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Uneven illumination, obstruction of leaves or branches, and the overlapping of

fruit significantly affect the accuracy of tomato detection by automated

harvesting robots in natural environments. In this study, a proficient and

accurate algorithm for tomato detection, called SBCS-YOLOv5s, is proposed

to address this practical challenge. SBCS-YOLOv5s integrates the SE, BiFPN,

CARAFE and Soft-NMSmodules into YOLOv5s to enhance the feature expression

ability of the model. First, the SE attention module and the C3 module were

combined to form the C3SE module, replacing the original C3 module within the

YOLOv5s backbone architecture. The SE attention module relies on modeling

channel-wise relationships and adaptive re-calibration of feature maps to

capture important information, which helps improve feature extraction of the

model. Moreover, the SE module’s ability to adaptively re-calibrate features can

improve the model’s robustness to variations in environmental conditions. Next,

the conventional PANet multi-scale feature fusion network was replaced with an

efficient, weighted Bi-directional Feature Pyramid Network (BiFPN). This

adaptation aids the model in determining useful weights for the

comprehensive fusion of high-level and bottom-level features. Third, the

regular up-sampling operator is replaced by the Content Aware Reassembly of

Features (CARAFE) within the neck network. This implementation produces a

better feature map that encompasses greater semantic information. In addition,

CARAFE’s ability to enhance spatial detail helps the model discriminate between

closely spaced fruits, especially for tomatoes that overlap heavily, potentially

reducing the number of merging detections. Finally, for heightened identification

of occluded and overlapped fruits, the conventional Non-Maximum-

Suppression (NMS) algorithm was substituted with the Soft-NMS algorithm.

Since Soft-NMS adopts a continuous weighting scheme, it is more adaptable

to varying object sizes, improving the handling of small or large fruits in the

image. Remarkably, this is carried out without introducing changes to the

computational complexity. The outcome of the experiments showed that

SBCS-YOLOv5s achieved a mean average precision (mAP (0.5:0.95)) of 87.7%,
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which is 3.5% superior to the original YOLOv5s model. Moreover, SBCS-

YOLOv5s has a detection speed of 2.6 ms per image. Compared to other

state-of-the-art detection algorithms, SBCS-YOLOv5s performed the best,

showing tremendous promise for tomato detection in natural environments.
KEYWORDS

artificial intelligence, tomato detection, attention mechanism, BiFPN, YOLOv5,
computer vision, agriculture
1 Introduction

The tomato is one of the world’s most important crops (Peixoto

et al., 2017), but harvesting tomatoes under natural conditions

remains labor-intensive. Fruit harvesting has undergone a

significant transformation through advances in artificial

intelligence within laboratory research. This evolution has paved

the way for the emergence of fruit-picking robots anticipated to

supplant manual labor. The vision system plays a vital role in a

fruit-picking robot. This is because of its fundamental role in

accurately identifying fruits, a crucial initial step hinging on the

robot’s precision, efficiency, and resilience. Nevertheless, the

challenges posed by natural conditions introduce complexities,

such as unbalanced lighting, occlusions, overlapping, and other

unforeseeable elements (Gongal et al., 2015), all of which affect the

detection accuracy of fruit-picking robots. Consequently, enhancing

the accuracy, efficiency, and robustness of harvesting robots under

these natural conditions is essential.

Many researchers have studied fruit detection to deal with the

problems mentioned above. Some digital image processing

approaches, such as color features (Goel and Sehgal, 2015; Yang

et al., 2020), shape (Jana and Pareskh, 2017), and texture (Rakun

et al., 2011), have been proposed to obtain reasonable detection

results. Zhao et al. (2016a) developed a technique for detecting

immature citrus fruits in natural environments based on cascaded

pixel segmentation. A combination of color feature maps and a

block-matching method were employed to identify potential fruit

pixels. Subsequently, further refinement is adopted utilizing an

SVM classifier to eliminate false positives. On the other hand, in

the initial stages of segmentation, by relying solely on color features,

numerous fruit instances remain undetected due to the resemblance

between green fruit and the background. Kurtulmus et al. (2011)

introduced a new eigenfruit feature for identifying green citrus. This

characteristic was paired with color information and a study of

circular Gabor texture. Despite including the texture characteristics

alongside color features, their method has encountered challenges

distinguishing some fruit from the background and has struggled to

detect heavily obscured fruit effectively.

Other methods include K-means clustering (Jiao et al., 2020),

Support Vector Machine (SVM) (Azarmdel et al., 2020), and

AdaBoost algorithms (Payne et al., 2014). In tomato detection,
02
Liu et al. (2019) developed an approach to identify mature tomatoes

within natural environments. A naive Bayesian classifier with an

oriented gradient histogram was used to distinguish each tomato.

Subsequently, a color analysis step was used to remove false

positives. Nevertheless, adapting this method to natural settings

posed a challenge owing to the inherent limitations of manually

crafted features in terms of their capacity for high-level abstraction.

Similarly, Zhao et al. (2016b) used Haar-like feature thresholding

and AdaBoost classifier to detect tomatoes. Their study revealed a

recognition rate of 96% for tomatoes within their testing dataset.

Nevertheless, a long training time was required in their approach.

The aforementioned methods relying on manually designed

features have inherent limitations, particularly in scenarios where

intricate feature extraction is demanded. The introduction of deep

learning successfully addressed these challenges. For example,

Rahnemoofar and Sheppard (2017) showcased commendable

fruit-counting capabilities through a customized Inception-ResNet

architecture (Szegedy et al., 2017). On the other hand, this model

focused exclusively on fruit counting and failed to detect them.

Santo et al. (2020) introduced a method to detect and track grape

clusters within images captured in vineyards. This approach utilized

the Mask-RCNN algorithm (He et al., 2017) for the precise

detection of individual grape bunches. Furthermore, structure

from motion techniques were applied to achieve the 3D

alignment of images, enabling the effective mapping of features

across various images. Their method achieved an F1-score of 91%.

In recent years, the emergence of YOLO models has revolutionized

object detection (Redmon et al., 2016; Redmon and Farhadi, 2017;

Redmon and Farhadi, 2018; Boschkovskiy et al., 2020; Jocher et al.,

2020; Wang et al., 2022). These YOLOmodels exhibited exceptional

improvement in accuracy and speed, surpassing traditional two-

stage pipelines (He et al., 2017; Girshick et al., 2014; Ren et al.,

2015). They used a single feed-forward network to detect bounding

boxes and corresponding classes. Wang et al. (2021) introduced an

innovative method anchored in an enhanced YOLOv3-tiny model

to identify disease occlusion and overlapping tomato leaves. This

model strategically mitigated information loss during network

transmission, resulting in a commendable mAP score of 93.1%.

Bresilla et al. (2019) used DCNN architectures based on single-stage

detectors. Leveraging deep learning techniques eliminates the need

to manually code specific features tailored to particular fruit shapes,
frontiersin.org
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colors, or other attributes. This method achieved an accuracy of

more than 90%. Liu et al. (2020) introduced YOLO-Tomato, a

resilient model based on YOLOv3. This model achieved an Average

Precision (AP) of 96.40% and a rapid detection speed of 54 ms.

Chen et al. (2022) introduced a modified YOLOv4 to detect citrus.

Their approach used an attention mechanism and a depth-wise

separable convolution module. Moreover, they applied a pruning

algorithm to eliminate the impact of irrelevant latent factors in the

data. Their average improved from 92.89% to 96.15%, with 0.06s to

detect each image.

Expanding the scope, Cao et al. (2023) proposed a technique for

persimmon recognition in natural environments. They harnessed

an enhanced YOLOv5 model, achieving an average accuracy of

95.53%. Mbouembe et al. (2023) proposed a modified YOLOv4-tiny

model for tomato recognition. Their enhancements included a

refined backbone design, reducing computational complexity

while augmenting feature extraction. A simplified CSP (Cross-

Stage Partial Connections) - Spatial Pyramid Pooling was

incorporated to improve the receptive field of the backbone. This

modification aimed to enhance the ability of the model to capture

information from a wider area of the input data. The CARAFE

module in the neck network further improved the quality of the

feature map. Their method produced an mAP of 82.8%.

Despite extensive research in the fruit recognition domain

within natural conditions, it is essential to improve the detection

accuracy and robustness to fulfill the requirements of fruit

detection. This study introduced a precise and resilient tomato

detection methodology grounded in the YOLOv5s model to address

these persisting challenges. Figure 1 provides a concise overview of

the proposed SBCS-YOLOv5s. The pivotal modifications of this

research are outlined as follows:
Fron
1. “C3SE Integration”: By amalgamating the SE attention

module and the C3 module into a cohesive C3SE module,

the conventional C3 module within the YOLOv5s

backbone network is upgraded. This integration

augments the capacity of the model to provide useful

information, bolstering feature extraction.

2. “Bi-directional Feature Pyramid Network Integration”: The

original multi-scale PANet feature fusion network is

replaced with an efficient weighted Bi-directional Feature

Pyramid Network. This alteration enhances feature
tiers in Plant Science 03
propagation and reuse, thereby refining overall

feature representation.

3. “CARAFE Module Adoption”: Positioned within the

network’s neck, the CARAFE module is harnessed to

generate an improved feature map enriched with more

intricate semantic information.

4. “Soft-NMS Algorithm Implementation”: A noteworthy

shift occurs in the detection post-processing stage, where

the conventional NMS algorithm yields to the enhanced

Soft-NMS algorithm. This transition amplifies the capacity

to identify overlapping and occluded fruit.

5. “Performance Evaluation”: Rigorous evaluation using

tomato datasets unveils that the proposed SBCS-

YOLOv5s model surpasses the original YOLOv5s model

and other contemporary update object-detection methods

in terms of accuracy.
Focusing on these goals, the study aimed to contribute to

advancing tomato harvesting robots by developing an accurate

tomato detection model that outperforms existing models in

terms of accuracy and efficiency.
2 Theoretical background

2.1 YOLOv5 network

The YOLOv5s model (Jocher et al., 2020), pioneered by

Ultralytics LLC in 2020, is composed of three core components:

backbone, neck, and head networks. This study targets the

YOLOv5s variant because of its superior performance compared

to other iterations within the YOLO series. The backbone network

employs a series of convolutional operations and fusion steps to

extract the feature maps from input images. Subsequently, the neck

network integrates feature maps of diverse dimensions, obtained

from the backbone network. This amalgamation yields an

upgraded, innovative feature map that effectively preserves

contextual information, mitigating information loss. It is

important to highlight that this process leverage the FPN (Feature

Pyramid Network) structure (Lin et al., 2017) to facilitate the

propagation of robust semantic features from higher-level feature

maps to their lower-level counterparts. Simultaneously, the PANet
FIGURE 1

Overview of the SBCS-YOLOv5s.
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(Path Aggregation Network) architecture (Liu et al., 2018) facilitates

the transmission of robust localization features from lower-level

feature maps to their higher-level counterparts. The head network,

the final segment of the model, consists of three layers that generate

output feature maps at distinct scales.

The CBS (Convolution, batch normalization, and SiLU

activation function) is a conventional convolution layer in the

YOLOv5s network. It encompasses a sequence of operations,

including convolution, batch normalization (Ioffe and Szegedy,

2015), and the SiLU activation function (Elfwing et al., 2018).

YOLOv5 originally employed the BottleneckCSP module instead

of the C3 module for feature extraction. The BottleneckCSP module

combines the concepts of Bottleneck (He et al., 2016) and CSP

(Cross-Stage Partial connections) (Wang et al., 2020a). It involves

three successive convolutional kernel operations, with the output of

the first being processed through two more convolutional kernels.

This sequence culminates in the fusion of unprocessed and

convolved features. The primary objective of the BottleneckCSP

module is to deepen the model.

The CSP module introduced by Wang et al. (2020a) splits the

input into two segments; one undergoes processing via a block (like

Bottleneck), while the other proceeds directly through a 1×1

convolutional layer. These two streams are then recombined. The

C3 module supplants a 1×1 convolutional layer within the

BottleneckCSP module, simplifying the network architecture to

enable the extraction of feature maps and minimize the

computation complexity. The C3 module comprises two

branches, each involving a convolution operation that reduces the

feature map channel count by half. The output from these two

branches is concatenated using the Bottleneck module, followed by

a convolutional layer within the second branch. These processes

tightly integrate the output feature maps from both branches, with a

final convolutional layer generating the output feature map of the

module. Furthermore, SPPF (Spatial Pyramid Pooling Fusion)

augments the ability of the backbone to express features. This

module employs a sequence of three convolutions with identical

kernels, focusing on the amalgamation of features from

various resolutions.
2.2 Content-aware reassembly of features

The YOLOv5 model uses a nearest neighbor interpolation

method for its up-sampling process, utilizing the same kernel for

up-sampling across the feature map. Nevertheless, this approach

does not leverage the semantic information in the feature map

during the up-sampling process, resulting in a significant loss of

features. This study integrates the CARAFE module (Wang et al.,

2019), a novel technique, to address these limitations. The CARAFE

module consists of two main components: a content-aware

reassembly module and a kernel prediction module. It anticipates

and assembles the recombined kernel, reconstructing the features

within predetermined local regions at each point while using the

underlying content details. The CARAFE module dynamically

adjusts and optimizes the reassembled kernels at distinct points
Frontiers in Plant Science 04
based on the content information, offering superior performance

compared to alternative up-sampling methods like interpolation.

For every predefined location, the utilization of a reassembly kernel

becomes imperative, with the kernel size denoted as kup. The

reassembly procedure is illustrated using (Equation 1):

Ol0 = o
r

n=−r
o
r

m=−r
W l

0
(n,m)

· I(i+n,j+m) (1)

where O and I represent the output and input, respectively. W l0

denotes the location-wise kernel associated with each location   l
0

based on the input. l0 signifies the neighboring location of l, and

r =
kup
2 .

The CARAFE approach significantly enhances the semantic

richness of the reassembled feature maps compared to the nearest

neighbor interpolation up-sampling technique. This approach is

achieved by strategically emphasizing crucial points within localized

regions. In scenarios where tomatoes overlap or are densely packed,

CARAFE’s ability to enhance spatial detail helps the model

distinguish between closely spaced fruits, potentially reducing the

number of merge detections. It also helps the model to improve

localization accuracy in tomato detection. In addition, CARAFE

encompasses a wider scope of observation, adept content handling,

and its lightweight design, culminating in expedited computations.

Figure 2 shows the architectural representation of CARAFE.
3 Materials and methods

3.1 Image acquisition

Images of tomatoes were taken from December 2017 to

November2019 in the greenhouses of a tomato production base,

located in Shouguang city, China, with a digital camera (DSC-

W170, Sony, Tokyo, Japan) at a resolution of 3648×2056 pixels. The

camera was equipped with a 5×Carl Zeiss Vario-Tessar precision

zoom lens. The distance between the camera and the target was

from 500 mm to 1000 mm. Nine hundred and sixty-six images were

captured under natural daylight (sunny and cloudy days) with

different conditions such as shading, sunlight, occlusions, and

overlaps. The training set had 725 images, while the test set

contained 241 images. The scale of tomatoes in the images varies

greatly, ranging from 200 to 1500 pixels in diameter.
3.2 Image augmentation

This study used data augmentation to counteract potential

issues, such as over-fitting or non-convergence, that could arise

during training. The augmentation of images was accomplished by

applying diverse techniques, such as brightness transformation,

blur, horizontal flip, noise, and rotation. These methods were

employed to enhance the resilience of the model against noise

and its ability to remain unaffected by variations in camera

positioning. In particular, introducing a Random Gaussian blur

makes the model more resistant to camera blur, with a threshold of
frontiersin.org
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25 pixels for maximum blur. In addition, the incorporation of

horizontal and vertical flips played a role in fortifying the capacity of

the model to perform consistently regardless of the orientation of

the subject. A visual representation of data enhancement techniques

can be observed in Figure 3.
3.3 The SBCS-YOLOv5s architecture

The YOLOv5 model represents a single-stage object detection

algorithm that introduces substantial enhancements over other

YOLO models. On the other hand, the challenge of achieving

high accuracy and fast speed persists in the tomato detection case,

primarily because of the intricacies of the natural environment,

such as occlusions and overlapping. This study proposes an SBCS-

YOLOv5s model to address this issue, with the incorporation of SE,

BiFPN, CARAFE, Soft-NMS into the YOLOv5s. The first module of
Frontiers in Plant Science 05
this approach is used for feature extraction, merging the SE module

(Hu et al., 2018) and the C3 module of the YOLOv5s model. This

fusion enhances the network focus on useful information, refines

the feature extraction process, and improves the model’s robustness

to variations in environmental conditions. The neck network

integrates BiFPN (Tan et al., 2020) and CARAFE modules (Wang

et al., 2019) into YOLOv5s, enriching features with more profound

semantic information. The conventional NMS algorithm (Hosang

et al., 2017) used in YOLOv5s was substituted with the Soft-NMS

algorithm (Bodla et al., 2017) to make the network more efficient in

detecting occluded and overlapped fruits. Additional intricacies of

this approach are elaborated upon in subsequent sections. Figure 4

presents the architecture of SBCS-YOLOv5s.

3.3.1 The modified backbone network
The SE attention module (Hu et al., 2018) in Figure 5A is fused

with the C3 module structure into an improved C3SE module. The
A B

D E

C

FIGURE 3

Examples of data enhancement techniques. (A) Input image, (B, C) varied exposure, (D) Noise (salt and pepper), and (E) Horizontal Flip.
FIGURE 2

Overall architecture of the CARAFE module.
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SE module solves the issue of feature maps containing informative

and less relevant channels. The re-calibration process empowers the

network to prioritize informative channels while suppressing the

less useful ones. In addition, the SE module’s ability to adaptively

re-calibrate features helps to improve the robustness of the model to

variations in illumination and environmental conditions. It also

helps to reduce over-fitting, which is essential for tomato detection

to accurately identify the boundaries of individual tomatoes in an

image. Figure 5B presents the structure of the C3SE module. The

weight of each channel is allocated using the interdependence of the

feature channels to facilitate the neural network to focus on

significant feature information and to minimize the impact of

feature redundancy. The SE attention module comprises three key

operations: squeeze, excitation, and scale.

The squeeze operation, also called compression, involves

applying a global average pooling operation to each channel of

the feature map. This compresses the spatial dimensions of the

feature map, converting its size into multiple features while

maintaining the overall channel dimension. For example, if the

input feature map holds a size of H×W×C, and V = ½v1, v2,  …,   vc�
is an example input set, the transformation of the squeeze operation

can be expressed using (Equation 2).
Frontiers in Plant Science 06
Fsq(Vc) =
1

H �WoH
i=1oW

j=1Vc(i, j) (2)

where c ∈ C, and C denotes the number of feature channels,

while W signifies the feature map width; H corresponds to the

height of the feature map; Fsq denotes the specific squeeze operation

being discussed.

The excitation operation consists of two primary components: a

fully connected layer and a sigmoid activation function. The fully

connected layer incorporates comprehensive information from all

input features. Subsequently, the sigmoid function transforms the

input into a range confined within [0,1]. This process is visually

represented by (Equation 3).

Fex(Fsq,B) = s(B1 · d (B2 · Fsq) (3)

where s symbolizes the sigmoid activation function, d signifies the

ReLU activation function, and Fex denotes the excitation operation. B1
and B2 denote the weights of the fully connected layer, respectively.

Finally, the scale operation combines or multiplies the input

channel weight with the weight derived from the channel feature of

the two preceding operations. (Equation 4) shows the rescaling

operation:
A B

FIGURE 5

Original SE module and improved C3SE module architecture. (A) SE module architecture, (B) C3SE module architecture.
FIGURE 4

The architecture of SBCS-YOLOv5s.
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Fscale(Vc, Sc) = ScVc (4)

where Fscale(Vc, Sc) refers to channel-wise multiplication that

takes place between Sc and Vc.

3.3.2 The modified neck network
The FPN+PANet network was replaced in the YOLOV5s neck

with the weighted BiFPN in this study. The rationale stems from

large-scale objects possessing many pixels, whereas small objects

have few. The features of large objects can be easily maintained in

the convolution process, while the features of the smaller ones can

be easily ignored. The YOLOv3 model introduced the FPN network

structure (Lin et al., 2017), emphasizing the down-sampling process

of semantic information extraction. Based on this, the YOLOv5

incorporates PANet (Liu et al., 2018) to aggregate image features by

incorporating secondary bottom-up fusion, as shown in Figure 6A.

This approach integrates accurate low-level localization signals to

enrich the entire feature hierarchy and facilitate the flow of

information. On the other hand, PANet is characterized by

simple two-way fusion, and their contributions to the output

features often remain unequal because of the varying input

resolutions. Furthermore, feature fusion of PANet involves a

direct addition of distinct input features, leading to unbalanced

output features and complicating computational processes.

The BiFPN, introduced by Tan et al. (2020), is an object detection

model module. Its main strength lies in effectively fusing information

within a deep learning network, ensuring efficiency and accuracy. The

problem of correctly combining multi-scale features from multiple

layers of a convolutional neural network are solved to improve the

detection accuracy of objects at various scales. The bottom-up and top-

down paths are used to construct a feature pyramid that captures fine-

grained features. The BiFPN combines the feature maps from the

bottom-up and top-down paths. Furthermore, to avoid all featuremaps

contributing equally, the BiFPN provides learnable weights for each

input feature map, allowing the network to assign varied priorities to

different scales and resolutions. The notable enhancement brought by

BiFPN is the introduction of a bi-directional connection between

neighboring levels of the network. This augmentation substantially

improves the flow of information and gradient propagation during the
Frontiers in Plant Science 07
training process. It also improves to tomato localization, helping the

model to capture details at different scales and make more accurate

predictions of tomato locations. In addition, BiFPN is designed to be

computationally efficient, making it well suited for real-time detection.

Figure 6B shows the BiFPN architecture. (Equation 5) shows the fast

normalized fusion between the feature maps from the bottom-up and

top-down paths.

Ptd
6 = Conv( w1 ·P

in
6 +w2 ·Resize(P

in
7 )

w1+w2+e

Pout
6 = Conv( w

0
1 ·P

in
6 +w

0
2 ·P

td
6 +w

0
3 ·Resize(P

out
5 )

w0
1+w

0
2+w

0
3+e

8><
>: (5)

where the intermediate feature situated at Level 6 along the top-

down pathway is Ptd
6 , while the resulting feature at Level 6 stemming

from the bottom-up pathway is Pout
6 , Conv and Resize correspond to

convolution and sampling operations, respectively. w and ϵ

represent the weight and a small pre-set value to avoid numerical

instability, respectively. Usually, this value was set to 0.0001.

BiFPN improves the detection accuracy compared to the PANet

used in the YOLOv5s model. Nevertheless, the BiFPN employs a

nearest neighbor interpolation method for the up-sampling of

feature maps. Using this approach could lead to a small receptive

field and make the network focus only on sub-pixel spaces, resulting

in the loss of rich semantic information. In this study, the CARAFE

module was introduced to the BiFPN to tackle this problem. This

integration improved feature maps with rich information and high

resolutions. Section 2.2 describes the CARAFE module in detail.
3.3.3 Soft-NMS (non-maximum
suppression) algorithm

The soft-NMS algorithm (Bodla et al., 2017) is a modified version

of the conventional NMS algorithm (Hosang et al., 2017) used by the

YOLOv5 framework. The fundamental principle behind the NMS

algorithm involves selecting the bounding box with the highest

confidence score. It suppresses the other bounding boxes with

significant overlap with the selected box, leading to the missed

detection of overlapping fruits. Moreover, the NMS algorithm does

not perform optimally when dealing with different scales. Equation 6

shows the NMS algorithm:
A B

FIGURE 6

Architectures of PANet and BiFPN. (A) PANet architecture, (B) BiFPN architecture.
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Ŝ i =
Ŝ i,   IoU   (M, b̂ i) < Nt

0,   IoU   (M, b̂ i)   ≥  Nt

(
(6)

where b̂ i and Ŝ i denote the ith predictor and its score,

respectively. Nt is the pre-set threshold; M denotes the candidate

box having the highest score; IoU   (M, b̂ i) is the overlap region

between M and b̂ i.

The objective of the Soft-NMS algorithm is to solve the

limitations of the traditional NMS algorithm approach. It is also

designed to be more tolerant to overlapping objects. This is achieved

using a softening function that progressively decreases the scores of

bounding boxes overlapping with the one possessing the highest

score. The primary goal is to reduce the severe suppression of

surrounding boxes that might be slightly less confident but still

contain useful information. This modification seeks to enhance the

detection accuracy and improve the handling of cases involving

overlapping fruits within the final detection results. And it helps

maintain a consistent ranking of bounding box scores, even when

there is overlap. The Soft-NMS algorithm is outlined in (Equation 7):

Ŝ i =
Ŝ i,               IoU   (M, b̂ i) < Nt

Ŝ ie
−
IoU(M,b̂ i )

2

s ,   IoU   (M, b̂ i)   ≥  Nt

8<
: (7)

where  s represents the hyperparameter of the penalty function.

When the   IoU   (M, b̂ i) exceeds the pre-defined threshold, the

prediction frame confidence score is reduced systematically instead

of being set to zero. As a result, the detection accuracy of overlapping

and occluded fruits can be improved.

3.3.4 Loss function
The loss function used in this study is expressed as (Equation 8),

which encompasses the regression error of bounding coordinates,

the confidence error of the bounding box, and the classification

error of object category.

L = Lossreg + Lossconf + Losscls (8)

In this study, theboundingboxregression loss incorporatestheuseof

CIoU (Complete IoU) as in (Equation 8.a). It could accurately represent

the gap between the prediction and annotation frames, enhancing the

network model during training. It also considers crucial factors, such as

the overlapping area (expressed in Equation 8.b), central point distance,

and aspect ratio (expressed in Equation 8.c) between b and bɡt .

CIoU = 1 − IoU +
d2   (b̂ , bɡt)

c2
+ av (8:a)

with

IoU =  
b̂ ∩  bɡt

b̂ ∪  bɡt
(8:b)

and

v =
4
p2 (tan

−1 wɡt

hɡt
− tan−1

w
h
)2,  a =

v
(1 − IoU) + v

(8:c)

where b and bɡt represent the predicted and ground truth

bounding boxes, respectively. d signifies the distance between the
Frontiers in Plant Science 08
predicted center point and the true center point; c is the diagonal

length of the enclosing box covering b and bɡt; a and v are the

positive trade-off and aspect ratio parameters, respectively.

Object classification loss is expressed as (Equation 8.e), wherein

the process is initiated by calculating the confidence C of the cell

grid as in Equation 8.d):

C = P(object)� IoU(b, bɡt) (8:d)

then,

Lossconf =o
s�s

i=1
o
NB

j=1
li,j½Ci · log(~Ci)log(1 − Ci)�

         −o
s�s

i=i
o
NB

j=1
(1 − li,j)½Ci · log~Ci + (1 − Ci)log(1 − ~Ci)

(8:e)

with li,j expresses in (Equation 8.f):

li,j =

1,   if   part   of   j − th   bounding   box   is   in   the   i − th   grid

0,   otherwise

8>><
>>:

(8:f)

where s×s denotes the size of the grid cell; NB stands for the

number of bounding boxes; ~Ci represents the confidence obtained

from the prediction box; Ci signifies the confidence threshold.
3.4 Experimental setup

The experiments of this research were conducted using an Intel

i5 64-bit quad-core CPUs operating at a frequency of 3.30 GHz

(Santa Clara, CA, USA). The system had 16 GB of RAM and an

NVIDIA GeForce GTX 1070Ti GPU with 8 GB memory. The

chosen model framework was PyTorch, with CUDA 11.1 and

Python 3.8.10 for implementation. Table 1 lists some hyper

parameters used in the experiments.
TABLE 1 Configuration of certain hyper-parameters.

Parameters Value

Number of epochs 400

Learning rate 0.001

Optimizer weight decay 94.75

STD momentum 96.3

Warm-up initial momentum 0.8

Batch size 8

Box loss gain 0.05

Cls (classification loss gain) 0.5

Cls_pw (cls BCE loss positive weight) 1.0

Obj (object loss gain) 1.0

Anchor_t (anchor multiple threshold) 4.0
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The criteria used for assessing the performance of fruit detection

encompassed precision, recall, mean average precision (mAP), and F1
score (Padilla et al., 2020). The metrics are defined in (Equations 9–12):

R =
True   Positive

True   Positive + False  Negatiive
(9)

P =
True   Positive

True   Positive + False   Positive
(10)

where R and P are the recall and precision, respectively. Using

mAP is a valuable approach to assess the model performance across

different confidence levels.

mAP =
1
Ncls

o
Ncls

a=1  
APa (11)

with AP expresses in (Equation 11.a):

AP =o
Q

q
(rq+1 − rq)max

~r≥rq+1
p(~r) (11:a)

where p(~r) represents the calculated precision at a given recall

value (~r), whileNcls is the total number of classes.

F1 =
2� R� P
R + P

(12)
4 Results and discussions

4.1 Ablation study

The first step in this study was to determine which attention

mechanism (CBAM (Woo et al., 2018), ECA (Wang et al., 2020b), CA
Frontiers in Plant Science 09
(Hou et al., 2021), SE (Hu et al., 2018)) works better on the tomato

datasets after fusing the original C3 module network. From Table 2, we

can see that integrating the SE attention module with the C3 module

led to a notable outcome. The mean average precision with an IoU of

0.5 to 0.95 reached 85.1%, which is the best result.

Since the SE attention module relies on modeling channel-wise

relationships and adaptive re-calibration of feature maps to capture

important information, it helps to improve feature extraction of the

model. The fusion of the SE attention module with the C3 module was

implemented within the backbone network. Furthermore, the

integration of BiFPN, CARAFE, and Soft-NMS was used in the neck

to improve the detection capabilities of YOLOv5s. An ablation study

was carried out to evaluate the effectiveness of each component.

Integrating the SE attention module with the C3 module resulted

in a 0.9% increase in the mean average precision with an IoU of 0.5 to

0.95, as shown in Table 3. This enhancement underscores the efficacy

of the SE attention module to channel the model towards useful

information. Subsequently, a further increase of 0.6% in mAP was

achieved by replacing PANet with BiFPN. This is because the BiFPN

assists the model in determining useful weights for comprehensive

fusion of high-level and low-level features, thereby improving detection

performance. Discernible performance improvements became evident

after incorporating the CARAFE module as an up-sampling operator

within PANet and BiFPN. This is due to the fact that CARAFE

enhances spatial details and improves feature map resolution better

than the original up-sampling method. On the other hand, the most

remarkable results emerged when the Soft-NMS algorithm was applied

to the BiFPN+CARAFE configuration, showcasing 3.5% advancement

over the original YOLOv5s model. This proves the advantage of the

continuous weighting scheme of Soft-NMS. This sequence of

observations indicates a substantial enhancement in detection

performance through different modifications.
TABLE 2 Ablation analysis of different attention mechanisms.

C3 CBAM ECA CA SE mAP (0.5:0.95) (%)

Modifications

✓ 84.2

✓ ✓ 83.7

✓ ✓ 84.9

✓ ✓ 84.4

✓ ✓ 85.1
TABLE 3 Ablation analysis of different components.

C3SE PANet BiFPN CARAFE Soft_NMS mAP (0.5:0.95) (%)

Modifications

✓ 84.2

✓ ✓ 85.1

✓ ✓ 85.7

✓ ✓ ✓ 86.7

✓ ✓ ✓ 87.2

✓ ✓ ✓ ✓ 87.7
frontiersin.org

https://doi.org/10.3389/fpls.2023.1292766
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Touko Mbouembe et al. 10.3389/fpls.2023.1292766
4.2 Feature map visualization

Visualizations were performed to compare the improved model

variants with the original YOLOv5s. Figure 7A presents an input

image with tomatoes annotated for improved visibility. Figures 7B,

C show the difference between the C3 and C3SE modules,

respectively. In particular, Figure 7C highlights finer details that

are more discernible. This observation underscores the role of the

SE module in steering the backbone network towards useful

information. Figures 7D, E represent the original neck of

YOLOv5s and the modified neck used in SBCS-YOLov5s,

respectively. Figure 7E shows an improved feature map with

heightened resolution after incorporating the BiFPN and

CARAFE modules. These enhancements facilitate efficient context

information aggregation and seamless fusion within the network.

Every modification produced superior features with high

resolution compared to those in the original model (Figure 7). This

visual evidence substantiates that SBCS-YOLOv5s excels in accuracy,

resilience, and efficiency when compared to the original model.
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4.3 Comparison of the SBCS-YOLOv5s
with other detection algorithms

The performance of SBCS-YOLOv5s was compared with

several other object detection models. These models included

Faster-RCNN (Ren et al., 2015), Dynamic-RCNN (Zhang et al.,

2020), YOLOv3 (Redmon and Farhadi, 2018), YOLOv3-tiny

(Redmon and Farhadi, 2018), YOLOv4 (Boschkovskiy et al.,

2020), YOLOv4-tiny (Boschkovskiy et al., 2020), YOLOv7-tiny

(Wang et al., 2022), and YOLOv5s (Jocher et al., 2020).

Themean average precision with IoU of 0.5 to 0.95 was 3.8%, 9.7%,

5.8%, 16.4%, 4.6%, 9.3%, 4.5%, and 3.5% higher than those of Faster-

RCNN, ynamic RCNN, YOLOv3, YOLOv3-tiny, YOLOv4, YOLOv4-

tiny, YOLOv7-tiny, and YOLOv5s, respectively (Table 4).

Furthermore, the detection time achieved 2.6 ms per image, fulfilling

the real-time detection criteria. Moreover, the precision of the proposed

model improved by 0.3%, 1.5%, 2.5%, 1.7%, 1.4%, 1.5%, 0.6%, and 1.4%

compared to the Faster RCNN, Dynamic RCNN, YOLOv3, YOLOv3-

tiny, YOLOv4, YOLOv4-tiny, YOLOv7-tiny, and YOLOv5s,
A B

D E

C

FIGURE 7

(A) Annotated input image, (B) the feature of the C3 module of YOLOv5s, (C) feature of the C3SE module of SBCS-YOLOv5s, (D) feature of the
original neck of YOLOv5s, and (E) feature of neck of SBCS-YOLOv5s.
TABLE 4 Comparison of the different models.

Model Precision (%) Recall (%) F1 (%) mAP (0.5) (%) mAP (0.5:0.95) (%) Time (ms)

Faster-RCNN
(VGG-16)

96.5 94.8 95.6 97.8 83.9 3.9

Dynamic RCNN 95.3 93.2 94.2 96.6 78.0 2.4

YOLOv3 94.3 92.4 93.4 97.1 81.8 4.8

YOLOv3-tiny 95.1 91.9 93.4 97.4 71.3 3.8

YOLOv4 95.4 95.3 95.3 97.5 83.1 4.3

YOLOv4-tiny 95.3 94.0 94.6 98.0 78.4 3.5

YOLOv7-tiny 96.2 94.2 95.1 98.2 83.2 4.3

YOLOv5s* 95.4 94.5 95.4 98.2 84.2 4.1

SBCS-YOLOv5s 96.8 97.3 97.04 98.7 87.7 2.6
*YOLOv5s v6. 1 version is used in this study.
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respectively. The F1 score and mAP with an IoU of 0.5 increased by

1.64% and 0.5%, respectively, compared to the original YOLOv5s

model. Hence, the performance of SCBS-YOLOv5s was improved

compared to other object detection networks. Importantly, the

experimental results revealed the efficient real-time detection

capability of SCBS-YOLOv5s in accurately identifying tomatoes

within their natural environmental context.

The detection performance of the improved YOLOv5s

surpassed that of alternative models while demonstrating greater

efficiency (Figure 8). The mean average precision with an IoU of 0.5

to 0.95 exhibited a notable 3.5% improvement compared to the

original YOLOv5s model. Furthermore, the processing time for

detecting each image was decreased by 1.5ms. These results

collectively signify the improved model prowess in achieving

improved accuracy, compactness, and efficiency when tasked with

fruit detection in a natural environment.
4.4 Performance of the improved model
under different conditions

In a natural environment, tomatoes are exposed to different lighting

conditions because of the uneven illumination. Moreover, they can

become obscured by leaves or branches and might overlap. The

performance of the improved model was assessed across diverse

scenarios. Table 5 shows how the tomatoes were classified into sunshine
Frontiers in Plant Science 11
andshadecasesregardingillumination.Withinthetestdataset, therewere

425 tomatoes under shaded conditions and 487 tomatoes under sunlight

conditions. In terms of obscured and overlapped severity, the tomatoes

were classified asmild and significant occlusion, as delineated in Table 5.

The latter pertains to situations where tomatoes are obstructed by leaves,

branches, or other tomatoes by over 50%.

The correct detection rate for tomatoes under sunlight

conditions was 97.2%, while the rate was 97.4% when tomatoes

were in shaded conditions (Table 5). False identification was 3.1%

for sunlight and 3.3% for shade, respectively. Approximately 97.7%

of the tomatoes were detected accurately when they exhibited mild

occlusion, with a correctness rate of 96.4% in the case of severe

occlusion (Table 5). The rates of missed identification were 2.3%

and 3.6% for mild and severe occlusions, respectively. Figure 9

presents some examples of detection outcome instances under

various conditions. The results revealed the robustness of the

improved model in effectively managing variations in

illumination and situations involving overlapping fruits.
4.5 Qualitative analysis between SBCS-
YOLOv5s and the original YOLOv5s model

Figure 10 shows some prediction results from the SBCS-

YOLOv5s and the original YOLOv5s model.

As shown in Figure 10, the detection performance of SBCS-

YOLOv5s was superior to the original YOLOv5s model. In

particular, Figure 10G visually demonstrates the improved model

focus on more useful information and retain the features for small

tomatoes. Moreover, the original YOLOv5s model returned some

false negatives and false positives, as shown in Figures 10E, F.
5 Conclusions and future work

This paper introduced an accurate and efficient tomato

detection solution named SBCS-YOLOv5s, which builds upon the

YOLOv5s framework. The accuracy and efficiency of the model

were improved by substituting the original C3 module within

YOLOv5s with a C3SE module, combining the SE attention

module with the C3 module. This change amplified the feature

extraction capabilities. Furthermore, the PANet in the neck of the

original model was replaced with a weighted Bi-directional Feature

Pyramid Network (BiFPN), enhancing the adaptability of the

detector to objects of varying scales by fusing high-level and
FIGURE 8

Detection performance of different models (accuracy vs.
inference time).
TABLE 5 Performance of the improved model under different conditions.

Conditions Tomato Count
Correctly Identified Falsely Identified Missed

Amount Rate (%) Amount Rate (%) Amount Rate (%)

Sunlight 487 473 97.2 15 3.1 14 2.8

Shading 425 414 97.4 14 3.3 11 2.6

Mild occlusion 609 595 97.7 17 2.8 14 2.3

Severe occlusion 303 292 96.4 12 3.9 11 3.6
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A B

D E F

G IH

J K L

C

FIGURE 9

Some examples of tomato detection results under different conditions. (A–C) sunlight cases, and (D–F) shade cases, (G–I) slight occlusions, and (J–
L) severe occlusions.
A B

D E F

G IH

C

FIGURE 10

Some detection results from the two models. (A–C) ground Truth, (D–F) prediction images from the YOLOv5s model, and (G–I) prediction images
from SBCS-YOLOv5s.
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bottom-level features at high resolution. Furthermore, the

traditional up-sampling operator within the BiFPN structure was

substituted with the CARAFE module to yield more refined

semantic information. Finally, the conventional NMS algorithm

was replaced with the Soft-NMS algorithm to improve the detection

accuracy of overlapped and occluded fruits.

A thorough experimentation was carried out to validate the

performance of SBCS-YOLOv5s. An ablation study was

instrumental in substantiating the efficacy of each modification.

The findings of the experiment showed that the mAP with an IoU of

0.5 to 0.95 had 3.8%, 9.7%, 5.8%, 16.4%, 4.6%, 9.3%, 4.5%, and 3.5%

improvements compared to other object detection algorithms,

reaching 2.6ms per image in terms of detection time.

Furthermore, the experiments underscored the robustness of

SBCS-YOLOv5s because it effectively detected tomatoes across

diverse scenarios involving varying lighting and occlusion conditions.

Despite the excellent performance of the improved model, there

is room for enhancing the detection performance. In the future

study, the explicit incorporation of contextual information will be

explored to refine the detection accuracy. Moreover, we will

consider incorporating information about tomato maturity to

enable differentiation among tomatoes at distinct growth stages

based on SBCS-YOLOv5s presented in this study.
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