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models for tomato biotic and
abiotic stress classification
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Manoj Choudhary1,2,3, Sruthi Sentil 1, Jeffrey B. Jones1

and Mathews L. Paret1,2*

1North Florida Research and Education Center, University of Florida, Quincy, FL, United States,
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Plant disease classification is quite complex and, in most cases, requires

trained plant pathologists and sophisticated labs to accurately determine the

cause. Our group for the first time used microscopic images (×30) of tomato

plant diseases, for which representative plant samples were diagnostically

validated to classify disease symptoms using non-coding deep learning

platforms (NCDL). The mean F1 scores (SD) of the NCDL platforms were

98.5 (1.6) for Amazon Rekognition Custom Label, 93.9 (2.5) for Clarifai, 91.6

(3.9) for Teachable Machine, 95.0 (1.9) for Google AutoML Vision, and 97.5

(2.7) for Microsoft Azure Custom Vision. The accuracy of the NCDL platform

for Amazon Rekognition Custom Label was 99.8% (0.2), for Clarifai 98.7%

(0.5), for Teachable Machine 98.3% (0.4), for Google AutoML Vision 98.9%

(0.6), and for Apple CreateML 87.3 (4.3). Upon external validation, the model’s

accuracy of the tested NCDL platforms dropped no more than 7%. The

potential future use for these models includes the development of mobile-

and web-based applications for the classification of plant diseases and

integration with a disease management advisory system. The NCDL models

also have the potential to improve the early triage of symptomatic plant

samples into classes that may save time in diagnostic lab sample processing.
KEYWORDS

diseases, code-free models, machine learning, tomato, deep learning, biotic stress,
abiotic stress, microscopic images
Introduction

Plants contribute up to 80% of food for human consumption and feed for livestock.

Numerous pests and diseases cause approximately 20%–40% losses in crop yield, with

diseases resulting in $220 billion in losses annually (FAO, 2020). In 2021, tomato was a
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major vegetable crop grown worldwide with an annual production of

189 million tons from 5.2 million hectares (FAO, 2022). Tomato is

affected by almost 200 diseases, and these frequently create bottlenecks

for optimum tomato production (Jones et al., 2014). The accurate

identification of disease symptoms is the first step in the management

of plant diseases. In many cases, incorrect diagnosis of plant diseases

leads to mismanagement and economic losses (Riley et al., 2002).

Currently, disease identification is done by a combination of visual

observations and lab-based techniques (e.g., microscopy, culturing,

antibody, and molecular methods). This process can be time-

consuming and needs highly trained personnel, who are available in

developed countries while limited or not present in developing and

less-developed countries. Added to this challenge, some plant diseases

can spread like “wildfire” and can destroy a crop in days (Fry et al.,

2013; Chen, 2020). Thus, there is a need for faster, cheaper, and reliable

disease classification approaches to identify potential causes of disease

and selection of management strategies.

Deep learning is a subfield of artificial intelligence (AI). Deep

learning refers to the use of artificial neural network architectures that

contain a substantial number of internal processing layers to provide

processed output from raw data (Lecun et al., 2015). Deep learning

tools are used in a wide variety of tasks in agriculture (e.g., disease

classification, yield estimation and forecasting, crop genomics, and

modeling). In the last decade, several researchers used machine

learning-based tools for the classification of plant diseases

(Mohanty et al., 2016; Sladojevic et al., 2016; Amara et al., 2017;

Brahimi et al., 2017; Ferentinos, 2018; Lee et al., 2020; Liu et al., 2021).

For tomato, researchers used various deep learning models like

AlexNet, GoogleNet, Inception V3, Residual Network (ResNet) 18,

and ResNet 50 (Tran et al., 2019; Maeda-Gutiérrez et al., 2020; Chong

et al., 2023); Yolo V3 convolutional neural network (Liu and Wang,

2020); or conditional generative adversarial network (Abbas et al.,

2021). Many of these models had long training times (up to 2 weeks)

with modest datasets (Picon et al., 2019) and low accuracy with test

datasets (Liu et al., 2021). In addition, the models had a lower

performance matrix on external field captured images and required

resources including 1) high-performance computer with a costly

graphic processing unit (GPU) or access to cloud computing and 2)

expertise with skills in deep learning.

Researchers working directly with farmers have limited

resources and lack robust AI talent pool, especially in developing

and underdeveloped countries (Gwagwa et al., 2021). One potential

solution to these challenges is to use no coding or minimum coding

deep learning models called automated machine learning. This is a

process of applying machine learning models to real-world

problems by streamlining raw data processing, feature, and model

selection and hyperparameter optimization with minimal human

inferences (Kanti Karmaker et al., 2021). Recently automated

machine learning approaches were tested in the medical field for

the classification of images of the eye (Korot et al., 2021), video of

cataract (Touma et al., 2022), and carotid injury (Unadkat et al.,

2022). Automated machine learning facilitates users to build state-

of-the-art models without writing codes, making them accessible to

a wide range of individuals without coding experience.

The accurate classification of diseases is extremely challenging as

most disease symptoms are randomly distributed within plant parts
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(Riley et al., 2002). Disease symptoms can vary with cultivar, crop

stage, environment, and other biotic and abiotic factors necessitating

that the image databases used in building models are updated

regularly with new sets of images. Deep learning models already

used in plant disease classification have the same image database such

as PlantVillage or Kaggle and have led to non-ideal robustness and

overfitting, resulting in a reduction in testing accuracy (Mohanty

et al., 2016; Darwish et al., 2020). In some cases, classification

performance on external data evaluation was reduced below 50%

(Mohanty et al., 2016; Ferentinos, 2018). AlexNet and GoogLeNet

deep learningmodel performance was reduced to 31% from 99%with

the PlantVillage database (Mohanty et al., 2016). Deep learning VGG

model success rate on testing with real field images reduced to 33.3%

on laboratory-tested models despite a large dataset of over 80,000

images used for training of the models (Ferentinos, 2018).

Most of the existing database images are taken using a mobile

phone or camera. These macroscopic images capture more

background features (pixels) beyond the focus on the diseased

section of the plant parts. Lab disease diagnosis is based on both

visual symptom examination, using a stereoscopic microscope often

followed by a molecular diagnostic assay (Riley et al., 2002).

Stereoscopic microscopes provide ×25–70 magnification, which

helps in better visualization of fungal symptoms and signs like

sclerotia, mycelial growth, and bacterial oozing, all of which can

help in the diagnosis of plant diseases. Images taken with a higher

magnification than normal mobile phone cameras may be a potential

solution to improve the accuracy of the models in field conditions as

the magnified view of the disease symptoms could help in better

training with little or no noise from the background features.

Most deep learning models are data-centric and require a well-

curated dataset (Kanti Karmaker et al., 2021). Based on the

limitations in the accuracy of models for field disease classification

and the potential for using non-coding deep learning (NCDL)

platforms to improve a better system of classification, this present

study was undertaken. We built a new tomato image database that

consisted of field-collected microscopic images using a ×30 mobile-

mounted camera lens. These images were trained and tested using

NCDL platforms including Amazon Rekognition Custom Label

(Custom Label), Teachable Machine from Google (Teachable

Machine), Microsoft Custom Azure Vision (Custom Vision),

Google AutoML Vision (AutoML), Clarifai, and Apple CreateML

(CreateML). The goal of this study is to demonstrate the potential use

of microscopic images of plant disease with NCDL platforms for

improved classification. The specific objectives were i) to develop a

tomato biotic stress microscopic images database and ii) to analyze

the potential of non-coding machine learning models for disease

classification using microscopic images.
Materials and methods

Collection of images and
diagnostic validation

The study was designed to collect diverse images from major

tomato-growing regions in Florida and Georgia. Images were
frontiersin.org
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collected during 2020 and 2021 in 10 different field surveys. The

images were collected using a mobile-mounted ×30 camera

(GoMicro). The android smartphone Xiaomi Redmi Note 5 Pro

12 MP camera was used for image capture by a single individual

(Supplementary Figure 1). Images were captured using the

GoMicro Detect application in natural sunlight in field conditions.

Images were collected from all symptomatic parts, i.e., leaves

(upper and lower sides) and fruits. To reduce background noise and

effects from shaking, samples were placed on a flat cardboard

surface for image capture. Disease symptoms at different stages

were captured to have a broad and diverse image collection. In

addition to the images of the symptomatic samples, healthy samples

were also collected. When symptoms were too large to be captured

in a single microscopic image, multiple images were taken of the

symptom region. While capturing the images, the optical zoom of

the mobile camera was not used. Representative samples during the

surveys were diagnostically identified using microscopic,

microbiological, and molecular tools to ensure images were

classified correctly (Supplementary Table 1). All images were

visually examined to remove any that were out-of-focus. Images

were labeled based on the diagnostic report provided by the plant

disease diagnostic lab at the University of Florida, and expert

knowledge of an experienced horticulturist was used when

relevant to abiotic issues. A small subset of representative images

for each class is presented in Supplementary Figure 2.
Non-coding deep learning
platform selection

Six different NCDL platforms were selected based on prior

literature and information available through Internet searches. Each

platform was reviewed for available features, including access for

use in the U.S., cost, type of output, graphical user interface, time

taken for analysis, and ease of use by a person with minimal coding

experience. A summary of the NCDL platforms and reasons for not

using a particular platform is provided in Supplementary Table 2.

Platforms included in this study were Amazon Rekognition Custom

Label, Teachable Machine from Google, Microsoft Custom Vision,

Google AutoML Vision, Clarifai, and Apple CreateML. All

platforms except CreateML use a Microsoft Windows-based

system on the web without downloading locally. CreateML was

downloaded in a Mac-based system and run locally using the

XCode developer program without active Internet. Teachable

Machine and CreateML were freely available without any

limitations. For the other platforms, the free tier (the use of the

model without making any payment) was used first, and once the

free limit was exhausted, the basic tier (cheapest plan) was used

with payment.
Data upload and labeling

All dataset images were labeled according to their diagnostic

result/expert knowledge. Each NCDL platform has a distinct way of
Frontiers in Plant Science 03
uploading and storage of the dataset. In the case of the Teachable

Machine platform, images had to be uploaded each time for

training, and the data were not stored locally. For the other

platforms, the uploaded data were stored for further use. Only the

AutoML platform allows image upload in CSV format. In all the

NCDL platforms except CreateML, data had to be labeled manually

after upload. Images were labeled separately as training and testing

for the CreateML NCDL platform. A detailed description of each

NCDL platform is provided in Table 1.
Data processing

Training with the supervised NCDL platform needs images to

be split into training, validation, and testing sets. All except

CreateML did not use prior splitting of the image dataset. Each

NCDL platform default setting was used for the splitting of each

image dataset, and if manual setting was required, 80:20 (training:

testing) split was used. For CreateML, python library split-folders

(V 0.5.1) (Split-folders:PyPI, 2022) were used to split the dataset

into training and testing datasets of 80:20 ratio. Teachable Machine

and AutoML have 85:15 and 90:10 split ratios, respectively.

Duplicate images were automatically detected by AutoML and

Custom Vision, and these images, if any, were removed from the

training databases in all the other NCDL platforms. Custom Vision

advanced (no time for training) option was used for training.
Model training

NCDL platform models were trained using image databases

described in Table 2 using a web interface except in the case of

CreateML. These models did not require any specific CPU or GPU

uses. CreateML platform was run locally on the Mac-based system

that has 256 GB SSD and 8 GB RAM. For the default threshold

value of each model, or where a manual option was available, 50%

(0.5) was used as the threshold value for classification. The

parameters that can be modified within each platform are

described in Table 1. Unless otherwise specified, we did not use

hyperparameters or change the default setting of the NCDL

platform models.
Metrics and statistical analysis

Each model graphic user interface provides different types of

outputs. To compare the models, we used precision/positive

predictive value (PPV), negative predictive value (NPV), recall/

sensitivity, specificity, accuracy, and F1 score. To evaluate these

parameters, we extracted the following: true positive (TP), which is

the number of positive images that were classified as the same as the

labeled class; true negative (TN), which is the number of negative

images that were classified as the same as the labeled class; false

positive (FP), which is the number of images classified as positive

but do not belong to that labeled class; and false negative (FN),
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which is the number of images that belong to the labeled class but

were classified in a different class. A summary of the approach is

given below.

PPV=Precision ( % ) =
Number of  images correctly identified (TP)

Total number of  images idenfied as correct(TP + FP)
 � 100
Frontiers in Plant Science 04
NPV  ( negative predictive value) =
TN

TN + FN

Specificity =
TN

FP + TN
TABLE 1 Non-coding deep learning (NCDL) platform features.

Features Teachable
Machine

Clarifai Custom Vision CreateML Custom
Label

AutoML

Needs a user account No Yes Yes No Yes Yes

Data storage on cloud No Yes Yes Locally Yes Yes

CSV format data upload No No No No No Yes

Change in threshold na Yes Yes na No Yes

Trained
model download

Yes No Yes na Yes Yes

Manual tweaking
in parameter

Yes na na Yes No No

Parameter can
be modified

Epoch, learning
rate, batch size

– na Iteration, blur, noise,
crop, expose, flip, rotate

na Number of
nodes,
hosting type

Data upload and
time (min)

5–10 10–30 10–30 <5 10–30 30–60

Require prior
data classification

No No No Yes No No

Time for training <30 min <30 min 1–10 h <10 min 1–20 h 1–10 h

Overall accuracy/F1
score provided

No Yes Yes Yes Yes Yes

Confusion matrix Yes Yes No No No Yes

Download
trained model

Yes No Yes No Yes Yes

Testing on external
image with deployment

Yes
(individual
image)

No Yes (individual image) Yes No Yes
(batch upload)

Testing on external
image with deployment

Yes
(individual
image)

No Yes (individual image) Yes No Yes
(batch upload)

Availability
Free Free up to a

certain level
Free up to a certain level Free Free up to a

certain level
Free up to a
certain level

Cost

Require credit
card information

No No Yes Yes Yes

Free quota
Na 1,000

operations/
month

5,000 images in 2 projects.
1hr of training per month

Na 10 training hours
and 4 interface

$300

After free tier
$30/month $10 per compute hour Na Training: $1/h

Interface: $4/h
$3.462/node/h
for training

Easy to use (1–5) Easy Medium Medium Medium Hard Hard

Data visualization Good Excellent Ok Ok Good Excellent

Model performance Low Medium High Very low High Medium
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Sensitivity=Recall ( % ) =
Number of  images correctly identified (TP)
Total number of  correct images(TP + FN)

 � 100

Accuracy( % ) =
Correctly identified positive and negative images (TP + TN)

Total number of  images   (TP + TN + FP + FN)
 � 100

F1 score =
2 � Precision� Recall

Precision + Recall

Some models provided a confusion matrix, which is an easy way

to understand models in terms of each class and how many

misclassified images belong to which class in a table format.

Graphs were created with precision and recall value, and the area

under this graph line referred to as the area under precision–recall

curve (AUPRC) was only available in AutoML, mentioned as the

average precision.

Each of the NCDL platform model outputs was distinct. The

Teachable Machine provides only accuracy and a confusion matrix.

Clarifai produces one K spilt value of cross-validation report along

with a confusion matrix. Custom Vision provides only precision,

recall, and average precision (AUPRC/AP) values. CreateML

provides precision and recall for each labeled class and overall

accuracy for validation and test data. Custom Label provides the

threshold used for the classification of each labeled class and the

corresponding precision, recall, and F1 score. The AutoML model

provides a confusion matrix and accuracy. The AutoML model

precision and recall curve can be modified with an interactive

threshold level. A default threshold value of 0.5 was used for all

NCDL platforms.
Results

Image collection and database

Image databases were created for fruit images (symptomatic

and healthy) and for leaf images [symptomatic and healthy adaxial

(upper) and abaxial (lower) surfaces]. Overall, a total of 3,911

images were collected and labeled in 19 different classes (Table 2).

For NCDL platform model analyses, these images were further

classified into three different categories: 1) all 19 individual class

labeled images were used for analysis and referred as “combined

individual class”; 2) individual classes of adaxial and abaxial leaf

symptoms were pooled into one class, making 13 total classes, and

referred as “leaf images combined”; and 3) finally, images of classes

with fruit and abaxial and adiaxial leaf symptoms were pooled in

single class making a total of 11 classes and referred as “leaf and

fruit images combined.” In total, six different types of image

databases were analyzed using different models.
Deep learning model performance

The F1 score (Standard Deviation (S.D.)) of the different NCDL

platforms across all models-databases were as follows: Custom

Label, 98.5 (1.6); Clarifai, 93.9 (2.5); Teachable Machine, 91.6

(3.9); AutoML, 95.0 (1.9); and Custom Vision, 97.5 (2.7)
Frontiers in Plant Science 05
(Figure 1A and Supplementary Table 3). The F1 score was

significantly different between the models (F(4, 25) = 6.729, P =

0.0008). The Custom Label F1 score was significantly higher than

Teachable Machine and Clarifai with Tukey’s multiple post-hoc
TABLE 2 Databases for the training of the non-coding deep learning
(NCDL) platform models used in this study.

Database
Symptom
class

Number
of images

Number
of classes

Fruit

Bacterial spot of
tomato (BST)

543

Healthy 55

Pox 121

Raincheck 234

Tomato spotted
wilt (Tospo)

161

Total images 1,114

Lower side of
the leaf

BST 209

Early blight 210

Healthy 52

Little leaf 48

Spider mites feeding
damage (SMFD)

61

Tomato yellow leaf
curl (TYLC)

39

Total images 619

Upper side of
the leaf

BST 475

Early blight 472

Healthy 267

Little leaf 125

Nutrient deficiency 152

SMFD 110

TYLC 337

2-4-D drift damage 240

Total images 2798

Total images 3,911

Combined
individual
classesa

19

Leaf
image combinedb

13

Leaf and fruit
image combinedc

11
aAll individual five classes of fruit, six classes of the lower side of the leaf, and eight classes of
the upper side of the leaf used. In this case, none of the image classes were combined.
bLower side of the leaf class combined with the upper side of the leaf images class to have a
single class of images. For example, the BST lower side of leaf images combined with the upper
side of leaf images to have BST (leaf) class. All six classes to the lower side of the leaf combined
to the respective upper side of the leaf.
cBST and healthy class upper side of the leaf, the lower side of the leaf, and fruit symptom
images combined into a single class.
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comparisons. The Custom Vision F1 score was significantly

different than only Teachable Machine with a mean difference

(95% CI) of 5.9 (1.5–10.4) (Supplementary Table 4). All the other

NCDL models showed statistically similar F1 scores.

Accuracy (S.D.) denotes the percentage of images identified

correctly and were as follows: Custom Label, 99.8% (0.2); Clarifai,

98.7% (0.5); Teachable Machine, 98.3% (0.4); AutoML, 98.9% (0.6);

and CreateML, 87.3% (4.3) (F(4, 25) = 42.29, P = 8.412e−11)

(Supplementary Table 5). CreateML had a significantly lower

accuracy among all the NCDL platform models tested with the

following mean difference (95% CI): Custom Label 12.4 (9.1–15.7),

Clarifai 11.4 (8.0–14.6), Teachable Machine 10.9 (7.7–14.3), and

AutoML 11.6 (8.2–14.85) (Supplementary Table 6).

Among the different image database–model pairs, F1 scores

were as follows: fruit, 95.7 (1.6); lower side of the leaf, 97.3 (2.7);

upper side of the leaf, 95.8 (3.4); combined individual class, 90.6

(4.2); leaf images combined, 96.0 (2.9); and leaf and fruit images

combined, 96.2 (2.6) (Figure 1B). A database-wide comparison

resulted in only the lower side of the leaf image showing a higher
Frontiers in Plant Science 06
F1 score than the combined individual class database (F(5, 24) =

2.79, P = 0.0316) (Supplementary Table 7).
Evaluation based on platform type

CreateML and Custom Vision were not used for all comparisons,

as their web-based interface did not provide the number of true

positive, false positive, false negative, and true negative that are

required for precision, recall, NPV, specificity, accuracy, and F1

value calculations. Clarifai provides individual classes and overall

and ROC curve (ROC AUC), but no other model provides a similar

output in their interface, therefore was not used for comparison.
Individual classes

In general, all NCDL platform models had very good disease

image classification outputs in all the databases (Table 3). The fruit
B

A

FIGURE 1

F1 scores of the non-coding deep learning (NCDL) models grouped by (A) models and (B) database.
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image database performance across five classes was as follows: F1

score (precision, NPV, recall, specificity): Custom Label, 98.7

(98.7%, 99.7%, 98.7%, 99.7%); Clarifai, 95.4 (95.4%, 98.8%, 95.4%,

98.8%); Teachable Machine, 94.8 (94.8%, 98.7%, 94.8%, 98.7%);

AutoML, 94.1 (94.1%, 98.5%, 94.1%, 98.5%); and Custom Vision,

95.5 (95.9%, na, 95.1%, na). All NCDL platforms except Clarifai had

numerically higher performance with the lower side of the leaf

database than the upper side of the leaf database in the respective

models. The Clarifai model had a lower accuracy of 98.2% on the

lower side of the leaf database compared with 98.5% on the upper

side of the leaf database.
Combined classes

The NCDL platform models trained on a diverse combined

individual class database had relatively lower model-all classes

classification performance with F1 score (precision, NPV, recall,

specificity) as follows: Custom Label, 95.3 (95.0%, 99.8%, 95.6%,

99.7%); Clarifai, 89.0 (89.0%, 99.4%, 89.0%, 99.4%); Teachable

Machine, 84.3 (84.3%, 99.1%, 84.3%, 99.1%); AutoML, 91.7 (91.7%,

99.5%, 91.7%, 99.4%); and Custom Vision, 93.0 (93.1%, na, 93.0%,

na) (Table 3, Supplementary Table 8). For example, for bacterial spot

(BST), out of 91 test set images from the upper side of the leaf, 73

images were classified correctly, while 16 images were classified as

false negative for the lower side of BST symptoms, and two false

negatives were identified as early blight symptom in the Clarifai

model (Supplementary Table 9).

Classification matrices improved when the upper and lower

sides of the leaf images were combined into one class comparison to

all combined individual classes database (Table 3). The Custom

Label F1 score increased from 95.3 in the combined individual class

to 99.0. The F1 score of the lowest performing model, the Teachable

Machine, increased from 84.3 to 91.7. In most of the individual

classes, the F1 score was above 90, except for the fruit pox symptom

(Supplementary Table 8). Pox had an F1 score of 90.6, 70.6, 78.9,

76.2, 69.5, and 79.2 with Custom Label, Clarifai, Teachable

Machine, AutoML, CreateML, and Custom Vision, respectively

(Supplementary Table 8). Other classes with low F1 score in

CreateML were little leaf (84.7), BST on leaf (83.4), and 2-4-D

(2,4-dichlorophenoxyacetic acid) drift (88.8) symptoms.

To explore further, symptoms of the same disease on fruit and

leaf symptom image classes were combined into one class (BST and

healthy class fruit and leaf images combined). Overall, this image

database had no impact on either accuracy or F1 score (Figures 1,

2). The F1 score of the leaf and fruit image combined database of

Custom Label (99.0 to 98.7) and AutoML (96.1 to 95.3) dropped

slightly, while Clarifai (95.0 to 95.4), Teachable Machine (91.7 to

92.6), and Custom Vision (98.2 to 98.9) increased slightly compared

with the leaf images combined database.
External validation of data

External validation of the data was conducted for images

collected using ×30 microscopic images by another independent
Frontiers in Plant Science 07
user (Sentil et al., unpublished) using an iOS-based mobile phone

on the leaf image combined database models for three NCDLs (i.e.,

Teachable Machine, Custom Vision, and AutoML). Clarifai and

Custom Label do not have an option of testing without deployment

of the model and, therefore, were not used. Teachable Machine and

Custom Vision only allow testing of individual images, while batch

prediction was done with the AutoML model. From a random

selection of 200 images, classification performance F1 scores

(precision, NPV, recall, specificity) were as follows: Teachable

Machine, 76.3 (76.3%, 95.3%, 76.3%, 95.3%); AutoML, 86.6

(86.6%, 97.3%, 86.6%, 97.3%); and Custom Vision, 88.3 (88.3%,

97.7%, 88.3%, 99.7%) (Figure 3, Supplementary Table 10). The

overall accuracy of CreateML in testing data with 50 iterations was

69% (data not shown).
Repeatability of model

The leaf image combined database was trained on five models

three times. The F1 scores (SD) of the models were 89.9 (0.2) for

Custom Label, 95.2 (0.4) for Clarifai, 91.4 (3.6) for Teachable

Machine, 96.2 (1.2) for AutoML, and 98.6 (0.6) for Custom

Vision. The standard deviation was low except for the

Teachable Machine, indicating the repeatability of model

classification performance.
Model features

The use of NCDL platforms for plant disease classification is a

relatively new area, so each model was examined for various user

features from a plant pathologist’s point of view (Table 1). Each

model has its own set of advantages and technical specifications that

need to be worked out. Teachable Machine has the simplest graphic

user inference that allows three changeable parameter epochs, batch

size, and learning rate. Teachable Machine is the only model in

which data need to be uploaded from a local computer or Google

Drive, each time the model is trained. The Teachable Machine and

CreateML platforms do not require a user account. CreateML

models run on a local computer and allow image augmentation

like blur, focus, flip, and rotate, which none of the other models

have. Modification of the classification threshold allows the user to

train models for higher and lower confidence with each

classification. Clarifai, Custom Vision, and AutoML allow

tweaking of the threshold values. In Custom Label, each class had

a different threshold for disease classification at a system-chosen

threshold, but this cannot be selected by the user. After uploading,

images need to be manually class-wise-labeled in all models. Only

AutoML allows data upload in CSV format which makes the

process faster than the other models. All NCDL platforms except

CreateML automatically separate the testing and training datasets.

CreateML requires preclassified testing and training datasets.

CreateML and Teachable Machine were free without any

restrictions in use. Clarifai allows 1,000 operations per month in

the community tier; after this, monthly charges are required. There

were no mentioned criteria for operation, but in this study, we did
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TABLE 3 Comparison of the model–database classification performance matrices for non-coding deep learning (NCDL) platformsa.

Database Model TP FP FN TN Precision
(%)

NPV
(%)

Recall
(%)

Specificity
(%)

Accuracy
(%)

F1
score

Fruit

Custom Label 222 3 3 897 98.7 99.7 98.7 99.7 99.5 98.7

Clarifai 207 10 10 858 95.4 98.8 95.4 98.8 98.2 95.4

Teachable
machine

163 9 9 679 94.8 98.7 94.8 98.7 97.9 94.8

AutoML 111 7 7 465 94.1 98.5 94.1 98.5 97.6 94.1

CreateML – – – – – – - 88.0 –

Custom Vision – – – – 95.9 95.1 - 98.7 95.5

Lower side of leaf

Custom Label 126 0 0 630 100.0 100.0 100.0 100.0 100.0 100.0

Clarifai 104 6 6 544 94.5 98.9 94.5 98.9 98.2 94.5

Teachable
machine

91 5 5 475 94.8 99.0 94.8 99.0 98.3 94.8

AutoML 65 2 2 333 97.0 99.4 97.0 99.4 99.0 97.0

CreateML – – – – – – - 91.0 –

Custom Vision – – – – 100.0 100.0 - 100.0 100.0

Upper side of leaf

Custom Label 438 5 2 3059 98.9 99.9 99.5 99.8 99.8 99.2

Clarifai 385 24 24 2839 94.1 99.2 94.1 99.2 98.5 94.1

Teachable
machine

301 29 29 2281 91.2 98.7 91.2 98.7 97.8 91.2

AutoML 213 10 10 1551 95.5 99.4 95.5 99.4 98.9 95.5

CreateML – – – – – – - 90.0 –

Custom Vision – – – – 99.1 99.1 - 99.5 99.1

Combined individual classb

Custom Label 754 40 35 14162 95.0 99.8 95.6 99.7 99.5 95.3

Clarifai 638 79 79 12827 89.0 99.4 89.0 99.4 98.8 89.0

Teachable
machine

503 94 94 10652 84.3 99.1 84.3 99.1 98.3 84.3

AutoML 374 34 34 7310 91.7 99.5 91.7 99.5 99.1 91.7

CreateML – – – – – – - 82.0 –

Custom Vision - - - - 93.1 93.0 - 93.8 93.0

Leaf image combinedc

Custom Label 781 8 7 9448 99.0 99.9 99.1 99.9 99.9 99.0

Clarifai 721 38 38 9070 95.0 99.6 95.0 99.6 99.2 95.0

Teachable
machine

544 49 49 7106 91.7 99.3 91.7 99.3 98.7 91.7

AutoML 392 16 16 4880 96.1 99.7 96.1 99.7 99.4 96.1

CreateML – – – – – – - 91.0 –

Custom Vision – – – – 98.2 98.2 - 98.4 98.2

(Continued)
F
rontiers in Plan
t Science
 08
 fro
ntiersin.org

https://doi.org/10.3389/fpls.2023.1292643
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Choudhary et al. 10.3389/fpls.2023.1292643
not run out of free tier quota. Custom Vision has a free limit of

5,000 training images per project and a maximum of 2 projects with

a speed of 2 transactions per second (TPS). After free usage, it

charges computing hours. The Custom Label free tier allows 10

training hours and 4 interface hours after, hourly training, and

interface charges. Custom Label also provides up to 5 GB of image

storage in the free tier. AutoML provides initial credit in the free

tier, and it charges per node per hour basis for training. Each model

has other associated costs for deployment and prediction, which

were not used in this study. The use of all the NCDL platform

models comprised of three steps: upload and labeling of data,

training, and output visualization. Based upon these parameters,

Custom Label, AutoML, and Custom Vision models look promising

for future uses.
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Discussion

There are many models already available in the web domain,

but issues persist with their practical use and field-based

validation. Siddiqua et al. (2022) evaluated 17 different mobile

applications for disease classification and noted that only

“Plantix–your crop doctor” has the capability of disease

identification to recommend a suitable management option to

users (CGIAR, 2017, https://plantix.net/en/). Some of these

models are available for specific crops like “Cassava Plant

Disease Identify” for cassava disease and “Tumaini” for banana

disease (Selvaraj et al., 2019). However, these mobile application

models cannot be customized by local pathologists or extension

agents on a local database of choice to improve disease
TABLE 3 Continued

Database Model TP FP FN TN Precision
(%)

NPV
(%)

Recall
(%)

Specificity
(%)

Accuracy
(%)

F1
score

Leaf and fruit image combinedd

Custom Label 779 11 9 7869 98.6 99.9 98.9 99.9 99.8 98.7

Clarifai 700 34 34 7306 95.4 99.5 95.4 99.5 99.2 95.4

Teachable
machine

540 43 43 5787 92.6 99.3 92.6 99.3 98.7 92.6

AutoML 389 19 19 4061 95.3 99.5 95.3 99.5 99.2 95.3

CreateML – – – – – – - 91.0 –

Custom Vision – – – – 98.9 98.9 - 91.0 98.9
fro
aTP, true positive; FP, false positive; FN, false negative; TN, true negative; NPV, negative predictive value. TP,FP,TN and FN were calculated for symptom each class (refer Table 2) and pooled
data were presented.
bAll individual five classes of fruit, six classes of the lower side of the leaf, and eight classes of upper side of the leaf used. No image class was combined.
cLower side of the leaf class combined with the upper side of the leaf images class to have a single class of images. For example, BST lower side of leaf images combined with the upper side of leaf
images to have BST (leaf) class. All six classes to the lower side of the leaf combined to the respective upper side of the leaf. Symptom class wise details were provided in Supplementary Table 6.
dBST and healthy class upper side of the leaf, lower side of the leaf, and fruit symptom images combined into a single class.
FIGURE 2

Precision and recall of the non-coding deep learning (NCDL) platform models, with plots grouped by image database. Each point is an individual
model’s precision and recall at the default threshold, plotted against the AutoML platform precision–recall curves.
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classification (Siddiqua et al., 2022). Microscopic images used in

this study have a magnified view of disease symptoms that

captures minute characteristics in symptoms than images taken

by a normal camera (macroscopic images). Most macroscopic

images have the noise of background features in addition to the

disease symptoms that make feature extraction more complicated

and, thus, reduce accuracy (Lu et al., 2021; Tugrul et al., 2022).

In this study, we evaluated models and multiple combinations

of databases using the same number of identical training images

using freely available resources in the NCDL platform. Most models

(Custom Label, Custom Vision, and AutoML) have similar higher

classification performance. Teachable Machine was the least

performing model among all web-based cloud computing models

tested. If we include locally run models also, then CreateML had

significantly lower classification accuracy among all the tested

models. Similar findings were also noted when using

ophthalmology images with multimodality databases on the

CreateML platform (Korot et al., 2021). The exact reason why

these two models have poorer performance compared with others

for disease classification is unknown as most platforms neither

provide information on their configuration and nor allow users to

change parameters. Teachable Machine which was built using

Tensorflow.js works mostly on transfer learning approaches

(Teachable machine, 2022) and may have computational limits or

may exclude some image data. We used different hyperparameters

like epoch and learning rate for Teachable Machine and number of

iterations, blur, and focus for CreateML to improve the

performance, but it was not significantly improved compared

with the default setting (data now shown). As both models

(Teachable Machine and CreateML) were freely available without

any limit, it is possible that the developers were not routinely

improve these models.

The average F1 score of NCDL models ranged from 91.6 to

98.5, while accuracy ranged from 87.3% to 99.8%. Earlier
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researchers used mostly macroscopic image databases from the

PlantVillage database for plant disease classification using the

CNN model. Most of the earlier models (AlexNet, GoogLeNet,

ResNet, MobiNet, R-CNN, D-CNN) were trained on the same set

of images with different augmentations from scratch, or the

transfer learning approach has classification matrices from 76%

to 99.8% (Abbas et al., 2021; Tugrul et al., 2022). Very few models

were tested using external images, and the ones that were tested

had a disease classification performance of below 50% (Mohanty

et al., 2016; Ferentinos, 2018). Performance reduction on external

validation is a major obstacle to the practical application of deep

learning models. In our study, only five NCDL models were

capable of external validation of the model, in which the F1

score of AutoML and Custom Vision was greater than 86, while

Teachable Machine had an F1 score of 76 on a leaf image

combined dataset. For the NCDL models, accuracy was reduced

by a maximum of 7% in the case of Teachable Machine (the lowest

performing model in this study) in external data testing. This

indicates that the NCDL platform models were not overfitting or

leaking data during the training of the models. In the medical field,

models used with eye images have a similar F1 score of as high as

93.9 to the Custom Label models (Korot et al., 2021).

Most leaf and fruit databases had similar classification

performance. Only the lower side of the leaf had statistically

higher classification performance than the “all individual class”

database. This may be due to two reasons: 1) when individual

classes were combined, the same type of symptom from the upper

and lower side of the leaf images had more false positives and

negatives than other databases. The bacterial spot of tomato (BST)

upper side of the leaf had 18% (16 out 91) false-positive images as

lower side of the leaf. This may be due to early disease symptoms

being observed first on the lower side of the leaf and expanding to

the upper side of the leaf (Osdaghi et al., 2021). 2) It has also been

observed that the lower side of the leaf has more characteristic early
FIGURE 3

Testing classification matrices of the non-coding deep learning (NCDL) platform models on the external image database (image collected by an
independent user and not used in training, testing and validation of the models) using the leaf image combined database model.
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and uniform symptoms than other plant parts (Schor et al., 2016).

In our study, tomato fruit pox, a genetic disorder (Crill et al., 1973)

that produces an incipient oval-shaped lesion, had the lowest

classification performance in all databases. Pox was misclassified

with fruit BST symptoms and in some cases of healthy samples. This

exemplifies issues with the background of images that can reduce

classification accuracy. This type of Image-based classification can

be further improved using a convex lens that can take the curvature

of the plant stem and fruit into consideration and reduce the

blurriness of the image.

In terms of the evaluation performance, the top three models

(Custom Label, AutoML, and Custom Vision) had no significant

differences. Most of the NCDL platforms took less than 1 h for the

training of the models. CreateML was the fastest, taking<5 min to

create the models. Other models (Custom Label, AutoML, and

Custom Vision) took approximately 10 h with the largest dataset.

Most models are freely available; however, these models are free

only up to certain levels which can be quickly drained. In our

analysis, we ran out of free usage in all models except Clarifai. The

cost associated with these models is not cheap: Custom Vision

charges as high as $10/h/node, which is comparatively costly for a

developing nation model developer. Although cloud-based NCDL

platforms are easy to use and infinity-scalable, plant pathologists

must think about cost requirements compared with the already

available traditional methods or outsourcing using machine experts

with local resources.
Limitations with microscopic image
collection and models

Even though image collection is quite simple with a

microscopic lens, there are no public databases available as of

now, and it will take time to build a database of the nature used in

this study. A database of such nature that is being built at the

University of Florida for tomato, cucurbits, and pepper diseases

currently has >30,000 images and is expected to be available for

public use by next year (Paret, personal communication). Quality

images are necessary for the successful implementation of any AI

model. In a recent survey, 96% of the respondents (scientists, AI

experts) faced challenges with quality data for the training of ML

algorithms (Research Dimensional, 2019). Given that microscopic

images provide a magnified view, some diseases like early blight of

tomato symptoms may not be captured in a single image, which

would increase the number of images to be taken of each class. In

diseases like tomato Fusarium wilt, which shows dropping of the

leaves and yellowing symptoms, whole-plant images in addition to

microscopic images may be necessary. In the ideal scenario, a

combined approach would be to use both magnified and whole-

plant images. However, the machine learning process toward

integrating macro- and microscopic images first needs to be

established. Another aspect for consideration is the different

shapes of the fruits that make it difficult to capture images. The

convex shape of tomato fruit may lead to distorted and blurred

images. A flexible outing cover for the lens reduces blur due to the
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shape of the leaf and fruit and facilitates easy adjustment of the

camera/lens.

Threshold is an important parameter to have classification with

more confidence (Ferri et al., 2019), but the high-performing model

such as —Custom Label—did allow modifying this value. Most

models do not have an option to change any hyperparameter that

makes these models opaque. We do not have information on what

kind of parameters and underlying architecture was used by NCDL

platform models that reduce the option for improvement in

classification performance (Liang et al., 2022). In external

evaluation, cloud-based models were lagging a lot. Custom Label

and Clarifai do not have the option for external validation before

deployment. Teachable Machine and Custom Vision allow

individual images for testing that make testing cumbersome and

time-consuming. AutoML allows batch processing, but preparing

data again requires a laborious process.
Potential of microscope image coupled
NCDL platform

Globally, 95% of the population has mobile network coverage that

makes mobile use accessible everywhere (ITU, 2021). In 2021, 5.34

billion people had smartphones which increased by 73% within 5 years

(2016–2021) (DataReportal, 2022). This study demonstrates the

potential use of mobile phones integrated with deep learning models

for plant disease classification. Currently, a major challenge in

agriculture in remote places of the world is real-time advisory to

endpoint stakeholders. Various down-term applications can be easily

integrated with the NCDL platform. Trained models can be utilized as

a research tool, deployed on new databases or on prospectively curated

data, to collate images that fit a criterion. These potential use cases are

not comprehensive, and more will be revealed as agriculture

researchers gain an understanding of ML principles through the

exploration of NCDL platforms.

AI progression is similar to what has occurred in other

technologies (sequencing, mobile, etc.) first by a small core group

of scientists, later by experts that navigate the technical nuance of

new development, and finally by the general public. Slowly, AI is

coming to the domain of “citizen science” where it can be used to

reap benefits (Craig, 2022). We explored only a limited number of

publicly available NCDL platforms. In coming times, advancement

in NCDL platforms and more use of these platforms likely will

persuade other big AI companies to improve these models. For now,

though, most no-code AI users are business professionals who want

to streamline the way things are done without having to involve

a programmer.
Conclusion

We evaluated the classification matrices and usability of six

NCDL platforms using microscopic-magnified ×30 images

captured using a mobile phone camera-mounted lens. The

outcomes from the study demonstrate that the NCDL platform-
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developed models improved disease classification. Our finding

illustrated that plant disease classification using microscopic-

magnified images in combination with NCDL models can be used

by any plant pathologist and diagnostician for the recommendation

of disease management measures to farmers. This study

demonstrates the potential use of mobile phones integrated with

deep learning models in remote corners of the world without the

help of computer personnel. The methods used in this work can

speed up disease identification and save a lot of resources

(chemicals, lab space, and personnel). The NCDL platforms have

a broad scope for agriculture, in which it can potentially be used for

understanding nutrient limitations, weed identification, and insect

diagnosis. Currently, a major challenge in agriculture in remote

places of the world is real-time advisory to endpoint stakeholders.

This technology should improve real-time advisory capabilities in

remote places.
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