). The rice crop is prone to lodging from themid-grain filling stage

to the grain ripening, hardening, and maturity stages. The continuous

translocation of organic matter to the spikelets from the culm sheath

weakens the mechanical strength of the culm with an increase in mass

in the top portions of the plant, i.e., increasing grain size grain filling,

and grain weight, increasing the risk of lodging or making the culm

vulnerable to lodging (Ishimaru et al., 2008).

A breakthrough “Green Revolution” in rice was successfully

achieved with the introduction of high-fertilizer-responsive semi-

dwarf varieties. In addition to doubling rice grain yield, the short

stature conferred by the semidwarf1 (sd1) gene increased lodging

resistance, making rice capable of supporting heavier panicles.

Breeders were convinced of the suitability of semi-dwarf varieties for

increased crop productivity, and many improved semi-dwarf varieties

have been developed and cultivated worldwide (Peng et al., 2000;

Ashikari et al., 2002; Asano et al., 2007; Hirano et al., 2017). The Sd1

gene, which encodes the gibberellin synthesis enzyme, and the loss-of-

function mutant sd-1 allele reduce plant height and enhance lodging

resistance (Sasaki et al., 2002). Thus, the semi-dwarf plant type has

been for decades the main target in improving the lodging resistance

and harvest index of rice (Keller et al., 1999; Peng and Khush, 2003).

However, lodging remains a serious problem in widely adapted, high-

yielding elite cultivars, despite the short stature conferred by thesd1

gene. The susceptibility of rice plants to lodging varies even among

cultivars with short plant height, but with more biomass (Terashima

et al., 1992). Reduced culm strength in semi-dwarf varieties due to

decreased culm diameter, thickness, and plant biomass has been

reported (Okuno et al., 2014; Ookawa et al., 2016) as sd1 is

associated with short plant height; it also has negative pleiotropic

effects on culm morphology in rice (Yano et al., 2015). Reducing the

plant’s height also reduces its photosynthetic capacity and leads to a

decrease in total biomass production, thus restricting the plant’s

potential for further yield increases (Flintham et al., 1997; Murai

et al., 2002; Okuno et al., 2014). These make it enigmatic to improve

lodging resistance and, consequently, the harvest index by using the

semi-dwarf trait alone. Further, attempts to increase the sink capacity,

i.e., grain yield, will be successful only when the source efficiency is

enhanced, which is the basis of the new plant type concept (Jyothi et al.,

2018). Although an improved source–sink relationship is essential to

maximize the harvest index, it also promotes biomass via increased

stem and leaf elongation with an overall increase in plant height. Tall

varieties are prone to lodging due to the breaking of the basal culm,
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while the plant type concept advocates semi-tall stature to achieve

higher yields, thus making culm strength imperative to prevent

discernible negative effects of lodging in high-yielding varieties.

Lodging resistance is known to be a complex trait influenced by

many interacting agro-morphological, biochemical, and anatomical

traits. Different techniques have been used to measure culm strength

and lodging resistance in rice. The bending moment at breaking, which

is a function of section modulus and bending stress, was used as a

measure for the physical strength of the culm (Ookawa et al., 2010).

Section modulus is directly influenced by the culm morphology

(diameter and wall thickness), and bending stress is a function of

culm cell wall components, such as cellulose and lignin content. Pushing

resistance measured with a prostrate tester is the most common

parameter used in assessing the culm strength (Terashima et al., 1992;

Won et al., 1998; Berry et al., 2003; Kashiwagi and Ishimaru, 2004).

However, because the tiller number influences the pushing resistance of

the lower part of the culm, bending stress was measured considering

both the tiller number and prostrate tester readings ranging from 0 to 40

(Hai et al., 2005; Yadav et al., 2017; Jyothi et al., 2018). Resistance to

prostrating on a visually rated scale of 0 (prostrating) to 1 (no or little

prostrating) was also used for measuring lodging resistance to typhoons

(Kashiwagi and Ishimaru, 2004; Zhao et al., 2023). Recently, gravity

center height, along with the breaking strength of the basal internode

and culm morphology traits, was used in the measurement of lodging

resistance traits (Yang et al., 2023). It is now evident that the culm

strength parameter is described in different ways by researchers, and

efforts are leading toward the development of an optimized parameter

that truly reflects the strength of the culm.

To understand the physiological and morphological basis of culm

strength and improve it further, prior knowledge of the genetic control

of mechanisms that regulate culm strength is a prerequisite.

Identification of genes can hasten precision breeding aimed at

improving lodging resistance. A number of quantitative trait locus

(QTL) mapping studies for culm length, culm strength, and culm

thickness related to lodging resistance have been carried out using

different segregating populations in rice (Kashiwagi and Ishimaru, 2004;

Mu et al., 2004; Kashiwagi et al., 2008; Zhu et al., 2008; Ookawa et al.,

2010; Yano et al., 2015; Yadav et al., 2017; Nomura et al., 2019; Yang

et al., 2023; Zhao et al., 2023). To elucidate themolecular mechanisms of

complex traits like lodging resistance and associated culm-related traits,

a genome-wide association study (GWAS) is a promising strategy to

exploit the abundant genetic diversity of rice captured among the

diverse rice germplasm. GWAS uses numerous historic

recombinations in a large natural population and offers the potential

to localize the trait genetic determinants effectively to a narrower region

(Bollinedi et al., 2020). Further, the application of single-nucleotide

polymorphism (SNP) in a GWAS study provides dense coverage of

markers in the entire genome, which helps to identify the functional

variation governing the trait in a more precise manner. The results of

GWAS can be used either for dissecting mechanisms of lodging

resistance or for improving the prediction accuracy of genome-wide

predictions in genomic selection programs (Anilkumar et al., 2023).

In this milieu, we hypothesized that the diverse germplasm

panel tested over two seasons would have the potential to reveal the

candidate genes that regulate culm strength and lodging resistance.
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We tested the hypothesis by adapting the GWAS approach with a

multi-locus model for detecting genomic regions associated with

the target traits. The present investigation aimed to identify (1) the

genomic regions associated with culm strength, (2) the genetic

associations between culm strength and yield traits, (3) the putative

candidate genes within the identified genetic regions, and (4) a

useful genetic resource for concurrently boosting culm strength and

lodging resistance and provide a basis for further research on

lodging resistance mechanisms in rice.
2 Materials and methods

2.1 Plant material and field experiments

The study consisted of an association mapping panel comprising

181 diverse genotypes, which included tropical japonica accessions (TrJ:

30), indica landraces (Ind-L: 7), indica cultivars (Ind-C: 26), indica/

indica-derived lines (Ind-D: 55), and indica/tropical japonica-derived

lines (ITrJ-D: 63). TrJ and Ind-L are from a global collectionmaintained

at ICAR-IIRR, Hyderabad, India; Ind-C are released cultivars collected

from all across the country; Ind-D are multiparent-derived, marker-

assisted forward breeding introgression lines in diverse elite

backgrounds; and ITrJ-D are from the crosses of multiparent elite

indica/tropical japonica genotypes developed at ICAR-IIRR

(Supplementary Table S1). The genetic purity of experimental

material was maintained by continual self-pollination over the years.

The complete set of genotypes was evaluated in two cropping seasons at

ICAR-IIRR, Rajendranagar farm (17°19′N; 78°23′E, 542 m) during the

dry seasons (DS) of 2022 and 2023. An augmented randomized

complete block design (ARCBD) was adopted for field evaluation in

both years. For the experimental design, 10 genotypes, including one

TRJ accession (IRGC 39111), five released cultivars (i.e., DRR Dhan 54,

DRR Dhan 48, Improved Samba Mahsuri, Samba Mahsuri, Swarna),

and four Y-BILs (i.e., RMS 2077, RMS 2097, RMS 2495, and RMS 2509)

were used as checks. The experiment was laid out in four blocks,

replicating the checks block-wise and randomizing the test treatments

across all blocks. The seeds were germinated on a raised seedbed to

ensure uniform germination and 28-day-old seedlings were

transplanted into a puddled rice field. In DS 2022, the experimental

material was sown on 6 January 2022, and transplanted on 5 February

2022. In DS 2023, the experimental material was sown and transplanted

on 26 December 2022, and 22 January 2023, respectively. Each genotype

was planted in two rows at 14 hills per row with a 20-cm spacing

between rows and a 15-cm spacing between plants. The recommended

package of practices was adopted to ensure a good crop stand in both

seasons. The lines were subjected to phenotypic evaluation of culm

strength and yield-associated traits and genomic studies for the

discovery of marker–trait associations and identification of putative

candidate genes (schematically illustrated in Figure 1).
2.2 Evaluation of morphological traits

A total of 12 quantitative traits were evaluated, viz., plant height,

length of the basal internode, culm thickness, culm diameter, pushing
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resistance as a measure of prostrate tester reading, tiller number,

bending stress, section modulus, breaking resistance as a measure of

internode breaking weight, panicle number, grain number, and panicle

weight. For culm parameters, two plants were uprooted 20 days after

heading, and data were collected using destructive sampling in the lab

as described below. For yield parameters, while data were collected at

maturity in the field on plant height, tiller number, and panicle

number, two panicles were collected randomly at harvest for post-

harvest data. Plants on the edges were avoided, and plants from the

middle of the rows were chosen for data collection to avoid the border

effect. Plant height (in cm) was measured as the length between the

plant base and the panicle tip, and tiller number was measured as the

total number of tillers, panicle number as the number of panicle-

bearing tillers, grain number as the total number of filled grains in a

panicle, and panicle weight as the weight of a fully matured panicle.

2.2.1 Measurement of culm morphology traits
Destructive sampling was used for the measurement of culm

traits 20 days after heading. Two plants were uprooted from the main

plot, and the lower internode (second basal internode) of the main

culms was sampled for recording the observations. The second basal

internodes were dissected transversely at the mid-point, and the culm

diameter was measured using digital Vernier calipers.

Culm thickness (in mm) was measured as the average difference

between the outer and inner diameters on the major and minor

axes.

Culm thickness (CT) =
(a1 + b1)

2

� �
−

(a2 + b2)
2

� �
:

Culm diameter (in mm) was measured as the average of the

culm outer diameter on the minor and major axes using digital

Vernier calipers (Figure 1C).

Culm diameter (CD) =  
(a1 + b1)

2
:

Section modulus was determined as described by Ookawa et al.

(2010); Ookawa and Ishihara (1992) using the following formula:

Section modulus (SM) =
p
32

� (a  31 b1 − a  32 b2)
a1

,

where a1 is the outer diameter of the minor axis in an oval

cross-section, b1 is the outer diameter of the major axis in an oval

cross-section, a2 is the inner diameter of the minor axis in an

ovalcross-section, and b2 is the inner diameter of the major axis in

an oval cross-section.

2.2.2 Measurement of culm physical
strength traits

The prostrate tester (DIK-7400, Daiki Rika Kogyo Co. Ltd.,

Tokyo, Japan) was used to measure the pushing resistance of the

culm (Figure 1A), and bending stress was calculated as described by

Hai et al. (2005) using the following formula:

Bending stress (BS) =
TR
40

� �
� 1, 000

TN

� �
,
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where TR is the prostrate tester reading value (a measure of

pushing resistance) and TN is the tiller number.

Internode breaking weight (IBW) in increments of 25 g was

used as a measure of breaking resistance. IBW was analyzed using a

supporting structure composed of two burette stands and clumps

spaced at the length of each internode analyzed (Figure 1B).

The internode was arranged horizontally with the portions of the

terminal nodes held on the clamps of each burette stand, with the

addition of an empty container (previously weighed) hanging in

the central part of the internode. Weights of the determined mass

(25 g) were cumulatively added to the container at regular intervals

of 1 second until the internode flexed and collapsed.
2.3 Genotyping by sequencing and marker
data generation

Fresh leaf tissue samples from four to six plants per line were

collected 20 days after transplanting. The next-generation

sequencing (NGS) platform Illumina NovaSeq was used for

genotyping by sequencing (GBS). Raw sequence data were

processed to obtain high-quality clean reads using Trimmomatic,

v. 0.38. The reads of the samples were aligned to the Oryza sativa

indica reference genome, https://plants.ensembl.org/Oryza_indica/

Info/Annotation/#assembly using BWA MEM (v. 0.7.17), with

minimum seed length set to 32 and shorter split hits marked as
Frontiers in Plant Science 04
secondary (parameters: -k 32 –M). The mpileup utility of Samtools

(v. 0.1.18) was used to identify SNPs from the sorted BAM file of the

sample. The SNPs were filtered based on a minimum read depth of

5 and a quality threshold of 25. Markers without clear physical

position information on the chromosomes were removed. The

genotyping data were filtered by removing markers with missing

values >20% and minor allele frequency (MAF)<5%.
2.4 Genome-wide association analysis

The average measurements of all the traits recorded in each

season were subjected to the estimation of best linear unbiased

predictions (BLUP) that were used in further analysis. In the case of

checks, the data of all the replications were averaged and used in

BLUP estimates. Average values in each year were used to estimate,

across years, the BLUP values for each trait. The across-year BLUP

values for all the traits measured on experimental genotypes and

SNP marker information were used as inputs for GWAS analysis.

Genome-wide association analysis was performed following a

multi-locus analysis method using the genome association and

prediction integrated tool (GAPIT) v.3 software package in R

(Lipka et al., 2012). The relatedness between individuals in the

population was delineated by estimating a kinship similarity matrix

(K) and population structure (Q) modeled using principal

component analysis (PCA) as random and fixed effects,
FIGURE 1

Schematic flow of the experimental strategy, including phenotypic evaluation, trait grouping for culm strength and yield traits, genome-wide studies
for marker–trait associations, and identification of putative candidate genes. (A) Measurement of pushing resistance using a prostrate tester in the
field. TR, tester reading with prostrate testing as a measure of pushing resistance. (B) Measurement of internode breaking weight in increments of 25
g on culm samples for basal internodes. (C) Measurement of culm morphology traits using digital Vernier calipers. ODMa, outer diameter in mm on
the major axis; ODMi, outer diameter in mm on the minor axis; IDMa, inner diameter in mm on the major axis; IDMi, inner diameter in mm on the
minor axis; CD, culm diameter in mm; CT, culm wall thickness in mm; PH, plant height in cm; IL, basal internode length in cm. (D) Color key and
histogram depicting population structure. (E) A representative Manhattan plot for genomic regions associated with culm strength traits. (F) A
representative candidate gene within the identified QTL region. GBS, genotyping by sequencing; MTAs, marker–trait associations. (G) A
representative plant with a high yield (high grain number) and strong culm. PN, panicle number; GN, grain number; PW, panicle weight in g; GY,
grain yield in g; CS, culm strength; QTL, quantitative trait locus.
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respectively (Yu et al., 2006), making the model more stringent and

able to control false-positive marker–trait associations (MTAs). The

multi-locus-based GWAS model of BLINK (Huang et al., 2019) was

applied for MTA analysis. Population structure and the kinship

similarity matrix were also incorporated according to the model

type. The BLINK model is associated with an efficient mixed model

approach (EMMA), which corrects for population structure and

simultaneously identifies the marker–trait associations. The

exploratory threshold with false discovery rate-corrected p ≤

0.001 (−log10p ≥ 3) was used to report significant marker–

trait associations.
2.5 Identification of putative
candidate genes

After significant MTAs were identified using data frommultiple

environments, the flanking sequence spanning 150 kb upstream

and downstream of the significant SNP position was used as a query

against the Nipponbare rice reference genome, IRSGP1.0 RefSeq,

v.1.1. Subsequently, JBrowse was used to examine candidate genes

residing in chromosomal regions harboring significant MTA. The

genes within the search limits were filtered based on the reported

functions, and only those genes that are known to have an impact

on plant development were shortlisted as putative candidate genes

that regulate culm strength.
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3 Results

3.1 Variation for culm strength- and yield-
related traits in the association panel

Broad-sense heritability was high (79 to 99) for all the studied

traits except for culm thickness, which had moderate heritability

(59) (Figure 2A). BLUP values were calculated to further remove the

environmental effects from trait data, and highly significant

differences (p< 0.001) were found among the genotypes in the

association panel for all the traits (Table 1). For example, it varied

from 61.62 cm to 142.5 cm for plant height, 6.48 cm to 20.87 cm for

lower internode length, 2.68 mm to 7.29 mm for culm diameter,

0.01 mm to 2.21 mm for culm thickness, 5.11 to 29.63 for pushing

resistance as a measure of prostrate tester reading, 3.22 to 31.72 for

tiller number, 116 g to 1,506 g for breaking resistance as a measure

of internode breaking weight, 2.38 to 31.43 for panicle number,

79.82 to 410 for grain number, and 0.97 to 5.51 for panicle weight.

Third-degree statistics-skewness and fourth-degree statistics-

kurtosis were employed to understand the distribution of

phenotypes in the population. The skewness of the population for

all the traits was positively significant except for lower internode

length, culm diameter, and panicle weight. However, kurtosis for all

the traits except lower internode length and panicle weight was

greater than three, indicating a leptokurtic distribution of

phenotypes in the population (Table 1). The mean phenotypic
B

C

A

FIGURE 2

Genetic and phenotypic parameters for the components of culm strength and yield traits in the association panel. (A) Broad-sense heritability for
seven culm strength (PH, plant height; IL, lower internode length; CD, culm diameter; CT, culm wall thickness; IBW, internode breaking weight
[breaking resistance]; TR, prostrate tester reading value [pushing resistance]; TN, tiller number) traits and three yield (PN, panicle number; GN, grain
number; PW, panicle weight) traits. (B) Correlation matrix showing correlation coefficients among seven culm strength traits and three yield traits.
(C) Histograms showing the phenotypic distribution of section modulus (SM), bending stress (BS), and breaking resistance as a measure of internode
breaking weight (IBW). *p < 0.05, **p < 0.01, ***p < 0.001.
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data on culm strength and yield traits among the 181 genotypes in

the association panel are provided in Supplementary Table S2.

A correlation analysis among the seven culm strength traits and

three yield traits was performed to understand the influence of

variables on lodging resistance. A significant positive correlation

was observed between culm morphology traits and breaking

resistance (IBW), except for a negative correlation with internode

length. Pushing resistance (TR) also correlated positively with culm

morphology and breaking resistance, but it was not found to be

statistically significant. Further, tiller number was negatively

correlated with culm morphology traits and breaking resistance

but positively correlated with pushing resistance (Figure 2B). These

results suggest that culm morphology traits and breaking resistance

have a direct influence on culm strength while pushing resistance is

influenced by tiller number. Hence, both pushing resistance and

tiller number should be considered in measuring the bending stress

of the lower portion of the culm. Although breaking resistance

showed a positive correlation with plant height, it showed a negative

correlation with lower internode length, while pushing resistance

showed a positive correlation with both height-related traits.

Considering the indefinite relationship between culm strength

and height traits in the present study, height traits were excluded

from further analyses. While a positive correlation was observed for

culm morphological and physical strength traits with grain number,

correlations were negative with panicle number and had a non-

significant association with panicle weight (Figure 1B). These

findings suggest that the relationship of culm strength traits with

grain number is synergistic, with panicle number being a tradeoff.

Based on the correlation analysis, the traits identified as key

influencers of lodging resistance were: a) section modulus as a

function of culm morphology traits; b) bending stress as a measure

of pushing resistance and tiller number; and c) breaking resistance

as a measure of internode breaking weight. The phenotypic

distribution pattern in the form of histograms and density curves
Frontiers in Plant Science 06
is depicted in Figure 2C. Section modulus varied from 1.64 mm3 to

30.6 mm3 with a mean of 11.18 mm3, bending stress ranged from

6.51 to 59.64 with a mean of 24.84, and internode breaking weight

varied from 116 g to 1,506 g with a mean of 435 g. The normality of

the trait distributions suggests that they may be controlled by

several minor effect loci (Figure 2C). These three traits were

further chosen for studying marker–trait associations.
3.2 Genome-wide distribution of SNPs

A total of 3,72,087 sites obtained by GBS from 181 genotypes in

the association mapping panel were subjected to further filtration in

order to retain the sites with SNPs. A total site count of 35,331 was

achieved after all the filtration. After removing the SNPs with

MAF< 5%, the final 6,822 SNPs were used in the construction of

a linkage map depicting the genome-wide distribution of SNPs on

the 12 rice chromosomes (Figure 3A). The SNPs spanned a total

genome size of 369.72 Mb, with the highest number of 931 SNPs

covering 38.04 Mb on chromosome 2 and the lowest number of 374

SNPs spanning 21.2 Mb on chromosome 9. The maximum genome

coverage of 46.86 Mb with 876 SNPs was on chromosome 1,

followed by 41.10 Mb with 471 SNPs on chromosome 3

(Figures 3A, B).
3.3 Population structure and
kinship analysis

The VanRaden kinship algorithm using the GAPIT was

performed on the genome-wide 6,822 SNPs to ascertain the

population structure and relatedness among genotypes in the

association mapping panel. The relatedness in the association

mapping (AM) panel was lower than the kinship index of 0.5,
TABLE 1 Phenotypic variation and distribution pattern of culm strength and grain yield traits in the association mapping panel used in the study.

Trait code Trait name Mean SE SD Min Max Skewness Kurtosis MSS

PH Plant height (cm) 93.42 1.11 14.92 61.62 142.50 0.77** 3.65ns 249**

IL Lower internode length (cm) 13.53 0.21 2.88 6.48 20.87 0.35ns 2.56ns 9.36**

CD Culm diameter (mm) 5.17 0.06 0.78 2.68 7.29 −0.10ns 3.86* 0.69**

CT Culm thickness (mm) 0.93 0.02 0.31 0.01 2.21 0.51** 4.02* 0.08**

IBW Internode breaking weight (g) 435 15.48 208. 115.64 1,506.47 1.24** 5.85** 47,398**

TR Prostrate tester reading 14.47 0.33 4.48 5.11 29.63 0.59** 3.49ns 20.27**

TN Tiller number 15.95 0.38 5.14 3.22 31.72 0.40* 3.15ns 27.05**

SM Section modulus 11.18 0.41 5.46 1.25 30.22 1.04** 4.22** 30.88**

BS Bending stress 24.84 0.73 9.84 5.95 59.76 0.93** 3.74ns 107.96**

PN Panicle number 14.76 0.36 4.80 2.38 31.43 0.42* 3.51ns 23.51**

GN Grain number 155 3.61 48.63 79.82 410 1.39** 7.11** 2,607**

PW Panicle weight (g) 3.19 0.08 1.07 0.97 5.51 0.21ns 2.16** 1.24**
front
CV, coefficient of variation; SE, standard error; SD, standard error; Min, minimum; Max, maximum; MSS, mean sum of squares. *p < 0.05, **p < 0.01.
ns, non-significant.
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indicating less relatedness among the genotypes (Figure 4A). A

lower level of relatedness among individuals in the GWAS panel

reduces the false positives and increases the precision of the results.

The kinship heatmap revealed the presence of two sub-groups

within the AM panel and represented the distribution of

genotypes within and between sub-populations (Figure 4A).

There was no significant grouping of the genotypes, indicating an

even distribution of the alleles in the panel, making it a perfect

association mapping panel for GWAS. Principal component

analysis provided insights into the SNP-based diversity in the

association panel, which also detected the presence of two major

population groups indicated by two significant components
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explaining the maximum variation in the association panel

(Figure 4B). The scree plot (Figure 4C) showed that the first

principal component (PC) explained the highest variation of 11%,

followed by the second PC explaining 7%, and the third PC

explaining 3.9% of the total variation. The variation explained by

the first three PCs, which account for only 21.9% of the total

variation, suggested the diverseness of the panel composition. The

two major population groups in the panel were denoted as POP1

and POP2, and sub-populations within them as POP1A, POP1B,

POP2A, and POP2B. It is interesting to note that there is no clear

classification of indica and japonica in the sub-populations, and the

genotypes belonging to both sub-species were interspersed in all the
BA

FIGURE 3

Genome-wide distribution of 6,822 SNPs across 12 chromosomes among 181 rice genotypes in the association panel. (A) Linkage map with 6,822
SNPs; the color of the vertical line indicates SNP density in a 1-Mb window. (B) Graphical representation of the chromosome-wide distribution of
SNPs. SNPs, single-nucleotide polymorphisms.
B

C

A

FIGURE 4

Population structure analysis of 181 genotypes in the association panel based on 6,822 SNPs. (A) Heatmap of the kinship matrix. The heatmap shows
the level of relatedness among the population. The darker areas show a high level of relatedness between genotypes, and the dendrogram depicts
the clustering of sub-populations. (B) 3D representation of principal component (PC) analysis showing no clear-cut grouping. (C) Scree plot
depicting the number of significant PCs. There were three PCs that explained a cumulative variation of ∼22%, and nearly 10 PCs covered >95% of
the variation in the population. SNPs, single-nucleotide polymorphisms.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1298083
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Badri et al. 10.3389/fpls.2023.1298083
sub-population groups. POP2B was the largest and constituted

63.5% of the panel with 115 accessions, followed by POP1B,

POP1A, and POP2A with 17.68, 11.60, and 7.18% of the panel,

respectively. Sub-population-wise details of the genotypes of the

AM panel in accordance with the kinship matrix are provided in

Supplementary Table S1.
3.4 Genome-wide association studies for
culm strength traits

Genotyping data of 6,822 SNPs and two-season phenotypic data

of three culm strength traits were subjected to association analysis

using a multi-locus model of BLINK. The Q–Q plots depicted less

deviation of the observed p-values from the expected p-values and

were therefore chosen as the best fit (Figure 5). At p ≤ 0.0001

(−log10p ≥ 4), 15 highly significant MTAs across seven out of 12

chromosomes were identified for the three culm strength traits

(Table 2). Two MTAs (qSM2.1 and qBS12.1) showed a major effect

with a phenotypic variance explained (PVE) of more than 10%, and
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the remaining 13 MTAs showed a minor effect with a PVE of less

than 10%.

On further reducing the threshold to p ≤ 0.001 (−log10p ≥ 3), a

total of 198 MTAs were identified, corresponding to 78, 41, and 79

associations for section modulus, bending stress, and internode

breaking weight, respectively. Several overlapping association

signals with similar effects and sizes were observed. In earlier

reports, a locus was defined as a chromosomal region at which

adjacent pairs of associated SNPs were less than a certain physical

distance without considering varying linkage disequilibrium levels

(Yang et al., 2012). We considered adjacent SNPs spanning less than

300 kb as a single locus to reduce the redundancy of association

signals similar to the previous reports (Huang et al., 2010; Chen

et al., 2014; Xie et al., 2015; Guo et al., 2018; Guo et al., 2021) for

identifying overlapping MTAs. After eliminating the redundant

signals, 126 associations between 114 lead SNPs were identified

(Supplementary Table S3), corresponding to 97 loci and 50, 31, and

45 MTAs for section modulus, bending stress, and internode

breaking weight, respectively. MTAs were found on all the

chromosomes, and chromosome 2 had the highest number of
B

A

C

FIGURE 5

Quantile-quantile (Q–Q) plots and Manhattan plots for genomic regions associated with culm strength traits. Q–Q plots showing deviation of
observed −log10p values and expected −log10p values, indicating the significant associations of the SNP with the trait. In Manhattan plots,
chromosomes are represented on the x-axis explaining chromosome-wise SNP distribution, and significant associations at −log10p values are
represented on the y-axis. (A) Section modulus (SM), (B) bending stress (BS), and (C) breaking resistance as a measure of internode breaking weight
(IBW). The threshold to select significant MTAs is represented as a black dotted horizontal line at LOD score 3. The putative candidate genes
associated with lodging resistance are marked in the vicinity of significant MTAs in the Manhattan plots. SNPs, single-nucleotide polymorphisms;
MTAs, marker–trait associations; LOD, logarithm of the odds.
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MTAs (23) followed by chromosome 5 (20 MTAs), chromosome 1

(15 MTAs), chromosome 12 (14 MTAs), chromosome 7 (12

MTAs), chromosomes 3 and 10 (11 MTAs each), chromosome 4

(10 MTAs), chromosomes 8 and 11 (7 MTAs each), and

chromosome 6 (6 MTAs) (Supplementary Table S3). Manhattan

plots depicting the significant association signals at the threshold

p ≤ 0.001 (−log10p ≥ 3) are provided in Figure 5.

A total of 50 MTAs were identified for section modulus, of

which five were highly significant at p ≤ 0.0001 (−log10p ≥ 4)

(Figure 5A; Table 2), and the remaining 45 were significant at p ≤
Frontiers in Plant Science 09
0.001 (−log10p ≥ 3) (Supplementary Table S3). A single major effect

QTL, qSM2.1 on chromosome 2, explained a maximum PVE of

21.87% significant at PBLINK = 4.86 × 10−8 and an additive effect of

2.39 mm3 on the trait (Table 2). The highest additive effect of 4.23

mm3 for section modulus was identified with an association at

snpM4010 (PBLINK = 2.9 × 10−3) on chromosome 7 (Supplementary

Table S3).

For bending stress, four MTAs highly significant at p ≤ 0.0001

(−log10p ≥ 4) (Figure 5B and Table 2) and 27 MTAs significant at

p ≤ 0.001 (−log10p ≥ 3) were identified (Supplementary Table S3).
FIGURE 6

Manhattan plots for significantly associated genome-wide epistatic (SNP–SNP) interactions for section modulus (SM), bending stress (BS), breaking
resistance as a measure of internode breaking weight (IBW), grain number (GN), and panicle weight (PW). SNP, single-nucleotide polymorphism.
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qBS12.1 is a major effect of QTL at snpM6498 on chromosome 12,

significant at PBLINK = 1.32 × 10−8, with a PVE value of 10.14% and

an additive effect of 4.61. It also colocalized the section modulus,

which had an additive effect of 1.24 mm3 (Supplementary Table S3).

Within the same locus, an association of internode breaking weight

was found in close proximity of 126 bp at snpM6497 with an

additive effect of 67.36 g and a PVE value of 4.02% (Table 2)

(Supplementary Table S3). Further, the highest additive effect of 7.4

was identified for bending stress at snpM401 on chromosome 1

(Supplementary Table S3).

A total of 50 MTAs were identified for internode breaking

weight, of which four were highly significant at p ≤ 0.0001

(−log10p ≥ 4) (Figure 5C; Table 2), and the remaining 41 were

significant at p ≤ 0.001 (−log10p ≥ 3) (Supplementary Table S2). For

internode breaking weight, the significant MTA, qIBW2.3 (PBLINK =

3.29 × 10−5) on chromosome 2 at snpM1659, had a PVE value of

8.63% and an additive effect of 91.99 g (Table 2). It also colocalized

the section modulus with an additive effect of 1.24 mm3

(Supplementary Table S3). The highest additive effect of 208.41 g

was identified at snpM3981 on chromosome 7 for internode

breaking weight, with a PVE value of 5.64% (Supplementary

Table S3).

Tests for epistatic interactions were performed using a linear

regression method implemented with PLINK v1.07. Manhattan

plots depicting significantly associated genome-wide epistatic

(SNP–SNP) interactions for CS and GY are presented in Figure 6.

Epistatic tests identified three and one SNP–SNP interactions

associated with SM and IBW, respectively (Supplementary Table
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S4). For SM, three significant SNPs (M715, M1454, and M6514) on

chromosomes 1, 2, and 12 interacted with three SNPs (M3955,

M5372, and M5616) on other chromosomes 7, 10, and 10,

respectively. For IBW, the SNP (M5613) on chromosome 10

exhibited significant interactions with another SNP (M5485) on

the same chromosome. However, there were no epistatic

interactions among the 15 highly significant MTAs presented in

Table 3. The epistatic interactions noted with the reduction of

threshold value p ≤ 0.001 for MTAs of IBW and SM are likely due to

numerous contributing loci for the complex culm strength trait,

generally with small effect.
3.5 Colocalization of MTA for culm
strength and yield traits

Based on the significant correlations observed between culm

strength traits and yield traits in the present investigation

(Figure 2B), we explored the genetic bases of loci that

synergistically enhance culm strength and yield. Culm strength

traits correlated positively with grain number and panicle weight

and negatively with panicle number (Figure 2B); thus, we

considered grain number and panicle weight for GWAS along

with culm strength traits. In total, we identified 16 grain yield loci

associated with culm strength traits, including seven loci for grain

number and nine loci for panicle weight (Table 4). Each locus

harbored one-grain yield trait and one to three culm strength traits

on seven out of 12 chromosomes. Out of 16 associations between
TABLE 2 Significant marker–trait associations for culm strength traits at p ≤ 0.0001 (−log10p ≥ 4) were identified using the multi-locus BLINK model.

Trait QTL SNP Allele Chr Position p-Value ai PVE%

Favorable Alternate

SM qSM1.1 M476 C T 1 22623828 9.31 × 10−4 4.05 4.79

SM qSM1.2 M686 A C 1 35313963 9.19 × 10−4 2.87 5.00

IBW qIBW2.1 M1556 C A 2 25884362 8.49 × 10−4 163.81 6.15

IBW qIBW2.2* M1648 T C 2 27446861 1.26 × 10−4 87.76 7.85

IBW qIBW2.3* M1659 C G 2 27798889 3.29 × 10−5 91.99 8.63

SM qSM2.1* M1800 G T 2 37491093 4.86 × 10−8 2.39 21.87

IBW qIBW5.1 M2949 T C 5 7102952 8.60 × 10−4 100.90 5.89

SM qSM5.1* M2978 T C 5 9207987 3.49 × 10−4 2.43 4.68

BS qBS5.1* M2985 C T 5 9349478 8.61 × 10−7 4.36 6.74

BS qBS5.2* M3011 A G 5 10452567 6.30 × 10−4 6.16 4.64

BS qBS7.1* M3964 T C 7 3423329 7.30 × 10−6 4.94 8.30

IBW qIBW8.1 M4481 G A 8 4674600 4.15 × 10−4 84.39 6.99

SM qSM10.1* M5367 T C 10 2185198 4.78 × 10−4 1.58 5.19

BS qBS10.1 M5640 G A 10 17146356 2.53 × 10−4 2.67 4.32

BS qBS12.1* M6498 A G 12 8010763 1.32 × 10−8 4.61 10.14
front
The asterisk indicates MTAs not reported in prior studies.
SNP, single-nucleotide polymorphism; R2, percentage variation explained; ai, the additive effect of the favorable allele; SM, section modulus; IBW, internode breaking weight; QTL, quantitative
trait locus; MTAs, marker–trait associations.
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grain yield and culm strength traits, chromosome 2 had three

clusters; chromosomes 1, 4, 5, 7, 11, and 12 had two clusters

each; chromosome 8 had a single cluster.

A QTL hotspot on chromosome 12 (snpM6498) colocalized

grain number and all three culm strength traits. It could enhance

grain yield and culm strength with an additive effect of 16.83, 1.24

mm3, 4.61, and 67.36 g for grain number, section modulus, bending

stress, and internode breaking weight, respectively. Another six

associations between grain number and culm strength traits showed

a synergistic relationship on the same chromosome. The clusters for

grain number and section modulus were identified on

chromosomes 1, 2, 7, and 11. MTA clusters for grain number and

bending stress were identified on chromosomes 4 and 12.

Among the nine genomic regions colocalizing panicle weight

and culm strength traits, eight showed a synergistic relationship. An

association between panicle weight and internode breaking weight

at snpM839 on chromosome 1 was negatively correlated. Positive

associations between panicle weight and internode-breaking weight

were identified on chromosomes 2, 4, 11, and 12. Panicle weight

colocalized with both bending stress and internode-breaking weight

on chromosome 2. The two genomic regions that colocalized

panicle weight and two culm strength traits, section modulus, and

internode breaking weight, were identified on chromosome 5. The

grain number locus associated with section modulus and bending

stress was identified on chromosome 7.
3.6 Identification of candidate genes

The genomic regions within the same locus of the identified

MTAs for culm strength were analyzed in silico for the presence of
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putative candidate genes previously reported for lodging resistance.

A total of 481 putative genes were found, varying from three to 54

per QTL region. Many genes identified within the QTL region were

responsible for the regulation of growth and development,

resistance to abiotic and biotic stresses, amino acid transport,

sugar transport, phytohormone synthesis, hypothetical and

expressed proteins, glycoproteins, heat shock proteins,

transcriptional factors, and precursors for various biochemical

and metabolic pathways. It was interesting to note that six of the

15 MTAs identified in the present investigation were found to be in

the vicinity of 11 previously reported putative candidate genes for

lodging resistance (Table 3).
4 Discussion

The use of genes associated with lodging resistance in addition

to the dwarfing gene is a promising approach to improving lodging

resistance and further increasing productivity in rice (Ookawa et al.,

2010). Owing to the complex nature of the lodging resistance in rice,

it is relatively difficult to map multiple genes using a biparental-

derived mapping population, wherein the genes have low individual

effects and are sparsely distributed in the gene pool. Gene mapping

in biparental populations is limited to the variation that exists only

between the two parents used for the development of the mapping

population. GWAS, therefore, offers the dual advantage of

analyzing the extensive trait variation among the germplasm lines

and identifying several genomic regions and alleles affecting the

trait (Bollinedi et al., 2020). Globally, there are only a few GWAS

reports for culm strength traits (Chigira et al., 2020; Meng et al.,

2021; Nomura et al., 2021; Rashid et al., 2022). Furthermore, such
TABLE 3 Colocalization of MTAs with previously reported putative candidate genes related to lodging resistance.

MTA Locus ID Position
Start–
end (bp)

Distance
from

MTA (kb)

Description

qSM1.1 Os01g0584100 22677778.22678619 54.79 Similar to hydroxyproline-rich glycoprotein family proteins

qSM1.2 Os01g0828100 35431411.35432857 117.45 Cinnamoyl-CoA reductase

qSM1.2 Os01g0830700 35538475.35544326 224 Xylan O-acetyltransferase 1

qIBW2.1 Os02g0643200 25839537.25842582 44.83 Transcription factor, DNA-binding intermediate protein for SLR1, modulation of the
gibberellin signaling pathway, regulation of plant growth and development

qIBW2.1 Os02g0643800 25878905.25879875 5.46 Auxin-responsive protein

qIBW5.1 Os05g0214300 7082883.7085033 17.92 Bidirectional sugar transporter, gibberellin, and glucose transporter, energy source during
germination and at the early stages of seedling growth

qIBW5.1 Os05g0217000 7219354.7219947 116.4 Arabinogalactan protein 23

qIBW8.1 Os08g0178200 4581432.4583489 Monosaccharide transporter 5, early flower development

qIBW8.1 Os08g0183900 4897613.4900341 223 Cinnamoyl-CoA reductase

qBS10.1 Os10g0467800 17262050.17266561 115 Secondary wall-specific cellulose synthase, secondary cell wall formation

qBS10.1 Os10g0141300 17262050.17266561 338.77 Wall-associated kinases
MTAs, marker–trait associations.
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TABLE 4 Genetic loci linking culm strength and yield traits at p ≤ 0.001 (−log10p ≥ 3).

S. no. Trait SNP Chr Position p-Value ai PVE % Distance (kb)

1 GN M496 1 23066509 9.2 × 10−3 21.76 3.66
169.28

SM M512 1 23235789 5.2 × 10−3 1.15 3.20

2 IBW M839 1 46125723 8.2 × 10−3 87.21 3.78
0

PW M839 1 46125723 1.96 × 10−3 0.53 4.82

3 IBW M1302 2 10783094 7.62 × 10−3 69.35 3.97
93

PW M1311 2 10876110 5.04 × 10−3 0.43 4.23

4 SM M1454 2 22285395 7.4 × 10−3 1.70 3.27
85.69

GN M1455 2 22371083 2.2 × 10−3 32.15 5.15

5 PW M1542 2 25733122 8.59 × 10−3 0.42 3.70

54.49/93.67BS M1544 2 25790620 5.92 × 10−3 3.08 3.01

IBW M1553 2 25884288 3.16 × 10−3 123.94 4.91

6 PW M2641 4 18028467 9.30 × 10−3 0.34 3.64
13.65

IBW M2642 4 18042121 9.59 × 10−3 56.18 3.87

7 BS M2771 4 30556062 9.87 × 10−3 2.24 2.44
151

GN M2793 4 30707162 3.97 × 10−3 43.23 4.82

8 SM M2949 5 7102952 2.68 × 10−3 1.86 3.63

0/135.95IBW M2949 5 7102952 8.60 × 10−4 100.90 5.89

PW M2952 5 7238904 4.65 × 10−3 0.57 4.37

9 GN M4676 8 18470225 9.58 × 10−3 39.60 3.45
133

BS M4677 8 18603284 7.85 × 10−3 2.23 2.50

10 SM M3074 5 17815398 7.21 × 10−3 1.20 3.03

0.94IBW M3074 5 17815398 5.32 × 10−3 61.02 4.36

PW M3080 5 17864293 4.34 × 10−3 0.34 4.19

11 PW M3856 7 1201789 2.18 × 10−3 0.45 5.09

14.14/72.06BS M3871 7 1215925 7.6 × 10−3 6.65 3.03

SM M3904 7 1287983 9.31 × 10−3 1.20 2.38

12 SM M4051 7 16056368 3.74 × 10−3 1.79 3.55
82.2

GN M4064 7 16138565 6.46 × 10−3 15.26 3.43

13 PW M5734 11 2982806 9.40 × 10−3 0.31 3.53
46 bp#

IBW M5735 11 2982852 2.65 × 10−3 72.75 4.89

14 GN M6252 11 21166500 8.83 × 10−3 19.08 3.64
58.24

SM M6256 11 21224745 3.52 × 10−3 1.99 3.62

15 IBW M6498 12 8010763 9.38 × 10−3 58.62 3.63

0
SM M6498 12 8010763 7.2 × 10−3 1.24 2.87

BS M6498 12 8010763 1.32 × 10−8 4.61 10.14

GN M6498 12 8010763 2.73 × 10−3 16.83 4.35

16 PW M6616 12 13202288 1.27 × 10−3 0.33 5.29
41.44

IBW M6622 12 13243729 2.93 × 10−8 191.75 5.17
F
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SNP, single-nucleotide polymorphism; R2, percentage variation explained; ai, the additive effect of the favorable allele; SM, section modulus; IBW, internode breaking weight; BS, bending stress;
PN, panicle number; GN, grain number; PW, panicle weight; MTAs, marker–trait associations.
#Distance between MTAs at the locus is in bp, while for the remaining MTAs at other loci, it is in kb.
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studies are limited to only one report (Guo et al., 2021) for genetic

associations between culm strength (CS) and grain yield (GY) traits.

We report for the first time in the Indian sub-continent on genome-

wide associations for culm strength traits and synergistic genetic

associations between culm strength and grain yield traits.
4.1 Population structure

It is crucial to have control over population structure in GWAS

to prevent spurious marker–trait associations (Nayak et al., 2022).

The origin, selection pressure, and reproductive behavior of

genotypes all have an impact on familial relatedness among

individuals in an association panel (Atwell et al., 2010). In the

present study, SNP-based diversity analysis provided insights into

genetic relatedness among the individuals in the association panel.

There was no clear grouping of indica and japonica in the

population structure based on GBS data, and the two sub-

populations were identified with admixtures of all the

constituents of TrJ, Ind-L, Ind-C, Ind-D, and ITrJ-D

(Supplementary Table S1). Similar to our findings, Nomura et al.

(2021) also reported no clear and strong clusters in the GWAS panel

for strong culm traits. The panel with a major focus on phenotypic

variation was composed of culm strength traits. Population

admixtures indicated no role for genetic grouping in the variation

in culm strength. It is interesting to note the higher mean values for

SM, BS, and IBW in ITrJ-D compared to TrJ, Ind-L, Ind-C, and

Ind-D (Figure 7), which is similar to the findings of Nomura et al.

(2019). Sub-populations arise due to allelic sharing between sub-

populations, which is attributed to allelic accumulation due to

spontaneous mutation over time (Agrama et al., 2007). PCA

confirmed the presence of two sub-populations with a sparse

distribution of alleles in the association panel. The kinship matrix
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generated by the VanRaden algorithm was plotted as a heatmap,

showing relatedness values between 0 and +0.5, which indicated

poor relationships existing between individuals in the association

panel. These results assisted in understanding the population

structure of the panel before proceeding to GWAS for the

identification of putative genomic regions for culm strength traits.

Based on the information about population structure, the multi-

locus model BLINK with the EMMA approach has been selected for

association analysis, which detects marker–trait associations while

simultaneously addressing population structure to reduce the

chances of false positives (Zhang et al., 2014; Wang et al., 2016).
4.2 Culm strength phenotype

High broad-sense heritability and a wide range of phenotypic

variation in culm strength traits in the present study merit

dissection of their genetic basis. The present investigation

optimized the parameters for the measurement of culm strength

in rice. Regarding the relevance of the traits for lodging resistance

and considering the indefinite correlations of the lower internode

length with culm-related traits for the set of genotypes in the

association panel, we excluded the height traits from GWAS.

With reference to the prostrate tester reading value as a measure

of pushing resistance in the lower portion of the culm, it is evident

that pushing resistance is more highly influenced by tiller number

than the actual physical strength of the culm. For example, a strong

culm genotype, IRGC 73031 (G123), identified in the present study

has a pushing resistance value as low as 7, and its tiller number is

only 4; however, it has the highest section modulus value (30.60

mm3) and highest culm diameter (7.23 mm). Hence, bending stress

was measured, including both the tester reading value and tiller

number, as described in Hai et al. (2005). A similar methodology
FIGURE 7

Mean phenotypic performance of the culm strength traits in the constituent groups of the GWAS panel. TrJ, tropical japonica accessions; Ind-L,
indica landraces; Ind-C, indica cultivars; Ind-D, indica/indica-derived lines; ITrJ: indica/tropical japonica-derived lines. GWAS, genome-wide
association study.
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was adopted in previous studies on the measurement of culm

strength (Yadav et al., 2017; Jyothi et al., 2018). To further aid in

assessing the culm’s physical strength, we also considered the

internode breaking weight to assess the breaking resistance, an

additional parameter for the culm’s physical strength. Breaking

resistance (BR) as a measure of internode breaking weight is found

to be a realistic parameter that depicts the true strength of the basal

culm. There was a highly significant positive correlation of

internode-breaking weight with other culm-related traits

(Figure 2B), and IRGC 73031 (G123) was identified with the

highest internode-breaking weight of 1,506 g (Supplementary

Table S2).
4.3 Marker–trait associations and putative
candidate genes

Epistasis is a genetic phenomenon of interaction that may

enhance or reduce the expression (depending on degree and

direction) of interacting loci underlying QTLs associated with the

complex trait (Yadav et al., 2019). The role of epistasis phenomena

in plant breeding has been discussed for a long time, but the extent

of the expression level of quantitative traits due to this complex

genetic phenomenon is poorly understood. For complex agronomic

traits, estimating epistatic loci could help to clarify the complex

genetic effects of GWAS loci and elucidate other types of

interactions, such as genotype × environment effects (Assefa

et al., 2019). Thus, there is a need to identify such epistatic gene

interactions that would help to better understand the genotype–

phenotype relationship of complex traits such as culm strength. The

two major QTLs, qSM2.1 and qBS12.1, identified in the present

study with no significant epistatic interactions suggest their direct

use in MAB programs.

In the present investigation, the linkage disequilibrium (LD)

ranged between 200 kb and 1 Mb in the data-driven analysis for the

identified MTAs. For convenience of presentation and summary of

GWAS results, a locus is usually defined as a chromosomal region at

which adjacent pairs of associated SNPs are less than a certain

physical distance without considering varying LD levels (Yang et al.,

2012). To maintain the stringency of putative candidate gene

identification in the present study, the threshold was fixed at 150

kb on either side of the identified MTAs, similar to Guo et al.

(2021). The 167-kb and 123-kb LD decay rates in japonica and

indica subpopulations have been reported in previous studies

(Huang et al., 2010; Huang et al., 2012), and Rashid et al. (2022)

followed a threshold criterion of at least three SNPs in a 170-kb LD

block to define the QTLs and enhance the power of GWAS

resolution. Notably, six MTAs were found in the vicinity of 11

previously reported putative candidate genes for lodging resistance

in the present investigation. Among them, a putative candidate gene

similar to the hydroxyproline-rich glycoprotein family protein was

identified to be colocalized with qSM1.1 in close proximity to 54.79

kb. These proteins are important structural components of plant

cell walls, as they can form a continuous glyco-network with non-

cellulosic polysaccharides via covalent bonds or non-covalent

interactions, thus strongly contributing to cell wall architecture
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(Hijazi et al., 2014). In the genomic region of qSM1.2, cinnamoyl-

CoA reductase (OsCCR6) was identified at a distance of 117.45 kb.

OsCCR6 is a key enzyme in lignin biosynthesis (Zhao et al., 2021).

Lignin is the main structural component of vascular plants’

secondary cell wall, which is related not only to plant growth and

development but also to mechanical strength. Further, qSM1.2 was

found at a distance of 224 kb from the putative candidate gene

regulating the synthesis of xylan O-acetyltransferase 1 (OsXOAT1).

Acetylated xylans are the principal hemicelluloses in the cell walls of

grass species (Qaseem and Wu, 2020). In the close vicinity of

qIBW2.1, genes responsible for modulation of the gibberellin

signaling pathway at a distance of 44.83 kb and a gene for auxin-

responsive protein at 5.46 kb were identified, which have an effect

on lodging resistance in rice. Auxin prompts the expression of genes

related to lignin biosynthetic peroxidase (Prx) in Zinnia elegans and

secondary growth/lignification (Gutiérrez et al., 2009). The effect of

the plant hormone GA on lodging resistance in rice and increased

total biomass signifies the positive impact of overexpression of GA

on lodging resistance due to increased culm diameter and lignin

deposition (Okuno et al., 2014). Two putative candidate genes

associated with lodging resistance were identified in the qIBW5.1

locus. Genes regulating gibberellin and glucose transport

(OsSWEET3a) at 17.92 kb and a gene for arabinogalactan protein

23 (OsAGP23) (Hijazi et al., 2014) at 116.4 kb were identified in the

vicinity of qIBW5.1. In the locus harboring qIBW8.1, cinnamoyl-

CoA reductase (OsCCR29) at 223 kb was identified. The MTA

qBS10.1 was in close proximity (115 kb) to the known candidate

gene cellulose synthase A7 (OsCesA7) on chromosome 10. OsCesA7

is mainly responsible for cellulose synthase (UDP-forming) activity,

regulating the cellulose biosynthetic process and secondary cell wall

formation, thus playing a major role in enhancing stem strength

(Tanaka et al., 2003; Wang et al., 2010; Kotake et al., 2011; Noda

et al., 2015; Fan et al., 2017). The same locus also harbored a gene

for wall-associated kinases (OsWAK100) at a distance of 338.77 kb,

which is known to regulate secondary cell wall thickening (Ma et al.,

2022). The putative candidate genes identified in the present study

further need expression-based validation and functional

characterization. Such characterized candidate genes may be

beneficial to enhance culm strength, leading to lodging resistance

in rice.

Deciphering the relationship between lodging resistance and

yield traits is crucial to increasing crop productivity. In crop

breeding, relationships among traits should be considered to

enhance desirable correlated traits and simultaneously reduce

undesirable trade-offs (Chen and Lubberstedt, 2010). To our

knowledge, few studies have focused on genetic associations

between culm strength and yield traits (Ookawa et al., 2010;

Wang et al., 2016; Guo et al., 2021). Among the genetic

associations between culm strength and grain yield traits

identified in the present study, except for one negative association

between internode breaking weight and panicle weight on

chromosome 1, the remaining 15 associations between culm

strength and panicle weight or grain number were synergistic.

Some of them were colocalized with the same SNP, and some of

them were within the close vicinity of 46 bp to 169.28 kb. The same

QTL hotspot on chromosome 12 harboring all the culm strength
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traits (section modulus, bending stress, and internode breaking

weight) at snpM6498 (pos 8010763) also harbors grain number.

Also, it is a novel MTA. Internode breaking weight and grain

number colocalized on chromosome 11 at a close proximity of 46

bp. Another colocalization of culm strength traits, section modulus,

and internode breaking weight with panicle weight was identified

on chromosome 5 at a proximal distance of 0.94 kb. Previously,

significant phenotypic correlations between culm strength and yield

traits were observed, and 63 loci linking them were detected (Guo

et al., 2021). Interestingly, we also identified a putative candidate

gene, rice floricaula/aberrant panicle organization 2 (APO2/RFL),

linked to the MTA colocalizing BS and GN on chromosome 4 at a

close proximity of 373.47 kb. APO2/RFL is a probable transcription

factor controlling inflorescence, flower development, and short and

solid culm, thus enhancing both grain yield and lodging resistance

(Wang et al., 2016). QTL SCM2, a weaker allele of APO1, increases

spikelet number without reducing panicle number (Ookawa et al.,

2010). These colocalized MTAs can be targeted for the

simultaneous improvement of culm strength and grain yield traits

in indica rice, and favorable alleles of the major effect loci associated

with only culm strength can be introgressed in the elite high-

yielding indica cultivar background.
4.4 Elite donors

Culm morphological and physical strength differences in indica

and temperate japonica were reported earlier; the section modulus of

indica was greater than that of japonica, and the bending stress of

indica was inferior to that of japonica cultivars (Ookawa et al., 2010).

Superior alleles of STRONG CULM 1 and 2 (SCM1 and SCM2)

QTLs, which increase culm strength, were detected in an indica

variety Habataki (Ookawa et al., 2010); similarly, SCM3 and SCM4

QTLs were detected in a tropical japonica variety Chugoku 117

(Yano et al., 2015; Yang et al., 2023). Although we observed genetic

and phenotypic variations for culm strength traits in the indica,

tropical japonica, and breeding lines, we also identified genotypes

with superior trait values for both culm morphology and physical

strength traits in both indica and tropical japonica, including their

derived lines. The present study identified three genotypes, IRGC

73031 (G123), JBB 4547 (G61), and JBB 4514 (G14), with high values

for all the culm strength traits (section modulus, bending stress, and

internode breaking weight) and panicle weight (Supplementary

Table S2). Additionally, 11 genotypes were identified with high

values for one to four traits. Among the genotypes with superior

value for all the culm strength traits, G123 is a tropical japonica

accession, while G14 is an indica line, suggesting the presence of

superior alleles for wider culms in japonica and the presence of

superior alleles for physical strength in indica genotypes. G61 is a

derived line possibly combining the superior trait values for culm

morphology and physical strength from indica and japonica.

Nomura et al. (2019) reported very high culm strength in

Takanari, a derived line from the cross of indica and temperate

japonica. Further, out of the aforementioned 14 strong culm

genotypes, JBB 4514 (G14), JBB 6436 (G165), and JBB 1120 (G20)

were identified with a high panicle weight of more than 5 g and G36
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with a high grain number (Supplementary Table S2). The novel

donors identified in the present study with beneficial alleles for

enhanced culm strength and high yield can be utilized in the

simultaneous improvement of yield and lodging resistance in rice.
5 Conclusion

We report for the first time GWAS for lodging resistance traits

and synergistic associations for culm strength and grain yield from

the Indian subcontinent. The two novel QTLs, qSM2.1 for section

modulus and qBS12.1 for bending stress, with a major effect

identified in the present study, can be further validated and

employed in marker-assisted breeding for improvement of

lodging resistance in elite high-yielding lodging-prone cultivars.

We propose that the validation and introgression of a novel

genomic region on chromosome 12, which is a QTL hotspot for

all culm strength traits (section modulus, bending stress, and

internode breaking weight) and grain number, can serve a dual

purpose of enhancing culm strength and grain yield. MTAs found

in the vicinity of previously reported putative candidate genes for

lodging resistance would provide scope for further research on the

biochemical basis of culm strength.
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