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Development of a longevity
prediction model for cut roses
using hyperspectral imaging and
a convolutional neural network
Yong-Tae Kim, Suong Tuyet Thi Ha and Byung-Chun In*

Department of Smart Horticultural Science, Andong National University, Andong, Republic of Korea
Introduction: Hyperspectral imaging (HSI) and deep learning techniques have

been widely applied to predict postharvest quality and shelf life in multiple

horticultural crops such as vegetables, mushrooms, and fruits; however, few

studies show the application of these techniques to evaluate the quality issues

of cut flowers. Therefore, in this study, we developed a non-contact and rapid

detection technique for the emergence of gray mold disease (GMD) and the

potential longevity of cut roses using deep learning techniques based on

HSI data.

Methods: Cut flowers of two rose cultivars (‘All For Love’ and ‘White Beauty’)

underwent either dry transport (thus impaired cut flower hydration), ethylene

exposure, or Botrytis cinerea inoculation, in order to identify the characteristic

light wavelengths that are closely correlated with plant physiological states based

on HSI. The flower bud of cut roses was selected for HSI measurement and the

development of a vase life prediction model utilizing YOLOv5.

Results and discussion: The HSI results revealed that spectral reflectance

between 470 to 680 nm was strongly correlated with gray mold disease

(GMD), whereas those between 700 to 900 nm were strongly correlated with

flower wilting or vase life. To develop a YOLOv5 prediction model that can be

used to anticipate flower longevity, the vase life of cut roses was classed into two

categories as over 5 d (+5D) and under 5 d (-5D), based on scoring a grading

standard on the flower quality. A total of 3000 images from HSI were forwarded

to the YOLOv5 model for training and prediction of GMD and vase life of cut

flowers. Validation of the prediction model using independent data confirmed its

high predictive accuracy in evaluating the vase life of both ‘All For Love’ (r2 = 0.86)

and ‘White Beauty’ (r2 = 0.83) cut flowers. The YOLOv5 model also accurately

detected and classified GMD in the cut rose flowers based on the image data. Our

results demonstrate that the combination of HSI and deep learning is a reliable

method for detecting early GMD infection and evaluating the longevity of

cut roses.
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1 Introduction

Recently consumer interest and use of floricultural products

have been growing, especially through online markets, resulting

from an increase in flower sale for home use in the COVID-19 era

(Bulgari et al., 2021; Gabellini and Scaramuzzi, 2022). As a large

portion of floricultural plants is utilized as cut flowers, long

postharvest longevity is the primary quality by which flower sales

can be promoted (Vehniwal and Abbey, 2019). Although cut flower

longevity cannot be readily assessed, estimates of shorter vase life

commonly reduce the value of cut flowers that are shipped to

international markets. The vase life of cut flowers is determined by

morphological and physiological attributes, which are shaped by the

interaction of preharvest conditions and genetic traits (Fanourakis

et al., 2013; In and Lim, 2018). Although rose is not an ethylene-

sensitive species, in some cultivars adverse effects of ethylene

exposure have been reported (Macnish et al., 2010; In et al.,

2017). Ethylene is a plant hormone that regulates various

physiological processes, including fruit ripening and flower

senescence (Wang et al., 2002). Ethylene is also produced as a

product of certain agricultural commodities and industrial

activities. Cut rose flowers can be exposed to increased ethylene

concentrations in various situations such as storage or transport

with ethylene-producing agricultural commodities (fruits or flowers

that naturally produce ethylene), storage in or near industrial areas

where there is high emission of the ethylene-producing substances,

and the improper ventilation of the storage or transport facilities

(Cape, 2003; Chang and Bleecker, 2004; Martıńez-Romero et al.,

2009). Dry transport is the main method employed commercially

for trade because of a reduction in space (thus cheaper) and in

flower bud opening (thus maturity stage is little affected) (Macnish

et al., 2009). However, cut flower hydration during dry transport is

reduced owing to transpiration losses, which are not compensated.

In addition, some environments such as high humidity and wet

conditions are characterized by increased B. cinerea spore density

(Williamson et al., 2007; Friedman et al., 2010). This increased

spore density is not apparent at harvest, but later on,

problems appear.

Therefore, the vase life of cut roses commonly ends during the

early stages of flowers’ development, and reliably predicting their

lifespan has not been possible. Consequently, consumers are

dissatisfied and flower utilization is reduced (Reid et al., 1996;

Vehniwal and Abbey, 2019). Thus, the development of longevity

prediction techniques is a high priority to assure the ornamental

period of cut flowers for the customers, as this can be incorporated

into the existing system for quality grading of cut flowers.

Moreover, the vase life prediction system can improve efficiency

in flower supply chains as well as provide consumers with relevant

flower products according to their use. For instance, different

batches of cut flowers can be sorted based on the vase life

potential in the packaging house. The flower batches with short

vase life are priced lower and traded shortly, whereas the batches

with long vase life are priced higher in the markets and can be

stored for longer time before the distribution. Furthermore, the vase

life prediction model in cut flowers offers benefits ranging from

quality assurance and supply chain optimization to environmental
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sustainability and economic efficiency. It aligns with the boarder

goals of the floral industry, aiming to deliver high quality products

while minimizing waste and environmental impact.

Few attempts had so far been made to devise effective methods

to predict and guarantee postharvest longevity of cut flowers. Staby

and Cunningham (1980) reported a method to estimate the vase life

of cut carnation based on the ethylene level using gas

chromatography. However, vase life prediction using this method

is not suitable in ethylene-insensitive flowers and might be less

accurate in the early stage of postharvest. Tromp et al. (2012)

developed a method to predict the remaining vase life of cut roses

using the degree-days model during storage and transportation at a

constant. However, this method may be of limited use if the

biological variance is high or the temperature of storage and

transportation is outside the optimum range (2-6 °C).

We developed previously artificial neural network models to

predict and assure the vase life of three rose cultivars based on

thermal image analysis. Although the prediction accuracy of the

models was quite high, the application of this method was limited

because the cut roses used for the prediction model did not undergo

various postharvest conditions that influence the vase life of cut

flowers, such as dry transport, exposure to ethylene, or high density

of mold spore during storage and transport (In et al., 2009; In et al.,

2016a). Thus, to enhance the model performance for practical

application in the vase life guarantee, it is further necessary to

detect plant status rapidly and to use extensive data processing for

complex data, such as artificial intelligence or machine learning.

Recently, a non-destructive method such as hyperspectral

imaging (HSI) has been widely used to evaluate various factors

related to plant physiology and stress conditions in multiple

horticultural crops (Behmann et al., 2014; Liu et al., 2015; Lowe

et al., 2017; Veys et al., 2019; Ramamoorthy et al., 2022; Wieme

et al., 2022). HSI uses a hyperspectral camera to capture images of

plants in a wide range of light wavelengths (Lowe et al., 2017; Lay

et al., 2023). By analyzing the reflectance of horticultural products

in different wavelengths, HSI can extract detailed information about

the morphological and physiological properties of plants, including

disease infection, nutritional deficiencies, ripeness, and defects of

fruits and vegetables, etc (Liu et al., 2015; Wieme et al., 2022). The

development of spectral imaging techniques has required suitable

regression models to analyze spectral data. Machine learning

techniques based on algorithms have been applied to construct

classification and regression models for HSI to predict and evaluate

the quality of vegetables and fruits (Zhang et al., 2016; Rahman

et al., 2017; Ji et al., 2019). However, the machine learning

algorithms only performed a screening process on the spectral

bands (Zhang et al., 2016). In recent years, deep learning, a subset

of machine learning, has been widely used in agriculture, industry,

and medics because it can learn features automatically from a large

dataset of images (Guo et al., 2016; Tian et al., 2020). This technique

was used in building hyperspectral imaging correction models for

prediction and classification. Convolutional neural networks

(CNNs), a type of deep learning algorithm, can rapidly and

accurately classify the quality of agricultural products and identify

potential factors affecting their appearance or shelf life without

being influenced by personal biases or subjective opinions (LeCun
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et al., 2015; Kamilaris and Prenafeta-Boldú, 2018; Cravero et al.,

2022). In the last decade, CNNs have been increasing employed in

plant phenotyping community. They have been very effective in

modeling complicated concepts, owing to their ability of

distinguishing patterns and extracting regularities from data

(Nasiri et al., 2021; Taheri-Garavand et al., 2021). You Only Look

Once version 5 (YOLOv5), a type of CNN, is a state-of-the-art deep

learning algorithm that was used to classify agricultural products

with high accuracy even when source images are poor quality or

contain multiple features (Yao et al., 2021; Ahmad et al., 2022). To

classify agricultural products by using YOLOv5, the algorithm must

first be trained on a large dataset of labeled images (Redmon et al.,

2016; Yao et al., 2021). YOLOv5 can also perform real-time

classification, which is important for rapidly classifying large

quantities of horticultural products (Zhang et al., 2021; Li et al.,

2022). HSI and deep learning techniques have been widely applied

to predict postharvest quality and shelf life in multiple horticultural

crops such as vegetables, fruits, and mushrooms (Taghizadeh et al.,

2011; Mo et al., 2015; Susič et al., 2018; Sun J et al., 2021; Wieme

et al., 2022; Xiang et al., 2022); however, there are few studies

showed the application of these techniques to evaluate the quality

issues of cut flowers (Stead et al., 2018; Sun X et al., 2021).

Therefore, this study aimed to develop a rapid and effective

method to predict the longevity of cut roses based on HSI and

deep learning algorithms. To identify light wavelengths that are

closely correlated with plant physiological states (GMD and petal

wilting) using HSI, cut flowers underwent either water stress,

ethylene exposure, or B. cinerea inoculation before storage.

YOLOv5 was adopted for processing the extensive image data by

HSI in order to develop vase life prediction models for cut flowers.

In the present study, the flower bud of cut roses was chosen for HSI

measurement and the development of the vase life prediction

model. This selection allows for imaging from the top of entire

batches of cut flowers. Furthermore, the results obtained in this

study are not confined solely to hydration status; they also

contribute to the vase life prediction for cut rose flowers.
2 Materials and methods

2.1 Plant materials

Cut roses ‘All For Love’ and ‘White Beauty’(Rosa hybrida L.)

were cultivated and harvested in a commercial greenhouse in

Guksong, Jeollanam-do, South Korea. Rose plants were

dripirrigated with a liquid nutrient solution containing NH4NO3

(44.93 g L-1), Ca(NO3)2 4H2O (17.47 g L-1), KNO3 (1.63 g L-1),

KH2PO4 (12.04 g L-1), MgSO4 7H2O (27.04 g L-1), and a small

volume of other trace substances. The symptomless rose flowers

were collected and harvested at the commercial stage (outer petals

bent out) (Harkema et al., 2013). After harvest, cut flowers were

either wet transported (WT) in tap water or dry transported (DT)

without the water to the laboratory within 4 h. At the laboratory, all

cut roses were placed in a controlled environment room at 23 ± 1 °C

and at a relative humidity (RH) of 50 ± 2% for HSI analysis. After

the HSI, the cut flowers were exposed to ethylene or inoculated with
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B. cinerea and followed by storage at 10 ± 1 °C and RH of 50 ± 5%

under dark conditions for 3 d for transport treatments (In

et al., 2016b).
2.2 Ethylene exposure

Cut flowers in WT were held in distilled water and those in DT

were placed in buckets without water and enclosed in the treatment

chamber (462 L) at 23 ± 1 °C under dark conditions. Distilled water

was used, though less common from practical stand point, since the

tap water composition largely depends on the season, and the

location (Amadi-Majd et al., 2021). Ethylene (10%) was injected

into the chamber to achieve a final concentration of 2 μL L-1. Three

beakers containing 200 mL of 1M NaOH were placed in the

treatment chamber to neutralize CO2 released by the flower

respiration during the ethylene treatment. After every 12 h of

ethylene exposure, the treatment chamber was opened for 2–3 h

for HSI and then closed and re-injected with 2 μL L-1 ethylene.

Three days after the transport treatments, cut flowers were taken

out from the chamber for vase life evaluation and HSI.
2.3 B. cinerea inoculation in cut roses

B. cinerea (KACC40573) was isolated from infected rose flowers

in the Korean Agricultural Culture Collection (KACC), National

Institute of Agricultural Sciences. For a pure culture, B. cinerea

conidia were grown in potato dextrose agar (PDA, Difo

Laboratories, Detroit, MI, USA) at 25 ± 1 °C for 14 days. B. cinerea

conidial suspension was obtained by dropping 10 mL of distilled

water into a culture petri dish and then gently sweeping the fungal

colony surface with a sterile loop. The conidial clumps were removed

from the obtained suspension by gently filtering with sterile gauze.

Afterward, the concentration of conidia suspension was adjusted to

105 conidia mL-1 with sterile water for the experiment.

WT and DT flowers were inoculated by spraying with 30 mL of

the conidial suspension (105 conidia mL-1). Non-inoculated cut

roses were sprayed with sterile water (30 mL). After inoculation of

B. cinerea, the rose flowers were then placed in the storage chamber

(at temperature 10 ± 1 °C and RH of 50 ± 5%) under dark

conditions for 3 d to simulate export conditions. After the

transport treatments, cut flowers were set up for vase life and

disease progression evaluation and HSI.
2.4 Evaluation of vase life and gray
mold disease

After three days of the export simulation, twenty-five cut roses

in each treatment were trimmed to a length of 45 cm with three

upper leaves. Each cut flower was placed into a glass jar containing

distilled water (450 mL) and maintained at the temperature (23 ± 1

°C), RH of 50 ± 2%, and light intensity at 20 μmol m-2 s-1 (a

photoperiod of 12 h) supplied by fluorescence tubes for GMD

progression and vase life assessment.
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Changes in the postharvest quality of cut roses were determined

by measuring relative fresh weight and water uptake daily at 10:30

am. Water balance (WB) of cut flowers was calculated from changes

in fresh weight, water uptake, and daily transpiration. The vase life

of cut roses was evaluated daily by the assessment criteria for Rosa

(VBN, 2014). Cut roses were considered to have reached the end of

their postharvest life when flowers showed at least one or more of

the following senescence symptoms: pedicel bending (neck angle

greater than 45°), petal drying (≥ 50% of petals show dryness);

wilting of petal and leaf (≥ 50% of petals or leaves loss their turgor),

petal abscission (a drop of three or more petals), leaf abscission and

yellowing (≥ 50% leaf drop and yellowing), bluing (≥ 50% blue

petals) (Fanourakis et al., 2015; Fanourakis et al., 2016). In addition,

the vase life of cut roses was considered to end when cut flowers

showed severe GMD symptoms in the petals. The progression of

GMD by B. cinerea was evaluated based on the disease index as

described in the previous study (Ha et al., 2022).
2.5 Fungal biomass and gene
expression analysis

Fungal genomic DNA (gDNA) was extracted from the gray

mold mycelia collected from infected petals by using i-genomic BYF

DNA Extraction Mini Kit (INTRON Biotechnology Inc., Gyeonggi-

do, South Korea). Total RNA was isolated from 200 mg of rose

petals by using the GeneJET plant RNA purification Mini Kit

(Thermo Fisher Scientific Baltics, Vilnius, Lithuania). cDNA was

synthesized from 1 μg of total RNA using XENO-cDNA Synthesis

Kit (CELL TO BIO, Gyeonggi-do, South Korea) and performed in a

Bio-Rad PTC-100 Programmable Thermal Controller (MJ Research

Inc., Hercules, CA, USA) as per the instruction manual. Then,

fungal biomass (evaluated by Bc3 from gDNA) and the transcript

levels of the ethylene biosynthesis gene (RhACO1), aquaporin-

related gene (RhTIP1), and senescence-induced gene (RhSIG) in

petals of cut roses were analyzed using the BIO-RAD CFX Connect

Real-Time System (Life Science, Hercules, CA, USA). B. cinerea

actin A (BcactA) and Rosa hybrida actin 1 (RhACT1) genes were

used as an internal control. The primer sequences used for

quantitative real-time PCR (qRT-PCR) are listed in Table 1. The

qRT-PCR reaction setting and conditions for gene expression

analyses have been indicated previously (Ha et al., 2022).
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2.6 Hyperspectral image acquisition

The visible/near-infrared (VIS-NIR) hyperspectral camera

system was set with an IMEC SNAPSCAN camera (3650x2048

pixel) (IMEC, Leuven, Belgium, www.imec-int.com) with 150

spectral bands and a spectral range of 470–900 nm. This system

was connected to a computer (Intel (R) Core (TM) I7-1165G7 CPU

@ 2.8 GHz). Images of cut roses were acquired using the HSI in

reflection mode and were constructed under a controlled

environment room (23 ± 1 °C and RH of 50 ± 2%). The VNIR

light source was provided by 4 halogen Osram lamps with 20W HT

spot and color temperature of 2800 K (OSRAM, Munich, Germany).

The halogen lamps provide 350-2500 nm light with a power of 20W.

The distance between the cut rose flowers and the lens was set to 50

cm, and the angle between the lamps and camera was set at 45° to

provide enough light to the imaging area for image acquisition. The

exposure time of the hyperspectral camera shooting was set to 2

milliseconds. The halogen lamps were run for 15 min to reach a stable

state temperature and then a 95% reflection standard was calibrated

before conducting reflection measurements of the cut roses. Data

acquisition and extraction were performed using the IMEC HSI

Snapscan software version 1.8.1.1 (IMEC, Leuven, Belgium).
2.7 Image processing model

A dataset of images of cut roses was used to process disease

detection and vase life prediction by using deep learning system

YOLOv5 version 6.2 (GitHub, San Francisco, USA). The dataset

consisted of 3000 images collected from the hyperspectral system,

with 1500 disease-infected cut roses and 1500 non-disease-infected

cut roses. The images were resized to 640x640 pixels and the

disease-infected areas in the images were annotated with

bounding boxes using MAKE SENSE (Figures 1A–C). The

annotation process was done by a trained 1 annotator is familiar

with disease-infected cut roses to ensure consistency and accuracy.

The YOLOv5 architecture implemented in Python using the

PyTorch library was used for object detection. The YOLOv5x

model was implemented using the GitHub library and was

trained on a computer with a CUDA-enabled GeForce RTX 3080

graphics card for 50 epochs. To evaluate the performance of gray

mold disease detection in cut roses, metrics including precision (P),

recall (R), mean average precision (mAP), and F1-score (F1) were
TABLE 1 List of genes and primers used for qRT-PCR analysis in this study.

Gene
(accession number/reference)

Forward primer Reverse primer

Bc3 (Suarez et al., 2005) 5’-GCTGTAATTTCAATGTGCAGAATCC-3’ 5’-GGAGCAACAATTAATCGCATTTC-3’

BcactA (Chagué et al., 2006) 5′-CCCAATCAACCCAAAGCTCAACAG-3′ 5′-CCACCGCTCTCAAGACCCAAGA-3′

RhACO1 (AF441282.1) 5′CGTTCTACAACCCAGGCAAT-3′ 5′-TTGAGGCCTGCATAGAGCTT-3′

RhTIP1 (KF985188.1) 5’-TCTCTCCTACGTGGCATCCT-3’ 5’-GACCACCTCTGCTTTTGCTC-3’

RhSIG (S80863.1) 5’-CCGACACAAGAACCTTGGAT-3’ 5’-TCTTCCGTGTACACCACCAA-3’

RhACT1 (KC514918.1) 5′-GTTCCCAGGAATCGCTGATA-3′ 5′-ATCCTCCGATCCAAACACTG-3′
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used in the present study. The target confidence threshold was 0.5

and the Intersection over Union (IOU) at the time of testing was

0.5. The P, R, mAP, and IOU are calculated as follows:

P =
TP

TP + FP

R =
TP

TP + FN

mAP = o
k
i=1APi
k

F1 = 2�  P �  R
P + R

IOU =
Area   of  Overlap
Area of Union

Where TP, FP, and FN are the numbers of true positive cases,

false positive cases, and false negative cases. The specific network

structure of YOLOv5x is shown in Figure 2.

To identify the most appropriate image processingmodel, we also

evaluated the performance of two more object detection models:

Faster R-CNN and Single Shot Muli-Box Detector (SSD). We utilized

the cut rose image dataset, which includes 588 images across 21

categories, showcasing various senescence symptoms. The dataset

was partitioned into 70% for training, 15% for validation, and 15% for
Frontiers in Plant Science 05
testing. We tailored the input image sizes to meet the requirements of

each model: 640x640 pixels for Faster R-CNN and 512x512 pixels for

SSD. All models were implemented using the PyTorch open-source

deep learning framework. Each model underwent training with

identical hyperparameter settings, including a learning rate set to

0.001, a batch size of 16, and training for a total of 50 epochs.

To identify initial disease symptoms and wounded spots, we

used an image region extraction pre-processing step using the

YOLOv5 object detection algorithm. The flower objects within

the images were identified and boxed with a rectangular frame.

The objects in the bounding boxes were then precisely cropped and

the small spots were detected from the images by the image pre-

processing system as shown in Figure 3.

A random forest classificationmodel using the object values detected

by the YOLOv5x was used to predict the vase life of cut roses. We used a

dataset of 200 cut roses corresponding with vase life labels ranging from 1

to 8 d. To optimize the performance of the random forest model, the

object values were grouped into feature sets of 1 to 12, based on the

importance ranking of the 12 features. The feature sets were constructed

by iteratively adding the next most important feature to the previous set

until 12 features were included. The dataset was split into training and

testing sets using an 80:20 ratio, with stratified sampling to ensure that

both sets have a similar distribution of the vase life labels. The random

forest model was trained using the training set, with hyperparameters

optimized using grid search and cross-validation. The optimized

hyperparameters included 100 trees, a maximum depth of 10, and

minimum samples required to split a node of 2.
A

B

C

FIGURE 1

Development of flower opening and gray mold disease (GMD) in ‘White Beauty’ cut roses during transport and vase life (A, B). The cut flowers were
untreated (none treatment) or sprayed with B. cinerea conidia suspension (inoculation) and the images of flowers were taken on days 1-3 of
transport (T1-T3) and days 1-2 (D1-D2) of vase period. The green and pink boxes indicate the annotation of the GMD emergence spots by bounding
boxes for deep learning analysis (B). Detection of GMD and petal wilting in ‘White Beauty’ (a) and ‘All For Love’ (b–e) by YOLOv5 (C). The arrows and
numbers in the flower images indicate the GMD spots and the probability (%) of GMD calculated by YOLOv5 (a, b). The bounding boxes in purple,
green, and red generated by annotation tool MAKE SENSE indicate petal wilting and opening levels of the flowers at T0, T3, and D1. The percentage
numbers in the images indicate the probability of the specific wilting and opening stages, as calculated by YOLOv5 (c–e).
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A B

D E F

C

FIGURE 3

The GMD detection image region extraction pre-processing diagram of the YOLOv5. (A), original HSI with a resolution of 2048 pixels in width and
height; (B), the original image was resized to 640x640 pixels, and convolution operations were performed to extract features. (C), detect the object
and the bounding box information surrounding the object (x, y, w, h, n) was extracted, x and y: position of the bounding box, w: width, h: height,
and n: identification number of the object. (D), bud image is the extracted image of the detected object region, image size is the width and height of
the bounding box; (E), resized of 640x640 pixels to standard the input size and additional feature extraction; and (F), red boxes in indicate the
detection of disease and wounded spots.
FIGURE 2

The YOLOv5 network model structure schematic used in this study. The image dataset is first pre-processed, annotated, and undergoes data
augmentation to enhance its quality and quantity. The prepared image data is then forwarded to the backbone, the neck, and the head of the model
for training and prediction of disease and vase life. Finally, the prediction performance of the models was estimated based on the object-detection
values by YOLOv5 system.
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The output of the vase life was classed into two categories as over 5 d

(> 5 d) and under 5 d (≤ 5 d) based on the total scores evaluated by gray

mold disease (GMD) severity, GMD development weighted value, petal

wilting level, and flower opening as shown in Table 2 and Supplementary

Figure 1. The scores of quality factors used to predict the vase life of cut

roses in Table 2 were calculated based on the incidence of the vase life

terminated factors and GMD disease (Supplementary Figure 2). The

GMD development weighted value was determined by the growth speed

of the disease in petals. The GMD development speed was accelerated by

B. cinerea inoculation and ethylene treatment and also increased in

‘White Beauty’ compared to ‘All For Love’ (Supplementary Figure 3).

This evaluationwas based on the previous findings showing that ethylene

and water stress influenced the progression of GMD in cut roses during

transport (Harkema et al., 2013; Ha et al., 2022).
2.8 Experimental design and
statistical analysis

Twenty-five cut roses were used for each treatment. Experiments on

vase life and disease evaluation were performed with 10 replicates (one

cut flower per replicate). HSI analyses were performed with 6 cut flowers.

The remaining 9 cut flowers were used for fungal biomass and gene

expression analysis. qRT-PCR analysis was conducted with 3 biological

replicates. Data were subjected to analysis of variance (ANOVA) or

simple linear regression analysis at p< 0.05 using SPSS version 22.0 (IBM,

Somers, NY, USA). Data are presented as the mean ± standard error

(SE). The experiments were performed twice in both rose cultivars.
3 Results

3.1 Transport treatments influence vase
life, water status, disease infection, and
total reflectance of cut roses

WT treatment extended the vase life of cut roses compared to other

treatments (Figures 4A, B).WT yielded the longest vase life in both ‘All For
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Love’ (5.3 d) and ‘White Beauty’ (5.2 d) varieties of cut roses (Figures 4A,

B). Conversely, DT, ethylene, and B. cinerea treatments significantly

reduced the vase life of both cultivars (Figures 4A, B). Similarly, changes

in both cultivars’ capacity tomaintainWBmirrored the changes in vase life

in response to the different transport treatments. (Figures 4C, D).

The first visual symptoms of gray mold disease (GMD) were

observed on day 1 (T1) of transport in WT+E andWT+B flowers in

both rose cultivars (Figures 4E, F). WT+E and WT+B treatments

most increased GMD severity in the flower petals during vase

periods (Figures 4E, F). Although DT reduced the vase life of cut

roses, due to water stress caused by an early disruption of water

balance, this transport method delayed GMD growth in the flower

petals (Figures 4E, F). In particular, ‘All For Love’ DT flowers

showed no GMD symptoms after transport treatment (Figure 4E).

Mean spectral reflectance curves of the cut roses in the wavelength

range 470-900 nm obtained using the HSI on the first day (D1) of the vase

period are shown in Figures 4H, G. The size and shape offlower buds did

not influence the reflectance of wavelength in cut rose flowers

(Supplementary Figure 4). The overall spectral patterns induced by the

two treatments were similar for both cultivars. The reflectance of

wavelength (RW) in WT flowers was higher than those of other flowers

(Figures 4H, G), whereas that of DT, DT+E, DT+B, WT+E, and WT+B

flowers was relatively low and corresponded with the decline in both vase

life and capacity to maintain water balance, as well as and the increase in

GMD index (Figures 4H,G). The distinct differences in RW in the 470-680

nm range (RW470/680) in both rose cultivars perhaps show the relation of

the spectrums to the susceptibility to the gray mold of the cut flowers

(Figures 4H, G). Conversely, the differences in RW in the 700-900 nm

range (RW 700/900) in both rose cultivars may be correlated with the

flower responses to water stress and ethylene (Figures 4H, G).

3.2 Changes in spectrum curves, fungal
growth, and relative expression of genes
involved in ethylene biosynthesis, water
stress, and senescence of cut roses

Changes in spectral reflectance of cut roses in each treatment

group (solid lines) were analyzed throughout the transport and vase
TABLE 2 The scores of quality factors used for to predict the vase life of cut roses using YOLOv5.

GMD severityx GMD weighted valuey Petal wiltingz Vase lifew

Level Score Treatment/cultivar Score Level Score Total score Output

1 0 None 0 1 0 > 60 ≥ 5 D

2 20 B. cinerea 20 2 20
< 61 < 5 D

3 40 Ethylene 20 3 40

4 100 Culti-var
‘All For Love’ 0

4 100 < 100 Exclusion
‘White Beauty’ 20

Total score = 100 – (GMD severity + GMD weighted value + Petal wilting)
fro
xGMD, gray mold disease.
The severity of GMD was evaluated by the area (%) of the disease symptom in rose petals as follows: 1, none; 2, ≤ 3%; 3, 3-10%; and 4, 11-50%.
yThe weighted value of GMD is the disease developmental speed in rose petals influenced by the treatments and cultivars.
zPetal wilting was influenced by water stress and flower opening. It was calculated using four levels as follows: 1, none; 2, slight wilting; 3, moderate wilting; 4, severe wilting.
wThe total score of vase life was the sum of the scores graded by the quality factors. Vase life of cut roses was classified in two categories: over 5 d (+5D) and under 5 d (-5D) based on the total
score. If the total score was ≥ 100, the cut flowers were excluded from the vase life evaluation and classified into the defective group.
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periods, and the corresponding changes in GMD growth (Bc3 level)

and the relative expression of genes related to ethylene biosynthesis

(RhACO1), water stress (RhTIP1), and senescence induction

(RhSIG) were also detected in the petals (bar charts) (Figure 5).

The changes in total spectral reflectance in both rose cultivars

after transport treatments are shown in Supplementary Figure 5. In

the various treatment groups of ‘All For Love’ roses, RW 470/680

during transport (T0) varied in correlation with the level of fungal
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biomass in petals (Figure 5A). Ethylene, B. cinerea inoculation, and

WT induced high Bc3 levels rapidly in cut roses while DT reduced

Bc3 levels in rose petals (Figure 5A). Thus, RW470/480 in DT+E,

DT+B, WT, WT+E, and WT+B flowers rapidly decreased due to B.

cinerea growth after transport treatments (Figure 5A). In contrast,

RW 470/480 in DT roses changed only slightly during vase periods

(Figure 5A). In the case of the ‘White Beauty’, these flowers are

particularly susceptible to GMD; thus, the fungal biomass (Bc3
A B

D

E F

GH

C

FIGURE 4

Changes in physiological characteristics of cut roses during transport and vase period. (A, B), vase life; (C, D), maintenance of water balance;
(E, F), gray mold disease (GMD) index; (G, H), reflectance of wavelength (RW) in cut roses. DT, dry transport; DT+E, ethylene exposure before DT;
DT+B, B. cinerea inoculation before DT; WT, wet transport; WT+E, ethylene exposure before WT; WT+B, B. cinerea inoculation before WT. GMD
was evaluated on days 1-3 of transport (T1–T3) and days 1-5 (D1–D5) of vase period. GMD index was classified into five levels as 1, none; 2, slight
symptoms (≤ 3%); 3, moderate symptoms (3-10%); 4, severe symptoms (11-50%); and 5, death of plants (> 50%). RW was detected in cut roses on
the first day (D1) of vase period. RW 470/680 and 700/900 indicate the wavelengths from 470 to 680 nm and 700 to 900 nm, respectively. Data are
shown as means ± SE (n = 20). Different letters above bars indicate statistically significant differences among treatments at p = 0.05 based on
Duncan’s multiple range test.
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level) emerged in the petals of all cut roses early at D1 (1st day of the

vase period). Consequently, the reduction in RW 470/680 was

similar in all flowers (Figure 6A).

Ethylene exposure induces higher mRNA levels of the ethylene

biosynthesis-related gene RhACO1 in rose petals (In et al., 2017).

Moreover, both ethylene and water stress reduced the expression

levels of RhTIP1, an aquaporin-related gene (Xue et al., 2009; Ha

et al., 2021). These changes induced early senescence symptoms in

cut roses by stimulating the expression of senescence-induced genes

(Figures 5B–D, 6B–D). In all flowers, a decrease in RW 700/900
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corresponded to increased mRNA levels of RhACO1 and RhSIG (a

senescence-induced gene) and a decrease in RhTIP1 expression in

petals (Figures 5B–D, 6B–D). At the later stage of the vase period

(D4), the death of petal tissues due to GMD or senescence caused a

decline in the spectral reflectance of all cut flowers (Figures 5A–D,

6A–D).

To confirm the above results, we extracted the RW 470/680 and

RW 700/900 from petals based on GMD index differences

(Figures 7A, C) and petal wilting level due to water stress or

ethylene exposure (Figures 7B, D). Subsequently analysis,
A B DC

FIGURE 5

Effect of transport treatments on changes in B. cinerea infection level, relative expression of genes related to flower longevity, and average
reflectance of wavelength (RW) in ‘All For Love’ cut roses. RW 470/680 and 700/900 indicate the wavelengths of 470 to 680 nm and 700 to 900
nm, respectively. Bc3, fungal biomass in rose petals (A); RhACO1, ethylene biosynthesis gene (B); RhTIP, aquaporin-related gene (C); and RhSIG,
senescence-induced gene (D). RW, fungal biomass, and gene expression level in cut roses were analyzed on day 0 of transport (T0) and on days 1
(D1) and 4 (D4) of the vase period. DT, dry transport; DT+E, ethylene exposure before DT; DT+B, B. cinerea inoculation before DT; WT, wet
transport; WT+E, ethylene exposure before WT; WT+B, B. cinerea inoculation before WT. The solid line represents the average reflectance of
wavelength. The bar charts represent the Bc3 level, and relative expression of genes related to flower longevity. Data are shown as means ± SE (n =
20 for RW data, 6 for gene expression data). Different letters above bars indicate statistically significant differences among treatments at p = 0.05
based on Duncan’s multiple range test.
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employing a one-way ANOVA test for each RW, identified RW

600-680 nm in ‘All For Love’ and at RW 500-650 nm in ‘White

Beauty’, with notably high p-values, closely related to GMD

symptom severity (Figures 7A, C). Additionally, high p-values at

RW 700-900 nm indicated distinctions in petal wilting (Figures 7B,

D). Whereas, p-values were low at RW 700/900 and RW 470/680,

which are related to GMD severity (Figures 7A, C) and petal wilting

levels (Figures 7B, D). These results indicate that RW 470/680 and

RW 700/900 are closely correlated to GMD and other stress

conditions respectively in cut rose flowers.
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3.3 Object detection for GMD
using YOLOv5

Among the methods employed for object detection, the

YOLOv5 model demonstrated superior accuracy (mAP, precision,

and recall) in comparison to the Faster R-CNN and SSD models

(Supplementary Figure 6). Consequently, the YOLOv5 was chosen

for object detection of GMD in cut roses in the present study. The

object detection for GMD in cut roses was carried out by YOLOv5x

models and the performance of the model was evaluated. The HSI
A B DC

FIGURE 6

Effect of transport treatments on changes in B. cinerea infection level, relative expression of genes related to flower longevity, and average
reflectance of wavelength (RW) in ‘White Beauty’ cut roses. RW 470/680 and 700/900 indicate the wavelengths of 470 to 680 nm and 700 to 900
nm, respectively. Bc3, fungal biomass in rose petals (A); RhACO1, ethylene biosynthesis gene (B); RhTIP1, aquaporin-related gene (C); and RhSIG,
senescence-induced gene (D). RW, fungal biomass, and gene expression level in cut roses were analyzed at day 0 of transport (T0) and at days 1 (D1)
and 4 (D4) of the vase period. DT, dry transport; DT+E, ethylene exposure before DT; DT+B, B. cinerea inoculation before DT; WT, wet transport;
WT+E, ethylene exposure before WT; WT+B, B. cinerea inoculation before WT. The solid line represents the average reflectance of wavelength. The
bar charts represent the Bc3 level, and relative expression of genes related to flower longevity. Data are shown as means ± SE (n = 20 for RW data, 6
for gene expression data). Different letters above bars indicate statistically significant differences among treatments at p = 0.05 based on Duncan’s
multiple range test.
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of cut roses was fed into the YOLOv5x model which was trained to

identify the presence of GMD in petals. The model effectively

detected small instances of GMD in rose petals (Figure 1C),

demonstrating that YOLOv5x can predict the disease emergence

at the early stages of the disease infection. The mAP represents the

evaluation index of disease detection accuracy. In this study, mAP

value was relatively high (82.1%) in ‘All For Love’ flowers

(Figure 8A). The precision (86.2%) and recall (77.5%) values

achieved by the model were also high in ‘All For Love’ flowers

(Figure 8A). Whereas, the performance of the YOLOv5 model for

‘White Beauty’ flowers was slightly lower (mAP, 81.6%; precision,
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85.1%; and recall, 78.4%) (Figure 8B). Nevertheless, these values

were enough high and better than those of the prediction based on

petal wilting levels (Supplementary Figure 7).
3.4 Prediction of vase life of cut roses
using YOLOv5

The classification for vase life in cut roses was carried out by

random forest models and the performance of the model was

evaluated. The vase life of cut roses was trained into two
A B

FIGURE 8

Detection and prediction of gray mold disease in cut roses ‘All For Love’ (A) and ‘White Beauty’ (B). The performance of the prediction models by
YOLOv5 was evaluated mAP, precision, and recall. mAP, the evaluation index of the detection accuracy; precision, the percentage of true positives
(correctly detected objects) out of all the objects that is detected; recall, the percentage of true positives (correctly detected objects) out of all the
objects that exist in the dataset.
A B

DC

FIGURE 7

Average reflectance of wavelength (RW) of cut roses based on gray mold disease (GMD) index (A, C) and petal wilting level due to water stress or
ethylene (B, C), and p-values of a one-way ANOVA per RW (A–D). GMD index was classified into five levels as 1, none; 2, slight symptoms (≤ 3%); 3,
moderate symptoms (3-10%); 4, severe symptoms (11-50%); and 5, death of plants (> 50%). WT, wet transport; DT, dry transport; and E,
ethylene exposure.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1296473
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kim et al. 10.3389/fpls.2023.1296473
categories as under 5 d (-5D) and over 5 d (+5D) based on the

scores graded by the quality factors presented in Table 2. In this

study, we evaluated the classification performance of the random

forest algorithm in both cultivars. In ‘All For Love’ rose flowers, in

the -5D case, the model displayed an F1 score of 89%, precision of

87%, and recall of 91% (Figure 9A). In contrast, in the +5D case, the

performance was slightly lower (F1, 87%; precision, 85%; and

Recall, 93%) (Figure 9C). In ‘White Beauty’ rose flowers, in the

-5D case, the model yielded an F1 score of 85%, precision of 81%,

and recall of 87% (Figure 9B). However, in the +5D case, the

performance was slightly higher, with an F1 score of 88%, precision

of 91%, and recall of 85% (Figure 9D).

The vase life prediction model was developed using YOLOv5x

based on the detection of petal conditions (Figures 9E, F). As a

result, the scatter plots showed a strong correlation between the

predicted value and the observed value of the vase life evaluation

(r2 = 0.86 in ‘All For Love’ and 0.83 in ‘White Beauty’) (Figures 9E,
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F). This result indicates that the YOLOv5 model achieves a strong

capacity for the vase life prediction of cut flowers by analyzing the

large size of the complicated data obtained HSI.
4 Discussion

Postharvest conditions, such as dry transport, ethylene or high

density of mold spores have been observed to decrease the longevity

of the cut roses (Harkema et al., 2013; Ha et al., 2021; Ha et al.,

2022). In this study, dry transport, ethylene exposure, and increased

B. cinerea spore (induced by ethylene exposure and fungal conidial

inoculation during transport simulation) significantly reduced vase

life and positive water balance of cut roses. Dry transport, a practice

involving storing cut flowers without water to facilitate

transportation or control B. cinerea growth, can lead to

dehydration and reduced vase life of cut flowers (Macnish et al.,
A B

D

E F

C

FIGURE 9

Prediction of vase life of cut roses ‘All For Love’ (A, C) and ‘White Beauty’ (B, D). The performance of the prediction model by random forest was
evaluated F1-score, precision, and recall. F1-score, the harmonic mean of precision; precision, the percentage of true positives (correctly detected
objects) out of all the objects that is detected; recall, the percentage of true positives (correctly detected objects) out of all the objects that exist in
the dataset. The accuracy of vase life prediction (E, F) by YOLOv5 and random forest. The vase life of cut roses were classed into two categories as
over 5 d (+5D) and under 5 d (-5D) based on the scores graded by the quality factors in Table 2. The negative (-1.0-0) and positive (0.0-1.0) values
by the linear regression analysis respectively indicate the probability that the vase life is -5D or +5D. Asterisk (*) represents a significant difference at
p = 0.05 (n = 40).
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2009; Harkema et al., 2013; Fanourakis et al., 2022). Ethylene

exposure accelerates the senescence process of cut roses, leading

to premature wilting, petal abscission, and overall reduced vase life

(Macnish et al., 2010; In et al., 2017). During transportation, contact

with B. cinerea spores or storage in conditions conductive to fungal

growth can lead to infection, resulting in necrotic lesions and decay,

ultimately reducing vase life of cut flowers (Ha et al., 2022).

Hyperspectral imaging is a non-contact method that analyses a

wide range of light spectrums by scanning objects with

hyperspectral cameras (Lowe et al., 2017; Cao et al., 2022; Xiang

et al., 2022). The reflectance of light from plants at different

wavelengths can be used to obtain information about various

plant statuses and conditions (Sun J et al., 2021; Sukhova and

Yudina, 2022). In this study, HSI of cut roses was used to observe

distinct wavelength ranges of plants in various physiological states,

such as GMD infection, water stress response, and senescence

induction. The spectral reflectance at 470-680 nm was found to

be strongly related to B. cinerea infection in the rose petals. The

reflectance in this wavelength range is mainly affected by the

absorption spectra of pigments in the leaves or petals of the

plants (Rolfe and Scholes, 2010). B. cinerea infection would

change the content and distribution of the pigment in the petals

leading to changes in the spectral reflectance (López-López et al.,

2016). While water stress causes changes in the water content of

plant tissues which in turn affects the reflectance of light in the

wavelength range of 700-900 nm (Elvanidi et al., 2018). Similarly,

the reflectance at 700-900 nm was highly correlated to the petal

wilting levels due to water stress after dry-transport or ethylene in

cut flowers. Our results are consistent with those of previous studies

showing that the reflectance at 400-680 nm is related to disease

infection and the reflectance at higher 700 nm is sensitive to

vegetation stress or water stress (Thenkabail et al., 2004; Köksal,

2011; Cao et al., 2022).

The YLOLv5x model was established to predict the potential

incidence rate of GMD and the vase life of cut roses based on HSI

data. We used the mAP@0.5 indicator to measure the prediction

model’s overall performance on the training test. The resulting

mAP@0.5 value of the YOLOv5x model was approximately 80% in

‘All For Love’ roses, indicating that the model has a high prediction

accuracy and can detect even small traces of fungal at early stages of

disease development in rose petals. In previous studies, a similar

detection performance was observed when YOLOv5 was used to

predict powdery mildew disease and anthracnose in rubber plants

(Chen et al., 2022). Our results also showed that the precision

(78.6%) and recall (80.5%) values achieved from the model were

also relatively high for ‘All For Love’ flowers, indicating that the

model has a low chance of wrong detection (Qi et al., 2022).

However, the disease detection performance was slightly lower for

‘White Beauty’ cultivar, possibly due to color similarity between
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white petals and GMD symptoms (Del Valle et al., 2018; Kasajima,

2019; Jiang et al., 2021).

Previously, the vase life prediction models in cut roses were

developed by using the combination of machine learning and

thermal imaging based on the different temperatures of petals

among flower blooming stages (Choi and Lee, 2020). Evaluation

of the flower quality of cut roses using a four-dimensional deep

learning method was also studied based on the flower maturing

status (Sun X et al., 2021). Despite the relatively good prediction

accuracy of the models, an application of these techniques is difficult

because the performance of the models is suitable only in limited

conditions. In this study, the YOLOv5x models performed the vase

life prediction well based on the detection of the flower states under

different stress conditions and transportation methods. The results

revealed that the models developed here are outstanding in the

accuracy of the vase life prediction, consequently, applicability to

the flower industry.

However, our model was developed using only two rose

cultivars, thus further validation of the model with a larger

dataset from various cultivars and environmental conditions is

required to establish its general applicability. Furthermore,

optimization of the YOLOv5 model, considering factors such as

dataset size (Fang et al., 2021; Doherty et al., 2022) and

computational resources (Junior and Ulson, 2021; Li et al., 2022),

is crucial for improved performance and broader applicability.
5 Conclusion

In conclusion, our results have demonstrated the potential use

of deep learning algorithms for detecting GMD and predicting the

vase life of cut roses based on hyperspectral images of flower bud

states. The finding from this study revealed that the spectral

reflectance of 470 to 680 nm and 700 to 900 nm was closely

related to GMD and plant physiological conditions, respectively

in cut roses. The YOLOv5 model precisely detected and classified B.

cinerea infection with high precision. The model also showed high

predictive accuracy in evaluating the vase life of cut roses based on

extensive image processing. With some modifications, the vase life

prediction models developed in this study could be effective tools

for constructing a flower longevity guarantee system for the

flower industry.
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