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This study aimed to explore the feasibility of applying Generative Adversarial

Networks (GANs) for the diagnosis of Verticillium wilt disease in cotton and

compared it with traditional data augmentation methods and transfer learning.

By designing a model based on small-sample learning, we proposed an

innovative cotton Verticillium wilt disease diagnosis system. The system uses

Convolutional Neural Networks (CNNs) as feature extractors and applies trained

GAN models for sample augmentation to improve classification accuracy. This

study collected and processed a dataset of cotton Verticillium wilt disease

images, including samples from normal and infected plants. Data

augmentation techniques were used to expand the dataset and train the

CNNs. Transfer learning using InceptionV3 was applied to train the CNNs on

the dataset. The dataset was augmented using GAN algorithms and used to train

CNNs. The performances of the data augmentation, transfer learning, and GANs

were compared and analyzed. The results have demonstrated that augmenting

the cotton Verticillium wilt disease image dataset using GAN algorithms

enhanced the diagnostic accuracy and recall rate of the CNNs. Compared to

traditional data augmentation methods, GANs exhibit better performance and

generated more representative and diverse samples. Unlike transfer learning,

GANs ensured an adequate sample size. By visualizing the images generated,

GANs were found to generate realistic cotton images of Verticillium wilt disease,

highlighting their potential applications in agricultural disease diagnosis. This

study has demonstrated the potential of GANs in the diagnosis of cotton

Verticillium wilt disease diagnosis, offering an effective approach for

agricultural disease detection and providing insights into disease detection in

other crops.
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cotton diseases, data augmentation, transfer learning, generative adversarial networks,
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1 Introduction

A prominent disease that affects cotton production, Fusarium

wilt poses considerable challenges to the growth and development

of cotton. This destructive disease can spread through various

means, including infected cotton seeds, plant residues, soil, water

sources, and farming tools. Once infected, the pathogen rapidly

reproduces within the plant, triggering an immune response

resulting in leaf yellowing, flower bud shedding, and reduced

yield. In severe cases, the entire plant may experience extensive

death, leading to catastrophic consequences such as complete crop

failure. In normal years, economic losses of 5–15% are caused by

this disease. In certain years, owing to timely prevention and

incorrect interventions, economic losses can reach 30–50% (Li

et al., 2011).

Therefore, ensuring healthy development of the cotton industry

necessitates the detection and control of Fusarium wilt. Traditional

detection methods rely heavily on manual observation and

pathogen identification, and are time-consuming, labor-intensive,

and susceptible to subjective factors. To enhance the accuracy and

efficiency of detection, there has been increasing research interest in

using Convolutional Neural Networks (CNN) for automated

Fusarium wilt detection (Goodfellow et al., 2014). By training the

CNN model with a large number of Fusarium wilt samples, the

model can learn disease characteristics and accurately classify and

identify diseases. Traditional manual identification of Fusarium wilt

not only lacks precision, but also incurs high time and labor costs.

The accurate identification of Fusarium wilt is crucial in the cotton

industry. Implementing intelligent identification methods is

essential for the effective differentiation and diagnosis of this

destructive disease.

However, given the difficulty in obtaining Fusarium wilt

samples, improving the robustness and generalization ability of

the model is severely limited. Therefore, exploring new methods to

expand sample sizes is of great significance for the detection and

control of Fusarium wilt in cotton, thereby benefiting the economic

growth of China’s cotton industry. With the development of deep

learning technology, it has been widely applied in crop analysis. In

the monitoring of Fusarium wilt in cotton, the application focus has

mainly been on transfer learning and hyperspectral imaging or

training classification networks to recognize and differentiate

diseases and pests. Classical learning often requires large amounts

of training data. Training a qualified network without sufficient

support in terms of sample quantity or quality is challenging.

To address the problem of limited experimental data collection,

Generative Adversarial Networks (GANs) are used to learn from a

small set of fundamental samples to generate realistic images that

can be used for the training of discriminative networks. Therefore,

this study used a CNN with a sample set generated by GANs for the

recognition of Fusarium wilt in cotton and compared it with

traditional data augmentation methods and transfer learning

approaches. The research methodology presented in this study

serves as a reference for the recognition of cotton Fusarium wilt

under small-sample conditions to accurately detect and identify

the disease.
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2 Materials and methods

2.1 Experimental materials and design

This study focused on cotton wilt disease as the primary research

subject. Given the inconvenience of obtaining data and images in the

field of agronomy, relevant images of healthy and diseased cotton

leaves were obtained from the College of Agriculture at Shihezi

University and compiled into a small cotton wilt disease dataset

through personal organization and classification.

The dataset consisted of a training set and a validation set. The

training set comprised 154 images, including 71 images of healthy

cotton leaves and 83 images of diseased cotton leaves. The

validation set comprised 78 images, including 36 images of

healthy cotton leaves and 42 images of diseased cotton leaves.

The test set included 185 images, with 118 of healthy cotton

leaves and 67 of diseased cotton leaves. The original resolution of

each image was 569 × 569 pixels; however, after compression, the

resolution was 256 × 256 pixels.
2.2 Data processing

According to the research network model, targeted adjustments

were made based on existing datasets. The original CNN network, the

original dataset will be used. For a CNN that uses data augmentation

techniques, the sample size is increased through data augmentation.

The original dataset was used for the CNN, which uses transfer

learning techniques. The dataset generated through the GAN was

used for the CNN that incorporated the GAN.
2.3 Data augmentation techniques

The images were enhanced using the following techniques. Salt-

and-pepper noise and Gaussian noise were introduced to disrupt

the image quality and they were manipulated by rotation and

flipping to alter the image orientation. The brightness was

adjusted to make the image brighter or darker. Either salt-and-

pepper noise or Gaussian noise was applied first, and the brightness

was then adjusted accordingly. With these four image enhancement

techniques in place, we proceeded with the following rotation

operations: clockwise rotation by 90°(r90), counterclockwise

rotation by 90°(r90_fil), 180-degree flip (r180), and horizontal flip

(fil). After applying noise (noise), the image was darkened (darker),

brightened (brighter), blurred (blurred), and the flipping operations

were repeated. By implementing this image enhancement process,

one original image could yield 16 augmented images, thereby

expanding the sample size by a factor of 17, as shown in Figure 1.
2.4 Transfer learning techniques

The InceptionV3 model was trained on the ImageNet dataset,

which encompasses a wide range of categories, such as animals,
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https://doi.org/10.3389/fpls.2023.1290774
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2023.1290774
objects, and scenes. The objective of this training process was to

enable the InceptionV3 model to learn the general features of

images, thereby facilitating diverse image classification and

recognition tasks. Although the training of InceptionV3 does not

directly involve the plant pest dataset, researchers have used

transfer learning methods to apply them to the plant pest dataset.

This can enhance the performance of the model for this specific task

through fine-tuning and training. This transfer learning approach

leverages the feature representation capabilities of the InceptionV3

model which has learned from extensive image classification tasks

to aid plant pest recognition tasks.

In this section, the InceptionV3 network was transferred to the

original dataset, and the pretrained layers were frozen, preserving

their weights throughout the training process. The pre-trained

bottom layers of the InceptionV3 network were frozen, whereas

only the newly added fully connected layers were trained

and weight-adjusted. This enables training on a small sample

dataset while using the feature representation capabilities of the

InceptionV3 network acquired from large-scale datasets (Mohanty

et al., 2021).
2.5 Generative adversarial
network techniques

AGAN is a generative model with a unique training mechanism

comprising a combination of a generator and discriminator. During

the training process, the generator and discriminator were trained

alternately. In the training process of the GAN, random points were

first sampled from the latent space and then decoded into fake

images generated by the generator. These fake images were merged
Frontiers in Plant Science 03
with real samples and labeled with random noise to differentiate

between the real and fake images. This labeling process improved

the robustness and generalizability of the model.

Next, random points were sampled again from the latent space

and merged with the labels. However, at this point, all the labels

should be “real images” to deceive the discriminator. At this stage,

the weights of the discriminator are frozen, and they do not

participate in the training of the model; only the generator is

trained. In the generator, the Graph Neural Network (GNN) does

not impose heavy requirements on intermediate neural networks,

which can be fully connected networks (FC), convolutional

networks (CNN), or recurrent networks (RNN). Different

networks have different degrees of impact on the quality

of generated images. A GNN relies on these networks to

generate images.

The types of discriminator networks in a GNN are not limited.

The discriminator can be implemented using fully connected

networks (FC), convolutional networks (CNN), or recurrent

networks (RNN). This flexibility allows the GNN to adapt to

various types of data and tasks.

The architecture of the generator network for the DCGAN and

the architecture of the DCGAN used in this study are illustrated

in Figure 2.

The generator was trained using a GAN model to make it

increasingly difficult for the discriminator to distinguish between

the generated fake and real images. Through iterative training, the

generator produces more realistic images, whereas the

discriminator continuously improves its ability to differentiate

between real and fake images. The generator and discriminator

engage in adversarial training driven by the adversarial loss

function, as illustrated in Figure 2C of the training process.
FIGURE 1

Samples after data augmentation.
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2.6 Testing with a convolutional network

To ensure test uniformity, we used the same convolutional

network for testing and did not include any pre-trained networks.

The testing convolutional network comprises five convolutional

layers, wherein the parameters double from 32 to 512. Two fully

connected layers process and predict the parameters post-

convolutional layers. The first fully connected layer features 256

parameters and uses L2 regularization and Dropout techniques for

overfitting prevention. The second layer classifies the results

employing a sigmoid function. Technical abbreviation

explanations are provided when first used.
3 Results and analysis

3.1 Analysis of training convolutional neural
networks on raw data

The hyperparameters of the convolutional neural network were

determined experimentally. The specific hyperparameters are listed

in Supplementary Materials.
Frontiers in Plant Science 04
The network was trained using the following raw data: 154, 78,

and 187 images in the training, validation, and testing sets,

respectively. After training the network with the training set, its

generalization capability was tested using a validation-set

validation. The resulting loss rate and the accuracy are shown

in Figure 3.

From the given text, it can be observed that the model

performed effectively on the training set. The smooth training set

loss curve indicates that the CNN could effectively learn from the

training set images. However, there were shortcomings in its

performance in the validation set. However, the fluctuating nature

of the validation set loss curve suggests that the network struggled to

recognize the finer details present in the validation set images.

Combining this with the accuracy of the validation set, it is clear

that the model suffered from severe overfitting. This could be

attributed to the limited amount of available data, which

prevented the CNN from learning an adequate amount of detail.

The overall accuracy of the validation set was lower than that of the

training set, but remained at approximately 90%.

Table 1 compares the accuracy and loss values of the CNN

across various datasets at the 20th epoch. By the 20th epoch, the

network parameters underwent significant updates. The network
B

C

A

FIGURE 2

DCGAN Generator、Discriminator and training process.
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trained on the original sample data achieved an accuracy of 98% on

the training set but experienced a considerable drop in accuracy on

the validation set, reaching 92%. In the independent test set, the

level of accuracy decreased to 87%. The loss value of the validation

set indicates that the network lacks robustness and stability,

potentially because of the limited number of image details

provided by the sample data.
B

A

FIGURE 3

Loss and accuracy under original samples.
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TABLE 1 Performance of the network on various datasets with
original samples.

Classification Train Validation Test

Precision 0.9805 0.9219 0.8757

Loss Value 0.2223 1.0443 0.3634
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rsin.org
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3.2 Analysis of convolutional network
training under data
augmentation techniques

The augmented dataset consisted of 3204 images for the

training set, 1008 images for the validation set, and 187 images

for testing the network training. After training the network using

the training set, its generalization ability was evaluated using the

validation set. The loss rate obtained and its accuracy are shown

in Figure 4.

These results indicate that throughout the training process,

while the training loss approached convergence, the validation

accuracy consistently maintained a high level and approached

convergence. Only slight overfitting occurred during the training

period. In the early stages of network training, the validation loss

also approached convergence, showing an overall downward trend.

Meanwhile, the validation accuracy approached convergence and

gradually improved. There were significant fluctuations in the

validation loss and accuracy in the early stages of training,

suggesting that the model may not have been sufficiently learned.

In the later stages of training, the validation loss approached

convergence and exhibited reduced divergence, indicating that the

network became more stable. The validation accuracy improved,

suggesting that the network reached a relatively stable state after

approximately 20 training iterations.

Table 2 presents a comparison of the accuracy and loss values of

the CNN across different datasets at the 20th epoch. With an

increased number of training samples, the accuracy improved

compared to the original dataset, whereas the loss decreased and

approached convergence. Despite a slight decrease in validation

accuracy, with an equal proportional increase in the validation set,

there was a significant decrease in validation loss, suggesting an

improvement in the early stage stability of the network. The model

achieved an accuracy of 92% on the test set. However, the model still

exhibited overfitting, particularly in the latter half of network

training. Here, the validation loss showed divergence and the

accuracy experienced significant fluctuations. This can be

attributed to the negative impact of repetitive features resulting

from data augmentation.
3.3 Analysis of convolutional network
training under transfer learning techniques

After continuous training, the hyperparameters for InceptionV3

have were determined as listed in Supplementary Materials.

The network was trained using the initial data, that is, 154

images in the training set, 78 images in the validation set, and 187

images in the test set. After training on the training set, the network

generalizability was tested by validating the validation set. The loss

rate obtained and its accuracy are shown in Figure 5.

From the aforementioned training process, it is evident that the

training loss and accuracy increased with each epoch,

demonstrating high-quality network training. However, the

validation loss and accuracy exhibited significant fluctuations.

This has indicated the presence of overfitting in the network and
Frontiers in Plant Science 06
the need for strong regularization techniques. The validation

accuracy remains relatively low at approximately 87%.

Meanwhile, the validation loss fluctuates within the range of 0.2

to 0.4, suggesting suboptimal generalization capabilities of

the model.

Table 3 presents a comparison of the accuracy and loss values

for the CNN across the different datasets after the 20th epoch.

Relying on a large-scale dataset for training, along with the

complexity of the InceptionV3 network architecture, leads to

improved accuracy compared with the original dataset. Based on

training with the ImageNet dataset, transfer learning offers more

pronounced advantages in terms of parameters compared with a

simple CNN network structure (Patil et al., 2019), resulting in a test

accuracy of 94%. However, this model also suffers from overfitting,

particularly during the validation process, as shown by the

fluctuating loss values and accuracy. This highlights the limitation

of the ImageNet dataset, which lacked samples related to plant

diseases and pests. The significant discrepancy between the original

and target domains impedes precise matching, thereby hindering

the correct learning of disease-specific details in small-

scale datasets.
3.4 Analysis of convolutional network
training under generative adversarial
network techniques

After repeated attempts and detailed considerations, an

appropriate set of hyperparameters was selected to train the

generator model. The learning rate was set to 0.0004, which is a

commonly selected value that strikes a balance between overfitting

and underfitting. The batch size was set to 16, which enhanced

training speed and improved the adaptability of the model to small

datasets. We chose 1000 training epochs to ensure that the model

thoroughly learned the distinctive features of the training data and

achieved optimal training results. We incorporated an L2

regularization term to mitigate overfitting concerns.

To maintain the gradient smoothness and stability, we used the

LeakyReLU activation function, setting the output of its negative

range to a small fraction of the input. To further stabilize the

training process, we implemented the gradient clipping (ClipValue)

technique by constraining the gradient values to within 1.0. We

used the Adam optimization algorithm with a low decay rate to

improve the generalization performance of the model. These

hyperparameter selections enabled the model to attain favorable

results during the training process, thereby enhancing precision and

robustness. A summary of the generator hyperparameters is

presented in Supplementary Materials.

A learning rate of 0.0001, batch size of 16, and 1000 epochs were

selected for the training of the discriminator. To enhance the

robustness of the model and prevent overfitting, the LeakyReLU

activation function with a parameter of 0.2 and dropout

regularization with a parameter of 0.5 were implemented. The decay

rate was set to 1e-8 to control the training speed of the model, and the

Adam optimization algorithm was used to update the network

parameters. These parameter choices were obtained through multiple
frontiersin.org
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experiments and fine-tuning to maximize the accuracy and

generalization capability of the model. The specific parameters of the

discriminator are listed in Supplementary Materials.
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Building on a plethora of examples showing face images

generated through GAN, this experiment initially constructed a

network structure consisting of convolution–inverse convolution–

convolution. The convolutional part begins by applying two layers

of convolutional kernels to the input latent vector and extracting the

intricate details of the features of the latent vector. Conducting

convolution as the initial step effectively reduces the network

parameters and computational workload, thus accelerating

subsequent inverse convolution operations. Following the inverse

convolution layer, a convolution layer is added to extract the
B

A

FIGURE 4

Loss and accuracy under data augumentation.
TABLE 2 The performance of the network under data augmentation
across different sample sets.

Classification Train Validation Test

Precision 0.9997 .9531 0.9219

Loss Value 0.0112 0.1580 0.2945
frontiersin.org
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features of the generated image and feed them into the

discriminator for discrimination. Using the aforementioned

hyperparameters and training methodology, the model was

trained for 1000 epochs. The training losses (blue for the
Frontiers in Plant Science 08
generator loss and red for the discriminator loss) are illustrated

in Figure 6A.

The aforementioned loss values showed that as the number of

training iterations increased, the generator loss of the GAN

gradually increased and reached an unstable state. In the later

stages, a gradient explosion occurred. The images generated were of

subpar quality with a certain degree of blurriness. Examples of the

partially generated images are shown in Figure 7A.

The issue reflected in the convolution–deconvolution–

convolution model primarily manifested as the loss of certain

image features owing to excessive convolution. To address this
B

A

FIGURE 5

Loss and accuracy under transfer learning.
TABLE 3 Performance of the network with transfer learning on
various datasets.

Classification Train Validation Test

Precision 0.9855 0.9375 0.9459

Loss Value 0.0353 0.2557 0.1168
frontiersin.org
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problem, a convolution–deconvolution structure was used to reduce

feature map compression. Although this approach increased the

training time and computational complexity, it significantly

improved the image quality. Using these hyperparameters and

training approach, the training loss, with blue denoting the

generator loss and red denoting the discriminator loss, after 1000

training iterations is shown in Figure 6B.
Frontiers in Plant Science 09
The aforementioned loss values showed that as the number of

training iterations increased, the generator loss of the GAN

gradually increased and remained in an unstable state, whereas

the discriminator loss continued to decrease. However, this model

overcomes the issue of gradient explosion, allowing the generator

loss to remain within an acceptable range. In the later stages, the

discriminator loss reached values below 0.0, indicating that the

discriminator started dominating the generator generation process.

In this scenario, the generator could not generate sufficiently high-

quality images. Although it performed well in generating images of

healthy leaves, it exhibited shortcomings in generating images of

diseased leaf samples, such as inadequate detail and blurry edges. A

subset of the generated images is presented in Figure 7B.

Considering issues such as the loss of image detail caused by the

convolution–deconvolution structure and recognizing that the

nature of the foliage is relatively simple, the convolution structure

before the deconvolution process was eliminated. Instead, only the

basic deconvolution method was used for image restoration.

Although this structure increased the computational complexity

and training time, it yielded higher image quality and finer edge

details. Using the aforementioned hyperparameters and training

approach, 1000 training iterations were performed, and the

corresponding training losses, with blue representing the

generator loss and red representing the discriminator loss, are

displayed in Figure 6C.

The given loss values have shown that the network loss of this

structure is significantly lower than that of the convolution inverse

convolution structure, and converges more effectively. During the

initial training phase of the network, the generator and

discriminator formed a strong adversarial relationship. This

enabled the generator to produce images with superior edge

details. In the later stages of training, the discriminator began to

dominate the generator. In such cases, there is no further need for

continued training, as this would exacerbate overfitting in the

network. The partially generated images are shown in Figure 7C.

After comparing the performances of the three network

architectures, the third architecture, specifically the deconvolutional

network structure, was chosen to generate a new training set. This

dataset was completely generated by a well-trained GAN and

consisted of a training set and a validation set. The training set

comprised 1600 images of healthy cotton leaves and 1600 images of

diseased cotton leaves, for a total of 3200 images. The test set included

400 images of healthy cotton leaves and 400 images of diseased cotton

leaves, totaling 800 images. The original resolution of each image is

256 × 256 pixels. Partial representations of the samples are shown in

Supplementary Materials.

The network was trained by using the data generated from the

GAN network, that is, 3200 images for the training set, 800 images

for the validation set, and 187 images for the testing set. After

training the network using the training set, its generalization ability

was tested using the validation set. The loss rate obtained and its

accuracy are illustrated in Figure 8.

The model consistently exhibited favorable convergence during

the training process. However, a linear fit of the validation accuracy

showed a potential overfitting state, where the network may have

excessively learned repetitive features from certain samples.
B

C

A

FIGURE 6

Three different structures of GAN network loss value.
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However, the model demonstrated high validation accuracy and

low validation loss, which were not observed during the training of

the first two sample sets. During the training phase, the validation

loss remained relatively stable and comparable to the training loss.

Overall, the validation accuracy remained consistently higher than

the training accuracy, reaching approximately 99%.

Table 4 provides a comparison of the highest accuracies

achieved on the training and validation sets, as well as the

accuracy of the test set. The training and validation sets

achieved commendable accuracy, surpassing 98% with

relatively low loss values. However, the performance of the

model on the test set was slightly inferior to that of the

training process, with an accuracy of 95%. The model exhibited

signs of overfitting during training, potentially owing to

interference from a large number of visually similar image

pairs in the samples, making it more prone to overfitting. This

is a challenge encountered when using GAN.

A comparison of the accuracy and loss values for the enhanced

dataset using the GAN, augmented dataset, original dataset, and

transfer-learning techniques is presented in Table 5.

The data presented in the table are represented by the bar chart

in Figure 9.
Frontiers in Plant Science 10
4 The outcome of the discussion

4.1 The impact of data augmentation
techniques on the outcomes of training

Data augmentation is a commonly used technique that can

increase the number of training datasets by transforming and

expanding the original data. Data augmentation helps models learn

more robust and generalized feature representations, thereby

alleviating the problem of overfitting. Data augmentation can

simulate diversity in the real world and improve the performance

of a model in various scenarios. However, inappropriate or excessive

data augmentation operations may introduce noise or unnecessary

changes, leading to a decrease in the model performance.

In this study, the data enhancement technique mainly

manipulates the experimental data such as rotation, noise, and

changing exposure values. It significantly expands the training data

set in a shorter time, and compared with the original data set on the

convolutional network test, the use of data-enhanced samples really

improves the robustness of the test model, effectively reduces the

model’s under-training, and the model is more robust, which

reduces the dependence on the training samples.
B

C

A

FIGURE 7

Three different structures of GAN networks generate images every hundred rounds.
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However, data augmentation shows some shortcomings for this

small sample size. The performance of data augmentation in

generating samples on this training set was not sufficient for the

model to learn the complexity of the task adequately, and data

augmentation introduced unwanted variations compared to other

methods of expanding samples, and in some of these variations

(brightness changes, noise additions) data augmentation resulted in

some distortion of the images (darker images became darker, brighter

images became brighter), which impacted the model’s ability to
Frontiers in Plant Science 11
understand the real data and generalization ability. The data

enhancement cannot completely replace the real data, because the

enhanced data is based on the conversion of existing data and cannot

completely replace the diversity and complexity of real data. Data

augmentation also introduces some unwanted bias, and in the initial

experiments, the bias in the augmentation settings resulted in very

low performance of the test model on the sample set, which indicates

a preference or over-augmentation of certain categories or features.

This may lead to a decrease in model performance in some cases.
B

A

FIGURE 8

Loss and accuracy during GAN network training with augmented samples.
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4.2 The impact of transfer learning
techniques on training outcomes

By training models in a source domain, their knowledge can be

transferred to a target domain, reducing the need for extensive labeled

data. Transfer learning effectively uses existing data and models to

achieve a better performance in the target task. However, the success

of transfer learning is closely related to the similarity between source

and target domains. If significant differences exist between the two

domains, the effectiveness of transfer learning may be limited.

The InceptionV3 network used in this study was pre-trained on

a large ImageNet dataset, which contains plant-specific data.

Therefore, it is suitable for transfer learning of cotton wilt.

Migration learning uses the knowledge of the original domain to

help train small samples, and its does not require time for data

manipulation for data augmentation, thus reducing the training

time. In addition, migration learning introduces additional training

samples that increase the amount of training data and help the

model better learn the features and patterns of the target task.

However, for this training, there are still some differences between

the original dataset and the target dataset, and in the convolutional

network used for testing, this small difference will affect the training

effect more. Although migration learning can use the knowledge and

data of the source domain to increase the number of training samples,

in the case of this experiment, the data of the source domain itself is

limited, so the effect of migration learning is more limited.
4.3 The impact of generative adversarial
network technology on training outcomes

Known as a generative adversarial network (GANs), the

framework comprises a generator and a discriminator, engaging
Frontiers in Plant Science 12
in a game-like training process where the generator aims to produce

realistic data, while the discriminator tries to differentiate between

real and generated data. GAN networks have demonstrated effective

performance in tasks such as image synthesis and style transfer,

generating images that exhibit realism and diversity. However, the

training process of GAN is unstable, often leading to issues such as

mode collapse and convergence.

In this study, a GAN structure with three distinct architectures

was used. Through the continuous adjustment of the

hyperparameters, a network structure that generated more

realistic and clear samples was ultimately selected.

In the final model, the GAN network performs effective data

augmentation and sample expansion, and it generates realistic

synthetic data, which is particularly beneficial for training with

limited samples. By generating additional samples, especially in the

absence of rich data in the target domain, the GAN network can

expand the training data set, thereby increasing the diversity and

number of training samples. The GAN network, in this experiment,

although caused overfitting of the convolutional network used for

testing (so much realistic generated data should be tested with a

more complex network, and in order to ensure the consistency of

the experimental variables, a more complex network was not used

for the three samples to ensure the consistency of the experimental

variables), but its performance on the test set is also significantly

due to the other two data expansion methods. The data generated

by GAN can simulate the distribution characteristics of real data

and help the model to better understand and adapt to the real data

of the target task. As a result, the robustness and performance of the

model are improved when dealing with real data.

However, the GAN network shows some shortcomings in this

experiment, which are due to the characteristics of the GAN

network. First of all, GAN network has the characteristic of

training instability, due to the generator and discriminator against

each other, its parameter transmission is unstable, so it is easy to

have the phenomena such as gradient explosion and pattern

collapse during the training process, so the GAN network needs

more debugging and optimization to ensure the stability of the

GAN and the quality of the generated data. At the same time, GAN

networks require high computational resources, and training with a

small sample size requires striking a balance between limited

computational resources and training effects. Finally, in terms of

generated data, although GAN networks can generate real data,

there is still randomness and uncertainty in the generated samples,

which need to be checked and used.
5 Conclusion

Using the power of Generative Adversarial Networks (GANs)

can significantly enhance the precision of training in small-scale

learning. GANs achieve this by generating aesthetically persuasive

synthetic data, thereby expanding the training dataset and

increasing its diversity. This data augmentation assists in

alleviating the overfitting tendencies inherent in small-scale

training, ultimately enhancing the generalizability of the model.
TABLE 4 Performance of GAN network on different sample sets with
augmented samples.

Classification Train Validation Test

Precision 0.9988 0.9922 0.9499

Loss Value 0.0249 0.0249 0.3344
TABLE 5 Comparison between GAN network with augmented samples
and transfer learning, data augmentation, and original data.

Classification Train Validation Test

Precision (GAN-Enhanced) 0.9988 0.9922 0.9531

Accuracy (Transfer Learning) 0.9855 0.9375 0.9459

Accuracy (Data Augmentation) 0.9838 0.9286 0.9333

Accuracy (Original) 0.9805 0.9531 0.8973

Loss value (GAN-Enhanced) 0.0249 0.0249 0.3167

Loss value (Transfer Learning) 0.0353 0.2557 0.1168

Loss value (Data Augmentation) 0.0469 0.1095 0.1823

Loss value (Original) 0.1070 0.1470 0.2170
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The process of training a GAN aids the model in acquiring more

refined and superior feature representations, subsequently

bolstering the training accuracy.

By using the data generated by GANs, the model can more

effectively adapt to the distribution and characteristics of real-world

data. The versatility and authenticity of the generated data

contribute to the model’s improved comprehension of the target

task, along with augmented performance on unfamiliar data

instances. Despite the potential challenges associated with the

stability and computational resource requirements during GAN

training, the advantages of leveraging GAN-generated data in

small-scale learning far outweigh any obstacles encountered.

Data augmentation and feature learning based on GANs

substantially enhanced the training accuracy of small-scale

learning. By augmenting the dataset, mitigating overfitting, and

simulating the distribution of real-world data, this approach

provided a model with an enhanced training foundation. Hence,
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in small-scale learning tasks, the use of Generative Adversarial

Networks is a valid and effective strategy that enables improved

model performance and yields superior training outcomes.
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