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Tomato brown rot
disease detection using
improved YOLOv5 with
attention mechanism

Jun Liu*, Xuewei Wang*, Qianyu Zhu and Wenqing Miao

Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science
and Technology, Weifang, China
Brown rot disease poses a severe threat to tomato plants, resulting in reduced

yields. Therefore, the accurate and efficient detection of tomato brown rot

disease through deep learning technology holds immense importance for

enhancing productivity. However, intelligent disease detection in complex

scenarios remains a formidable challenge. Current object detection methods

often fall short in practical applications and struggle to capture features from

small objects. To overcome these limitations, we present an enhanced algorithm

in this study, building upon YOLOv5s with an integrated attention mechanism for

tomato brown rot detection. We introduce a hybrid attention module into the

feature prediction structure of YOLOv5s to improve the model’s ability to discern

tomato brown rot objects in complex contexts. Additionally, we employ the

CIOU loss function for precise border regression. Our experiments are

conducted using a custom tomato disease dataset, and the results

demonstrate the superiority of our enhanced algorithm over other models. It

achieves an impressive average accuracy rate of 94.6% while maintaining a rapid

detection speed of 112 frames per second. This innovation marks a significant

step toward robust and efficient disease detection in tomato plants.

KEYWORDS

object detection, tomato brown rot, YOLOv5, hybrid attention, loss function
1 Introduction

Plant protection is a crucial aspect of agriculture, and precise disease detection and

early forecasting are pivotal for maximizing crop yields. Presently, the identification and

prediction of crop diseases heavily depend on local plant protection agencies. Nevertheless,

constrained resources and a scarcity of experts present obstacles to the widespread

implementation of scientific prevention and control strategies across diverse regions.

Additionally, rural agricultural workers frequently lack the necessary expertise, leading

to suboptimal disease management and impeding large-scale control initiatives. Since crops

are predominantly grown in dispersed locations by individual farmers, the outbreak of
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diseases poses a significant challenge. Indiscriminate use of

chemical pesticides by farmers not only exacerbates regional drug

resistance but also poses a severe threat to the ecological

environment (Horvath, 2018). Hence, it is crucial to propose a

timely and efficient detection method that accurately identifies and

diagnoses crop diseases. This will enable the implementation of

appropriate preventive measures aimed at minimizing losses.

Tomatoes are among the most widely cultivated vegetables

globally. However, they are susceptible to various diseases, with

brown rot being one of the most prevalent. Therefore, this study

takes tomato brown rot as a representative example. Also known as

tomato fruit drop, tomato brown rot is a prominent ailment

affecting tomatoes (Review, 1991). This disease can occur in both

open field and greenhouse production systems, and tomatoes may

become infected at any stage of growth, leading to devastating

consequences and significant losses for vegetable farmers. In recent

years, the incidence of tomato brown rot has increased, resulting in

substantial economic losses for farmers. Extensive field

investigations and comprehensive analyses have revealed that

tomato brown rot primarily manifests after heavy rainfall and

high temperatures, causing plant wilting and fruit drop.

Generally, crop yield losses range from 30% to 40% in affected

areas, while severely affected regions experience yield reductions

exceeding 50% (Liaquat et al., 2019). Immature fruits are

particularly vulnerable to tomato brown rot, although the stems

and leaves can also be infected. The symptoms of this disease are

multifaceted and often coexist with other disease symptoms,

significantly complicating diagnosis efforts. Accordingly, there is

an urgent need to develop a rapid and reliable detection method for

early identification of tomato brown rot.

The current diagnosis of tomato brown rot predominantly depends

on visual assessment by trained experts. Nevertheless, this method

demands substantial time for professional training, and human

judgment is inherently subjective, complicating the establishment of

standardized criteria. In contrast, Artificial Intelligence (AI) presents a

range of advantages, encompassing objectivity, enhanced accuracy, and

measurable judgment outcomes. Integrating AI into the investigation

of tomato brown rot and related diseases allows for the resolution of

qualitative issues with heightened precision and the analysis of

quantitative concerns with greater accuracy.

Most previous research on disease identification methods has

been conducted in laboratory settings or controlled conditions. The

limited number of samples obtained in natural environments has

hindered the generalization capability of models. When utilizing

large public datasets, the simplicity of image backgrounds and

insufficient data representation become significant issues.

Consequently, when applied to practical scenarios, the lack of

dataset representativeness diminishes the model’s ability to

extract disease characteristics from complex backgrounds. This

inadequacy results in reduced accuracy and speed in crop disease

detection. To enhance model accuracy, researchers typically employ

deep learning network structures with more convolutional layers to

extract object features. However, this increases computational

requirements and hardware dependence, leading to excessively

long recognition times. As a result, the effectiveness of practical

implementation in natural environments is severely restricted.
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In this study, we employ a deep learning object detection

algorithm to develop an online, non-destructive method for

identifying tomato brown rot. This approach seeks to overcome

the limitations of traditional artificial recognition, addressing its

challenges and constraints. To enhance the precision of tomato

brown rot disease identification and localization, we present an

algorithm built upon an improved YOLOv5.

Our primary contributions are as follows:
1. We introduce a hybrid attention module into YOLOv5’s

feature prediction structure, bolstering its capacity to learn

features from disease objects in complex contexts.

2. We replace the GIoU Loss with CIoU Loss, resulting in an

accelerated bounding box regression rate and improved

positional accuracy. This, in turn, enhances the detection of

diseased objects.

3. We conduct experiments using a tomato disease dataset,

with results demonstrating that our algorithm achieves a

mean average precision (mAP) of 94.6%, a noteworthy

4.8% improvement over YOLOv5. Moreover, our detection

accuracy significantly outperforms other mainstream

algorithms.
In conclusion, our algorithm successfully fulfills the demands

for accurate identification and localization of tomato brown rot in

complex greenhouse environments.
2 Related work

2.1 Plant disease image recognition based
on simple background

Plant disease images with a simple background exhibit

characteristics such as a single background, minimal interference

factors, and distinctive disease features. Previous research in this

area has focused on improving disease feature extraction and

reducing recognition error rates. Chen et al. (2020) utilized

VGGNet and Inception modules pre-trained on ImageNet for rice

disease recognition, achieving an average precision rate at 92%.

Mensah et al. (2020) introduced a Gabor Capsule network for

tomato and citrus disease recognition in the PlantVillage dataset,

attaining a test set accuracy of 98.13%. Atila et al. (2021) introduced

EfficientNet, achieving an accuracy of 99.91%. Jain et al (Jain and

Gour, 2021). proposed a method using conditional generation

inverse network (C-GAN) to generate composite images, an

accuracy rate of 99.51% was attained. Joshi et al (Joshi and

Bhavsar, 2020). investigated feature extraction of crop images

affected by bacillus through a multi-layer convolutional neural

network and fusion of multi-feature images, yielding promising

results in crop bacterial disease recognition. Agarwal et al. (2020)

introduced a technology to categorie 10 types of tomato disease

images, designing an 8-layer convolutional neural network

structure. However, due to limited availability of samples for the

10 tomato disease categories, the author indicated room for

improvement in classification accuracy. Zhang et al. (2020)
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utilized an enhanced Faster RCNN to detect healthy tomato leaves

and four distinct disease types. Instead of VGG16, they employed a

depth residual network for image feature extraction and

implemented the k-means clustering algorithm for bounding box

clustering. Experimental results on open datasets showed an

average recognition accuracy of 98.54% with a detection time of

only 470 ms.

These studies have yielded favorable outcomes in identifying

plant diseases against simple backgrounds. However, Notably, the

experimental data acquired controlled laboratory settings

significantly differs from the complex background scenarios

encountered in actual agricultural production processes.

Consequently, the aforementioned research might experience a

notable decline in disease identification accuracy when confronted

with images collected under realistic complex backgrounds.
2.2 Plant disease image recognition in
natural scene

Plant disease images captured in natural scenes are

characterized by complex backgrounds, which accurately

represent real-world application scenarios. The primary focus of

research regarding plant disease images in natural scenes lies in

eliminating the impact of complex backgrounds and non-standard

photography on disease recognition accuracy. Lee et al. (2020)

collected and trained 1822 tea pathological images, conducting

experiments using Faster RCNN, which achieved an accuracy rate

of 89.4%. Bollis et al. (2020) implemented a approach that

substantially reduced the annotation task and was applied to

identify citrus crop diseases and pests using the self-established

CPB dataset, achieving an accuracy of 91.8%. Demird et al (Demir

and Vedat, 2021). combined a newly developed depth CNN model

with the impulse neural network (SNN) model. Experimental

results demonstrated that the hybrid model proposed achieved an

accuracy rate of 97.78%. Wang et al. (2021) introduced a new

method that achieved disease identification accuracy of 99.7% in

controlled laboratory environments. However, when tested in

realistic environments, the disease identification accuracy dropped

to 75.58%. Yang et al. (2021) introduced an innovative rebalancing

convolutional network designed specifically for rice diseases and

pests based on field image data, achieving an accuracy of 97.58%. He

et al. (2021) developed a watermelon disease detection algorithm.

They improved the preselector setting formula of the SSD model,

resulting in an average accuracy of 92.4%. Wu et al. (2021) utilized

two state-of-the-art object detection algorithms, and experimental

results showed a precision range of 0.602-0.64, wherein YOLOv3

demonstrated a smaller size and faster processing speed compared

to Faster RCNN. Temniranrat et al. (2021) proposed a rice disease

diagnosis system based on improvements to the YOLOv3 model.

The detection accuracy of this model reached 78.86%, with the

entire detection process taking approximately 2-3 seconds. Gautam

et al. (2022) considered various architectures, namely InceptionV3,

VGG16, ResNet, SqueezeNet, and VGG19, for the detection of

diseases in rice leaves. They employed additional fully connected
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layers in deep neural networks (DNN) to identify biotic diseases in

rice leaves caused by fungi and bacteria, achieving an accuracy of

96.4%. Aggarwal et al. (2023) introduced a lightweight federated

learning architecture for rice leaf disease recognition, achieving

outstanding training and evaluation accuracy of 99%. Their

research revealed that a federated learning model with multiple

clients outperformed traditional pre-trained models.

These studies demonstrate that deep learning exhibits

outstanding performance within the domain of plant diseases

detection under natural scenes and can serve as a powerful

technical tool. However, there is currently a lack of research on

tomato brown rot based on deep learning. Given the complexity of

its symptoms, manual identification of diease symptoms remains

the primary method for early diagnosis of this disease. Therefore,

exploring the application of deep learning in recognizing tomato

brown rot diease symptoms holds significant research potential.
2.3 Object detection algorithms

Computer vision encompasses a critical research field known as

object detection, which serves as the fundamental linking

component between object recognition and tracking. The main

objective of algorithms for object detection is to accurately

recognize and locate specific targets present in images by

determining their location and classification. Two main categories

exist for these algorithms: the first is candidate region-based (two-

stage), and the second is regression-based (one-stage). The key

distinction between these two categories lies in the approach

utilized for generating candidate bounding boxes. The former

utilizes sub-network assistance to generate candidate bounding

boxes, while the latter directly produces them on the feature map.

The algorithm utilizing candidate regions is an adaptation of the

RCNN proposed by Girshick et al. in 2014 (Girshick et al., 2014).

RCNN was the pioneer in incorporating deep learning into the field

of object detection, marking a significant breakthrough, achieving

an mAP value of 66.0% on the Pascal VOC dataset. Building upon

this foundation, subsequent algorithms such as Faster RCNN (Ren

et al., 2017), and Mask RCNN (He et al., 2017) have emerged. On

the other hand, the regression-based algorithm traces its origins to

the YOLO (Redmon et al., 2016) introduced by Redmon et al. in

2016 and the SSD algorithm (Liu et al., 2016) proposed by Liu et al.

This approach transforms detection into a regression problem and

significantly enhances detection speed. Further advancements have

led to the development of algorithms like RSSD (Jeong et al., 2017),

YOLO v2 (Redmon and Farhadi, 2017), YOLO v3 (Redmon and

Farhadi, 2018), YOLO v4 (Bochkovskiy et al., 2020), YOLO v5

(YOLOv5, 2021), YOLOX (Ge et al., 2021), YOLOV6 (Li et al.,

2022), YOLOV7 (Wang et al., 2023) and YOLOV8 (Terven and

Cordova-Esparza, 2023).

Algorithms based on candidate regions generally exhibit slower

detection speeds and do not meet real-time detection requirements,

but they achieve good detection accuracy. On the other hand,

regression-based algorithms offer faster detection speeds and

better real-time performance, although their detection accuracy is
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poorer compared to two-stage algorithms. Currently, extensive

research has led to the proposal of various object detection

algorithms. Moving forward, algorithm development should

prioritize lightweight object detection algorithms that strike a

balance between parallel detection speed and accuracy.
2.4 Attention mechanism

Since the data used in this study consists of tomato disease data

obtained under greenhouse conditions, it is susceptible to

environmental factors and may contain significant amounts of

noise during the identification process. This noise information

can also propagate through the network model. With the increase

in the number of network layers during the learning process, there

is a corresponding amplification of noise information within the

feature map, ultimately impacting the model negatively (Zhu et al.,

2021). To address this issue, the model incorporates an attention

mechanism, which serves as a solution. It is a critical concept in

neural networks that was initially applied in machine translation

and has now gained wide usage in computer vision. The attention

mechanism can be intuitively explained through the human visual

mechanism. Its fundamental idea is to filter out irrelevant

information and prioritize key information similar to human

vision. By adjusting the weights of each channel, the attention

mechanism assists the model in capturing more useful semantic

information for the recognition task. As a result, it enhances

valuable information, suppresses the weight of noise and other

interfering elements, and mitigates their negative impact on

recognition. Moreover, The incorporation of the attention

mechanism enhances the overall performance and effectiveness by

directing more attention to effective features, ultimately enhancing

the model’s recognition performance (Ju et al., 2021). Yohanandan

et al. (2018) (Yohanandan et al., 2018) pointed out that the visual

attention mechanism closely aligns with human visual cognition.

Consequently, leveraging the visual attention mechanism in

computer vision offers significant benefits for various tasks. In

recent years, numerous researchers have effectively improved key

feature extraction capabilities in object detection networks by

incorporating visual attention mechanisms. It has been

demonstrated that attention mechanisms are an excellent choice

for enhancing model performance.

The object detection technology based on the YOLO algorithm

has demonstrated significant advancements in image recognition in

recent years. However, certain challenges still exist when it comes to

object detection in plant disease images. Considering the issues

prevalent in detecting tomato brown rot images within complex

scenes, this study proposes the utilization of the YOLOv5 network

with a Hybrid attention module for tomato brown rot detection. By

integrating a Hybrid attention module into the feature prediction

structure of YOLOv5, the capability to learn features of diseased

objects amidst complex backgrounds is enhanced. Additionally, the

loss function is improved considering the characteristics of the

disease spots, thereby improving the detection performance of

diseased objects within the image. Finally, a series of comparative

tests are carried out to assess the efficacy of the algorithm.
Frontiers in Plant Science 04
3 Materials

3.1 Dataset collection

For this study, tomato disease images were captured at the

greenhouse tomato experimental base of our laboratory to create a

dataset of tomato disease images. The dataset comprises two

categories of images: healthy tomato leaves and tomato brown rot

images. To account for various weather conditions in natural

settings, images were acquired under different scenarios, including

sunny and cloudy days, morning and afternoon sessions, and both

normal photography and backlight photography. The image

acquisition process encompassed the early, middle, and late stages

of the disease.

The collection device used in this study is a remote-operated

patrol robot equipped with a high-definition camera (HS-CQAI-

1080, 4 megapixels). This camera enables the capture of 360-view

greenhouse plant images and offers various functionalities such as

zoom, dimming, zoom-in and zoom-out capabilities, as well as

preset position settings. The robot has a maximum horizontal

moving distance of 27 meters and a vertical moving distance of

1.5 meters. It allows for the collection of high-definition images of

various types of diseases affecting tomato. The main goal of the data

collection process is to examine and capture clear images of tomato

disease. Therefore, the collected images predominantly feature

lesion region, which are positioned at the center of the images.

This study involves a significant volume of images depicting

tomato disease, which were acquired over a considerable time span.

A total of 8,956 tomato images were collected in 4 cycles. After

excluding highly blurry samples, 7,029 samples were retained,

forming a comprehensive tomato diease image database for

training and testing purposes in the context of tomato brown rot.

This dataset consisted of 3,968 healthy tomato leaves and 3,061

tomato brown rot images. Some samples are shown in Figure 1.

To augment the sample set specifically for tomato brown rot, an

additional 871 images were acquired through the implementation of

a web crawler technique, yielding a cumulative count of 3,932

tomato brown rot sample images. The dataset was divided into

three sets, namely the training set, validation set, and test set, in a

ratio of 6:2:2. Notably, the test set was not subjected to data

augmentation using the web crawler approach, and therefore, the

original images were selected for the test set.
3.2 Data annotation

Supervised training is required for the convolutional neural

network. Since images themselves lack labels and semantics, they

need to be annotated for training purposes. In this study,

professional technicians performed a thorough comparison and

confirmation process. The annotation tool, LabelImg, was utilized

to label the tomato brown rot images, distinguishing between

healthy leaves and those affected by brown rot, as seen in

Figure 2. Following the annotation process, an XML file was

generated for each tomato disease image.
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3.3 Data enhancement

During the training of the tomato brown rot detection model,

an issue arose due to the excessive number of model layers. The

model tended to overlearn the details within the training data,

resulting in subpar generalization capabilities and a propensity for

overfitting. To tackle this issue, an image preprocessing method was

employed to expand the training set and increase the sample size

through random transformations. This approach aimed to enhance

the model’s generalization ability.

By applying these methods, the original training and

verification datasets were expanded by a factor of 5, resulting in a

total of 31,605 images. Importantly, the original annotations

remained valid throughout the image augmentation process.

Additionally, The dimensions of the images analyzed in this study
Frontiers in Plant Science 05
were scaled to 224 × 224 pixels. Table 1 presents the distribution of

the tomato disease image database.
4 Methods

4.1 YOLOv5

YOLOv5 (You Only Look Once) is one of the more advanced

and mature target detection algorithms, with excellent performance

in detection accuracy and speed, and more flexible network

deployment.YOLOv5 has five versions, n, s, m, 1, x, with certain

differences in accuracy, speed, network size, etc., as shown in

Table 2, which shows that: under the condition of increasing a

smaller number of parameters (Params) and computation (FLOPs),
FIGURE 1

Partial Samples of the Self built Dataset.
FIGURE 2

Annotation interface.
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the accuracy of s is greatly improved compared with n and the speed

remains unchanged, although the accuracy of m, 1, x is improved

compared with s, but the parameters and computation volume

(FLOPs) are increased. As shown in Table 1, it can be seen that:

under the condition of increasing the number of parameters

(Params) and the amount of computation (FLOPs), the accuracy

of s is greatly improved compared to n and the speed remains

unchanged, although the accuracy of m, 1, x is improved compared

to s, the parameters and the amount of computation are greatly

increased, therefore the YOLOv5s model is selected as the basis.

YOLOv5s combines various computer vision technologies into

a small network model with fast computation speed. Refer to

Figure 3 for an illustration of the network structure.
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The main reasons behind the strong achievement of YOLOv5s

are as follows:
1. Input: Mosaic data augmentation is employed, which involves

combining images through random scaling, random

cropping, and random arrangement. This technique

enhances the diversity of the dataset. Additionally, adaptive

anchor box calculation is employed to ascertain the ideal size

of the bounding box by means of clustering. This approach

contributes to improved detection speed.

2. Backbone. The YOLOv5s network model utilizes several

components in its backbone architecture, including Focus

(Lin et al., 2017b), CSP (Wang et al., 2020) and SPP (He

et al., 2015). The Focus module performs a slicing operation

that expands the feature dimension during the conversion

from the input image to the feature map. CSP improves the

network’s learning ability while reducing memory usage. In

the YOLOv5s network, ordinary images with dimensions of

3 * 608 * 608 are initially input into the network. The size of

the feature map is determined after undergoing a single

slicing operation using the Focus module and becomes 12 *

304 * 304. Subsequently, it is transformed into a feature

map of dimensions 32 * 304 * 304 through a regular

convolution operation involving 32 convolution cores.
TABLE 1 Detailed information of samples.

Class
Image count
prior to data
augmentation

Image count
following data
augmentation

Number
of images
for test

Tomato
brown
rot

3932 16516 786

Healthy 3968 16668 793

Total 7900 33184 1579
TABLE 2 Different versions of YOLOv5.

Versions mAP0.5/% Speed/ms Parameters size/106 Computational size/109

YOLOv5n 45.7 6.3 1.9 4.5

YOLOv5s 56.8 6.4 7.5 16.5

YOLOv5m 64.1 8.2 21.2 49

YOLOv5l 67.3 10.1 46.5 109.1
FIGURE 3

Network Structure of YOLOv5s.
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Fron
The SPP structure enables the network to handle images of

varying scales, expanding its processing capabilities.

3. Neck. The neck component of the YOLOv5s network model

consists of PANET (Liu et al., 2018). PANET extends the

feature learning capabilities of the network by introducing

additional information transmission paths based on FPN

(Lin et al., 2017a). This enrichment allows for a broader

range of feature learning. In contrast to the CSP structure, the

neck employs a different variant. In the YOLOv5s network

model, the CSP1_1 Structure and CSP1_3 Structure are

employed as the backbone network. Additionally, the neck

section integrates CSP2_1 to strengthen feature fusion.

4. Prediction. The prediction phase of object detection

encompasses several tasks, including prediction of

bounding boxes, computation of the loss function, and

application of non-maximum suppression. In terms of

bounding box prediction, the loss function has been

enhanced from CIOU (Complete IoU) loss to generalized

IoU (GIoU) loss. This modification improves the accuracy

of localization. During the post-processing stage of object

detection, when there is a high density of objects in certain

areas of the image, the weighted NMS (Non-Maximum

Suppression) method is employed to mitigate the impact of

redundant bounding boxes on network parameter updates.
Although YOLOv5s offers rapid recognition, adaptive anchor

boxes, and commendable precision and accuracy, it exhibits

limitations in its object feature extraction capability. The existing

feature fusion network primarily concentrates on high-level

semantic information, resulting in a bottleneck when detecting

small objects with inconspicuous features, such as tomato

diseases. In order to tackle this problem, our team has developed

an improved approach that fully extracts and leverages object

features. This approach aims to augment the model’s detection

capability for small and complex objects like tomato brown rot,

ultimately yielding improved detection results.
4.2 Hybrid attention module

The original algorithm treats all image regions with equal

attention, which renders the network insensitive to feature
tiers in Plant Science 07
discrepancies and hinders the extraction of features from small

objects in the presence of complex backgrounds. To tackle this

concern, the present study introduces a novel methodology, the

introduction of a Hybrid attention mechanism. In scenes with

intricate backgrounds and numerous small objects, the

significance of various channels and spaces is simultaneously

emphasized with the aim of improving the extraction capacity of

features related to smaller objects. The configuration of the Hybrid

attention feature augmentation module is depicted in Figure 4. The

ordering of the attention modules aligns with the conclusions

drawn from Hu et al (Jie et al., 2017) and Woo et al. (2018).

The Hybrid attention mechanism is an effective module

designed to operate in two dimensions: channel and space. It

achieves feature adaptive learning by multiplying the feature map

with the attention map, the two are combined together. The Hybrid

attention mechanism serves as a lightweight and versatile module

capable of enhancing network representation without significantly

increasing network parameters.

The main focus of the channel attention module lies in

highlighting the channel-related details present in the feature

map. By utilizing maximum pooling and average pooling, The

spatial dimension of the feature map is compressed into a

condensed representation consisting of two descriptive values.

Subsequently, a shared network comprising hidden layers of

multilayer perceptrons computes a channel attention map.

In contrast, the positional information of object features is the

primary focus of the spatial attention module. Using maximum

pooling and average pooling, two feature descriptions are obtained.

These descriptions are then combined through a joining operation,

Afterwards, a conventional convolution operation is employed to

produce a spatial attention map.

Let F(i, j, z) ∈ RH�W�C represent the feature map input to the

Hybrid attention module, where H denotes the length of the feature

map,W represents the width of the feature map, and C indicates the

channel count in the input feature map. The indices i, j, and z lie

within the ranges i ∈ ½1,H�,   j ∈ ½1,W�, z ∈ ½1,C�, respectively.
Within the channel attention module, the input features

undergo spatial dimension compression using both mean value

pooling and maximum pooling layers. These operations aim to

emphasize crucial information within the channel domain.

Subsequently, the compressed feature map is fed into the

perception layer. Finally, the outputs of the two feature maps are
FIGURE 4

Hybrid attention module.
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superimposed and passed through an activation function, yielding

the channel attention weightW1 ∈ R1�1�C , as illustrated in formula

(1).

W1 = s fMLP ATavg F(i, j)ð Þ� �� �
⊕ fMLP ATmax F(i, j)ð Þð Þ� �

(1)

In the aforementioned formula, s represents the sigmoid

activation function, and ⊕ denotes the addition of corresponding

elements. The terms ATavg and ATmax correspond to the mean value

pooling layer and maximum pooling layer, respectively, as depicted

in formulas (2) and (3).

ATavg F(i, j)ð Þ = 1
H �WoH

i=1oW
j=1F(i, j) (2)

ATmax F(i, j)ð Þ = argmax oH
i=1oW

j=1F(i, j)
� �

(3)

The term fMLP refers to a multi-layer perceptron that consists of

an adaptive convolution layer f1×m and ReLU activation function, as

illustrated in formula (4).

fMLP = ReLU f 1�1�m(A)
� �

(4)

In the aforementioned formula, A represents the feature matrix

that is input into fMLP. The term f1×1×mdenotes a one-dimensional

convolution composed of m parameters. The relationship between

m and the number of feature channels C is depicted in formula (5).

m =
log2 (C)

k
+
b
k

����
����
Odd

(5)

Since the channel dimension C is usually a multiple of 2, fMLP is

utilized to map the non-linear relationship between the convolution

kernel size and the number of feature channels C. The value of m

can be adjusted flexibly by modifying parameters b and k. If m is a

non-integer, an odd number closest to m is chosen. This ensures

that the anchor point of the convolution core is positioned in the

middle, facilitating subsequent sliding convolution and avoiding

location offset. In comparison to the fully connected layer, fMLP

significantly reduces the model parameters while preserving the

ability to capture interaction information between channels, thus

minimizing the speed impact on the original module.

The output features of the channel attention module are

denoted as FC ∈ RH�W�C , as shown in formula (6).

FC = W1 � F(i, j, z) (6)

In the spatial attention module, the input feature map undergoes

compression in the channel domain through mean value pooling and

maximum pooling layers, respectively. This compression enhances

the distinction between background and objects on the spatial

domain. Subsequently, the compressed feature map is reassembled

in the channel domain. Finally, the convolution layer, f 7�7
con , adjusts

the channel depth and feeds it into the activation function to obtain

the spatial attention weight,W2 ∈ RH�W�1, as shown in formula (7).

W2 = s f 7�7
con ATavg FC(z)ð Þ� �� �

⊕ f 7�7
con ATmax FC(z)ð Þð Þ� �

(7)
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In the aforementioned formula, f 7�7
con represents the convolution

kernel with a size of 7×7.

Both attention modules utilize mean value pooling and

maximum pooling along the channel axis. Mean value pooling

emphasizes background information on the feature map, whereas

maximum pooling provides feedback to the pixel point that exhibits

the highest response in the feature map, thereby highlighting object

information in the image. Consequently, with the incorporation of

these two pooling layers, the network becomes more sensitive to

distinguishing objects from the background in the image.

The output features of the spatial attention module are denoted

as FS ∈ RH�W�C , as shown in formula (8).

FS = W2 � FC (8)

Finally, in YOLOv5s, FS is utilized to predict the location of

tomato disease objects and strengthens the network’s effectiveness

to learn about disease objects by selecting and weighting the

transmitted features.

In Figure 5, we present the improved network architecture,

featuring the integration of the Hybrid attention module just before

the prediction component of YOLOv5s. This alteration empowers

the network to make object predictions using the global attention

map created by the attention module. Given that the original

YOLOv5s network incorporates numerous residual links in its

feature extraction section, it’s essential to replace all of these

residual links with the attention module.
4.3 The improved loss function

To enhance the accuracy of model positioning, the bounding box

loss function in YOLOv5s incorporates GIOU_LOSS. This ensures

that even when the predicted box and the real box do not intersect,

GIOU_LOSS can predict their distance, overcoming the limitations

of IOU_LOSS. However, the GIOU_LOSS algorithm encounters an

issue where the position of the prediction box cannot be determined if

it is entirely contained within the true box (i.e., A∩B=B).
Therefore, this study examines the influence of the center point

distance and aspect ratio of detection and labeling bounding boxes on

the basis of the overlapping area. For object detection tasks, the

regression loss function used is CIOU_LOSS. CIOU_LOSS considers

the intersection area and distance between the central points of the

predicted box and the object box. In the event that the object box

encloses the prediction box, the separation between the two boxes is

directly measured. It also considers the center point distance of the

bounding box and the scale information of the width-height ratio of

the bounding box. Furthermore, the ratio between the length and

width of the prediction box and the object box is taken into

consideration to improve the quality of the bounding regression

result. Figure 6 illustrates the schematic diagram of CIOU.

Let’s assume that the diagonal distance of the minimum

bounding rectangle C is represented by Distance1, and the

distance between the center point of the object’s true box and the

prediction box is represented by Distance2. The loss function used
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in this study is CIOU_LOSS, as shown in formula (9).

CIOULoss = 1 − CIOU = 1 − IOU −
Distance22
Distance21

−
g 2

(1 − IOU) + g

	 

(9)

In the above-mentioned formula, g is a parameter that measures

the consistency of the aspect ratio of the object prediction box. It is

calculated as shown in formula (10).

g =
4
p2 arctan

wgt

hgt
− arctan

wp

hp

	 
2

(10)

In the above-mentioned formula, wgt and hgt represent the

width and height of the object bounding box, while wp and hp

represent the width and height of the prediction bounding box.
5 Experimental design

5.1 Experimental operation environment

The experimental setup for this study utilized the following

components: PaddlePaddle 2.4.0 as the deep learning framework, an

Intel Core i7 8700 K CPU, 32 GB of memory, and an NVIDIA
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GeForce GTX 1070 GPU. The programming language employed

was Python.
5.2 Evaluating indicator

The performance of the enhanced YOLOv5 algorithm is

assessed using several evaluation indicators including average

accuracy (AP), mean Average Precision (mAP), F1 score, and

detection rate. AP represents the average accuracy across different

recall rates, while mAP is the average sum of AP values. The F1

score is a measure of the harmonic mean between accuracy and

recall. Additionally, the detection rate is calculated as the number of

frames per second (FPS) that the model processes, reflecting both

the time complexity and the size of the model’s parameters.

AP, mAP, and F1 scores are expressed as shown in formular

(11), (12) and (13), respectively.

AP = ∫10 P(R)d(R) (11)

mAP = o
C
k=0APk
C

(12)

F1 =
2PR
P + R

(13)

In the above-mentioned formula, oC
k=0APk represents the

average accuracy of each category, where C is the total number of

categories. P (Precision) represents the accuracy, and R (Recall)

represents the recall rate. The formulas for P and R are shown as

follows:

P =
TP

TP + FP
(14)
FIGURE 6

CIOU schematic diagram.
FIGURE 5

The improved network structure.
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R =
TP

TP + FN
(15)

In the above-mentioned formula, in the case of detecting

Tomato Brown Rot disease, TP (True Positive) indicates the

count of accurately identified instances, FP (False Positive)

represents the count of incorrectly identified instances, and FN

(False Negative) corresponds to the count of undetected instances.
5.3 Model training

During the model training stage, we utilized an attenuation

coefficient of 0.0005, conducted 10,000 iterations, and initialized the

learning rate at 0.001. At the 2,000th and 3,000th iterations, we

adjusted the learning rate to 0.0001 and 0.00001, respectively.

Convergence was achieved after approximately 3,000 iterations, as

illustrated in Figure 7, depicting the loss function and accuracy.

Based on the performance evaluation results depicted in

Figure 5, it can be concluded that the enhanced YOLOv5 model

exhibits favorable outcomes during the training phase.
6 Analysis of experimental results

6.1 Qualitative analysis

To ensure a comprehensive assessment of the algorithm’s

generalization capabilities and avoid biased conclusions from a

single training-validation-test split, we employ multifold cross-

validation. Figure 8 illustrates the test results, revealing the

model’s effectiveness in real-world scenarios. The image

sequences in Figure 8 display the detection results at early,

middle, and late stages of tomato brown rot. More detailed

experimental results can be found in Table 3.

Based on the aforementioned results, the enhanced object

detection algorithm utilizing YOLOv5 achieves a detection
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accuracy of 93.2% for tomato brown rot disease and 96.5% for

healthy instances, respectively. Additionally, the processing speed

reaches 112 FPS. These results demonstrate that the proposed

model accurately detects tomato brown rot with excellent efficacy.
6.2 Quantitative analysis

To gauge the effectiveness of the enhanced YOLOv5s algorithm,

we conducted a comparative analysis against widely used object

detection algorithms, including Faster RCNN, FCOS, YOLOX,

EfficientDet, YOLOv4-tiny, and YOLOv5s. We ensured

uniformity in the training platform, configuration details, and

dataset throughout all experiments. Each algorithm was trained

and applied to detect the same set of images, enabling a

comprehensive performance evaluation. The outcomes of this

comparative analysis are presented in Table 4.

Table 4 clearly illustrates that Faster RCNN falls short in all

parameters, especially with extended inference time and a lower

frame rate, making it unsuitable for deployment on edge devices.

On the other hand, YOLOv5s stands out as one of the most favored

target detection algorithms, striking a commendable balance

between accuracy and speed.

In our study, we’ve harnessed the proposed method, which

outperforms other algorithms. It enhances both average accuracy

and detection speed, surpassing the original YOLOv5s algorithm by

4.8% and the Faster R-CNN algorithm by 4.3%. While YOLOX

boasts an impressive 119 frames per second (FPS), which slightly

exceeds our method’s 112 FPS, it sacrifices detection accuracy due

to its limited capability to detect small targets. This improvement in

detection accuracy primarily results from the introduction of the

hybrid attention module, enhancing feature learning in the disease

target region, and utilizing CIoU as the loss function for edge

regression, which elevates edge regression accuracy.

As a result, our enhanced algorithm excels in the complex

detection of tomato brown rot. The comprehensive results highlight

that, compared to other advanced algorithms, our method strikes a

superior balance between detection accuracy and speed in the task

of tomato brown rot detection, meeting the real-time detection

requirements of edge-end devices. Clearly, our method exhibits

distinct advantages over other detection models, firmly aligning

with the needs of online tomato brown rot detection tasks.
6.3 Ablation experimental analysis

In order to comprehensively assess the effectiveness of the

proposed methodology, an extensive experimental analysis was

conducted. These experiments aimed to assess how different

improvement modules impact the detection performance. The

model’s performance was evaluated based on two key aspects: the

precision of object detection and the rate of detection. The results of

these comparisons are provided in Table 5.

Our results highlight the substantial enhancement in model

detection accuracy achieved by incorporating the Hybrid attention

module, marking a notable increase of 3.4%. This improvement
FIGURE 7

Performance Evaluation of Model Training Process.
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comes with minimal impact on detection speed, with only a

marginal decrease of 6 frames per second. These findings

underscore the effectiveness of the proposed Hybrid attention

module in judiciously assigning network learning weight to

object-rich areas.

Furthermore, through the optimization of the loss function, we

observe a further 3.7% increase in detection accuracy while

maintaining consistent detection speed. This underlines the

success of the proposed loss function in prioritizing high-score

prediction bounding boxes and diminishing the influence of

redundant bounding boxes during subsequent screening.
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Considering the assessment of model accuracy and speed, it is

evident that the proposed model strikes a commendable balance

between detection precision and efficiency. This makes it well-suited

for deployment on resource-constrained embedded systems.
7 Application prospect

The model developed in this study demonstrates remarkable

accuracy and holds profound significance in several key areas. It

contributes to the formulation of effective disease prevention
TABLE 3 Detection results using the proposed algorithm.

Class AP/% Precision/% Recall/% FPS

Brown rot 93.2 93.5 92.7 112

Healthy 96.5 96.6 95.8 112
frontier
FIGURE 8

The visual representation of the detection approach in this study.
TABLE 4 Detection outcomes obtained from diverse algorithms.

Algorithms Backbone mAP(%) FPS(Frame/second)

Faster R-CNN ResNet50 90.3 8

FCOS ResNet101 85.7 16

YOLOX CSPDarkNet53 86.9 119

EfficientDet EfficientNet-B2 87.8 44

YOLOv4-tiny DarkNet53 88.7 98

YOLOv5s CSPDarkNet53 89.8 118

The proposed algorithm CSPDarkNet53 94.6 112
TABLE 5 Results of ablation experiments on tomato brown rot disease object detection.

Strategies Hybrid attention mechanism The improved loss function mAP(%) FPS(Frame/second)

1 × × 89.8 118

2 √ × 93.2 112

3 × √ 93.5 119

4 √ √ 94.6 112
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strategies, improves tomato yield and quality, reduces the cost of

on-site diagnosis of tomato diseases, and offers a scientific basis for

the creation of intelligent pesticide spray robots.

The results of this study readily translate into real-time disease

identification, facilitating precise prevention and control measures while

minimizing economic losses caused by diseases. We have already

established the infrastructure for the Tomato Greenhouse Internet of

Things equipment, as shown in Figure 9. This infrastructure provides a

strong foundation for the future implementation of an integrated

system for the detection and prevention of tomato diseases through

intelligent control. Furthermore, it sets the stage for ongoing disease

inspection and monitoring within greenhouses, employing continuous

video surveillance.
8 Conclusions and future directions

8.1 Conclusions

In this study, we harnessed a neural network model for the

precise detection and localization of tomato brown rot disease. We

introduced a novel hybrid attention module into the feature

prediction structure of YOLOv5, while refining the loss function.

Our experimental findings unequivocally confirm the efficacy of our

proposed approach. Notably, our method outperforms other

cutting-edge object detection algorithms when it comes to

identifying tomato brown rot in a greenhouse environment.
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While it’s true that our algorithm’s detection speed is marginally

slower than the original YOLOv5, this trade-off is well-justified by its

superior average accuracy, surpassing both the original YOLOv5 and

faster RCNN algorithms. The algorithm we’ve developed here is

eminently practical and can be seamlessly integrated into tomato

disease detection systems. It empowers precise, real-time disease

identification, particularly beneficial for vegetable growers and

individuals who lack comprehensive disease knowledge. This, in

turn, facilitates the timely implementation of effective preventive and

control measures, thereby minimizing economic losses.

8.2 Future directions

This study introduced a tomato brown rot detection algorithm,

bolstering the accuracy of disease identification. While progress has

been made, several areas warrant further exploration and

resolution. Future research can focus on:
1. Enhancing CNN Structures: Investigate and optimize

convolutional neural network (CNN) structures,

continually innovating and incorporating high-capacity

models for improved disease detection accuracy.

2. Early Disease Recognition: Develop recognition algorithms

and models for early disease identification, especially in

complex backgrounds. This research aims to boost the

efficiency and precision of tomato brown rot disease

detection, enabling timely disease prevention and control.
FIGURE 9

Tomato Greenhouse Internet of Things Equipment.
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Fron
3. Federated Learning Integration: Explore the potential of

integrating federated learning into our research to

further enhance disease detection results, ultimately

providing more effective tools for disease identification in

agriculture.
By pursuing these research directions, we can advance the field

of tomato disease detection, contributing to comprehensive and

effective disease management.
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