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Humans have been modifying plant traits for thousands of years, first through

selection (i.e., domestication) then modern breeding, and in the last 30 years,

through biotechnology. These modifications have resulted in increased yield,

more efficient agronomic practices, and enhanced quality traits. Precision

knowledge of gene regulation and function through high-resolution single-cell

omics technologies, coupled with the ability to engineer plant genomes at the

DNA sequence, chromatin accessibility, and gene expression levels, can enable

engineering of complex and complementary traits at the biosystem level.

Populus spp., the primary genetic model system for woody perennials, are

among the fastest growing trees in temperate zones and are important for

both carbon sequestration and global carbon cycling. Ample genomic and

transcriptomic resources for poplar are available including emerging single-

cell omics datasets. To expand use of poplar outside of valorization of woody

biomass, chassis with novel morphotypes in which stem branching and tree

height are modified can be fabricated thereby leading to trees with altered leaf to

wood ratios. These morphotypes can then be engineered into customized

chemotypes that produce high value biofuels, bioproducts, and biomaterials

not only in specific organs but also in a cell-type-specific manner. For example,

the recent discovery of triterpene production in poplar leaf trichomes can be

exploited using cell-type specific regulatory sequences to synthesize high value

terpenes such as the jet fuel precursor bisabolene specifically in the trichomes.

By spatially and temporally controlling expression, not only can pools of

abundant precursors be exploited but engineered molecules can be

sequestered in discrete cell structures in the leaf. The structural diversity of the

hemicellulose xylan is a barrier to fully utilizing lignocellulose in biomaterial

production and by leveraging cell-type-specific omics data, cell wall

composition can be modified in a tailored and targeted specific manner to
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generate poplar wood with novel chemical features that are amenable for

processing or advanced manufacturing. Precision engineering poplar as a

multi-purpose sustainable feedstock highlights how genome engineering can

be used to re-imagine a crop species.
KEYWORDS
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1 Introduction

Domestication and breeding efforts have shown that selection of

specific plant architecture traits across a wide array of plant species,

both annuals and perennials, results in improved traits for human

use, either for food, feed, or fuel (Ragauskas et al., 2006; Hollender

and Dardick, 2015). Similarly, selective breeding can yield distinct

chemotypes of crops with desired chemical profiles or compositions

(MacKay et al., 1997; Sattler et al., 2010). With advances in

biotechnology and genome engineering, existing knowledge of

developmental and metabolic pathways can provide the

foundation for strategic and multiplexed engineering of plant

architecture and metabolism on a genome and epigenome scale.

For example, an elegant but simple experiment changed the

architecture of solanaceous crops to be more suited to urban

agriculture, converting a vine to a compact, early maturing plant

through gene editing of only three key regulators of growth and

development (Kwon et al., 2020). Likewise, through direct gene

editing, tomatoes with elevated levels of g-aminobutyric acid were

developed (Waltz, 2022).

Many agricultural traits of interest are the direct result of tuning

gene expression (Semel et al., 2006; Rodrıǵuez-Leal et al., 2017),

which can be manipulated on several levels. Controlling transcript

abundance and/or cis-regulatory element (CRE) activity present

effective and robust approaches to tune the expression of specific

genes. Such genome engineering and synthetic biology approaches

require characterized DNA parts that underlie the toolkit to

modulate gene expression; however, there have been few plant-

specific and plant-derived parts that have been systematically

characterized, tested, and optimized. As a result, many of the

parts that are used in “cutting-edge” plant synthetic biology

efforts are derived from mammalian systems discovered over 30

years ago (Campbell et al., 1984). Thus, there is a great opportunity

to identify new plant DNA parts that will enhance the dynamic

range in which one can tune and manipulate gene expression in

plants. Furthermore, our understanding of the trans-regulatory

landscape has lagged, primarily due to a lack of scalable

approaches that can systematically characterize the regulatory

function of transcription factors in a systematic manner beyond

just their DNA binding properties. Transcriptional effector domains

are a broad and poorly characterized class of protein sequences that

play a role in regulating transcription either through directly

affecting transcription or indirectly modifying chromatin state.
02
Effector screens are only now being implemented in eukaryotic

systems (Tycko et al., 2020), and have been poorly characterized

systematically in plants.

Advances in microfluidics and droplet chemistry birthed single-

cell genomics, whereby molecular events such as transcript

abundance or chromatin accessibility are measured for thousands

of individual cells simultaneously (Vandereyken et al., 2023). These

technologies result in the ability to assign cell type labels (e.g.,

epidermis, xylem, mesophyll, etc.) to individual cells that are part of

a mixed cell-type population in a tissue or organ. Using single-cell

genomic data we can discern the identity of each cell type, detect

cell-type-specific expression of transcription factors and/or key

metabolic enzymes, and identify cell-type-specific CREs required

for spatial and temporal regulation of gene expression that can then

be used to drive transgene expression in a cell-type-specific manner

(Vandereyken et al., 2023).

For several crop species, we are on the cusp of true synthetic

biology in which a design-build-test-learn cycle is used to engineer

new traits and/or re-engineer existing traits. While model species

such as rice and Arabidopsis thaliana (hereafter Arabidopsis) are

powerful systems for synthetic biology approaches due to their

simple genomes, rapid generation times, and ease of genome editing

and transformation, they fail to provide a full spectrum of

phenotypes and attributes needed to engineer plants with

complex traits. Perennial trees represent a sustainable source of

fixed carbon and are significant feedstocks of manufacturing

processes including the pulp and paper industries, and,

increasingly, the bioenergy industry. Precision genome

engineering in perennial woody feedstock species would provide

opportunities to further benefit the bioeconomy and the

environment. One such perennial woody crop is poplar.
2 Populus: a key species for
sustainable biofuel, bioproduct,
and biomaterial production

Poplars (Populus sp. and hybrids) are among the fastest growing

trees in temperate zones important for both carbon sequestration

and global carbon cycling. As a species with rich genomics resources

(Tuskan et al., 2006; Evans et al., 2014), poplar has emerged as the

primary genetic model system for woody perennials (Jansson and

Douglas, 2007; Douglas, 2017; Zhang et al., 2019). While there has
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been a heavy focus on poplar cell wall composition and its use as a

biofuel feedstock (An et al., 2021; Schultz and Coleman, 2021), there

has also been a burst of basic research over the last few decades that

has substantially improved our understanding of poplar biology. As

poplar has a long breeding cycle, improving this key tree crop using

traditional breeding approaches is a decades-long process. The

advent of genome engineering and synthetic biology, coupled

with our increased knowledge base, provides the foundation for

engineering improved poplar for use as sustainable sources of

biofuels, biomaterials, and bioproducts. Key to success in the

development of engineered poplar will be bespoke clones with

architecture, photosynthetic, biochemistry, and ecological features

that are ‘tuned’ to their use as a biofuel, biomaterial and/or

bioproduct feedstock.
3 Morphotypes and chemotypes

Most crop species were domesticated within the last 10,000

years from wild relatives with key components of domestication,

known as the domestication syndrome, being modified architecture,

increased seed/fruit size, reduction in seed/fruit abscission,

modified flowering time, and altered seed/fruit composition

(Meyer et al., 2012). Modern breeding over the past century has

further improved and diversified agronomic traits represented by

current elite cultivars with high yield and improved quality traits.

One major component of increased yield is due, in part, to

alteration of plant architecture. For example, in maize, planting

density has increased from 32,000 plants/ha in the 1930s to >70,000

plants/ha in the 2000s, facilitated by changes in leaf angle resulting

in plants with more erect stature (for review see Mantilla-Perez and

Salas Fernandez, 2017). In other cereals, the Green Revolution was

propelled by breeding dwarf stature wheat and rice (Evenson and

Gollin, 2003); further improvements in wheat, barley, and oat have

resulted in more narrow and erect leaves that contribute to

increased grain yield. The optimized architectures of these

modern morphotypes improve light capture, photosynthetic

capacity, stand density, harvest index, and product quality.

Similar changes in the architecture of dicot crops is exemplified

by the breeding in the 1940s and 1950s of upright bushy-type beans

from prostate viney beans (Kelly, 2001). These changes in

architecture led to a significant change in agronomic practices

due to the ability to combine upright, bush types with increased

yield and improved disease resistance.

In addition to improved morphotypes, evolution and selective

breeding have resulted in chemical diversity within a species as

exemplified by numerous culinary herbs (oregano, thyme; aroma)

(Werker et al., 1985; Trindade et al., 2018), root crops (sweet potato;

carotenoid content) (Champagne et al., 2010), cannabis

(cannabinoid profiles) (De Meijer, 2014), eucalyptus (essential oil

profiles) (Wallis et al., 2011), and poplars (bud exudates)

(Greenaway and Whatley, 1990; Greenaway et al., 1991). This

diversification has resulted in ‘tuned’ chemotypes in which

individual accessions have a unique metabolite profile. For

example, basil cultivars have distinct profiles of phenolics that

contribute to the variation associated with its use as a flavoring
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herb or agent (Bajomo et al., 2022). In catnip, there are four possible

stereoisomers of the cat attractant nepetalactone and different

accessions have unique compositions of the four stereoisomers

(Lichman et al., 2020).

Thus, historical selection and conventional breeding have

converted wild species into novel morpho- and chemo-types that

are not only compatible with modern agronomic production

practices but also have altered compositional traits that are tuned

to desired human traits whether it be food, feed, or fodder.
4 Enabling technologies for genome
and epigenome engineering of
complex traits with precision

Our understanding of the cis-regulatory code in plants is

starting to emerge (Marand et al., 2021) thanks to studies that

map accessible chromatin regions reflecting nucleosome-depleted

regions. These regions are often enriched for transcription factor

binding elements, enhancers and silencers. Core promoters provide

the necessary sequences for transcription initiation, whereas

enhancers or silencers are bound by transcription factors that

exert activation or repression of gene expression, respectively

(Schmitz et al., 2022). The use of Assay for Transposase

Accessible Chromatin sequencing (ATAC-seq) (Buenrostro et al.,

2013; Lu et al., 2017; Maher et al., 2018) across a range of plant

species has shown that accessible chromatin regions are enriched at

the transcriptional start site marking the core promoter, yet 33-66%

of accessible chromatin regions containing enhancers and

promoters were located >1kb away from their target gene (Oka

et al., 2017; Lu et al., 2019; Ricci et al., 2019). The ease at detecting

accessible chromatin makes it possible to identify transcription

factor motifs providing a framework to begin construction of gene

regulatory networks.

Application of single-cell technologies to plant systems has just

begun to emerge (Ryu et al., 2021); to date, multiple single-cell gene

expression studies have been published in poplar using protoplasts

as well as isolated nuclei, including studies on vegetative shoot apex

(Conde et al., 2022), differentiating xylem (Li et al., 2021; Tung

et al., 2023), and stems (Chen et al., 2021; Xie et al., 2021; Du et al.,

2023). These studies have already revealed novel information on

cell-type-specific gene expression, developmental trajectories of cell

types, and new insights into vascular development in a woody

perennial compared to the herbaceous annual, Arabidopsis. With

respect to CREs, the majority of accessible chromatin studies to date

have been in bulk tissue thereby representing a diverse set of cell

types. At the single cell level, single nuclei RNA-seq and single cell

ATAC-seq from over 70,000 cells was used to produce an atlas of

CREs in the maize genome (Marand et al., 2021). This enabled

discovery of cell-type-specific CREs, cell-type-specific expression of

transcription factors and their binding motifs, non-cell autonomous

activity of transcription factors, and genome-wide association

signals that were highly enriched in cell-type-specific CREs and

for which breeders had been unknowingly selecting for cell-type-

specific CREs to improve trait performance (Marand et al., 2021).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1288826
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Buell et al. 10.3389/fpls.2023.1288826
Application of single-cell techniques to decipher cell-type gene

expression and CREs in each crop species will be instrumental in

development of genome engineering reagents that have high

temporal and spatial specificity.

Efforts to characterize the genome-wide landscape of plant

transcription factor binding and transcription factor effector

activity is revealing the components needed to function as

‘payloads’ to deliver enzymatic or effector activity to specific

regions of the genome. For example, the use of dCas9 and/or

TAL effectors in fusion with histone modifying enzymes such as

histone acetyltransferase, histone methyltransferases and histone

demethylases has been shown to engineer epigenomes in animal

and plant cells (Sgro and Blancafort, 2020; Gardiner et al., 2022).

Recent development of synthetic transcriptional systems have

enabled the efficient design of both synthetic transcription factors

and promoters (Belcher et al., 2020). Such systems have been

leveraged to tether putative effector domains from various

Arabidopsis transcription factors to create fusion synthetic

transcription factors that have enabled the characterization and

quantitatively measurement of the regulatory nature of each effector

domain (i.e., activation or repression). A recent study screened over

400 Arabidopsis putative effector domains that has unlocked a rich

diversity of parts that can now be used for fine-tuning gene

expression (Hummel et al., 2023). Many of these newly

discovered DNA parts significantly expand the dynamic range for

gene activation when compared to the state-of-the-art parts used for
Frontiers in Plant Science 04
gene activation via dCas9-based genome engineering (e.g., VP16).

Importantly, many of these effector domains most likely control

transcription by affecting different facets and levels of regulation,

i.e., through transcription or chromatin accessibility. There are an

estimated 4,729 transcription factors in the 717 genome and a

systematic screen of effector domains would provide a means to

either fuse them to dCas9 or other transcription factors to modulate

and better control expression of endogenous genes, which will form

the underlying poplar-tailored tools for engineering various facets

of morphotype and chemotype in poplar. In addition, methods for

epigenome engineering in plants using a variety of approaches are

emerging (Ji et al., 2018; Gardiner et al., 2022).
5 Engineering morphotypes

Extensive knowledge of the genetic basis of tree architecture

traits provides the foundation to design novel morphotypes of

poplar with modified tree architecture (Figure 1). Morphotypes

with altered biomass potential can increase stand density, tree

integrity (particularly when reducing/modifying cell wall

properties), and photosynthetic capture, which can serve as

foundational chassis in a biosystem design of poplar for multi-

uses. The recent discovery that the non-glandular trichomes of

poplar are sites of triterpene biosynthesis and accrual coupled with

the discovery of transcription factors controlling trichome
FIGURE 1

Modified poplar morphotypes can improve management practices, increase photosynthetic capture, and serve as a sustainable chassis for biofuel,
biomaterial, and/or bioproduct production. Three morphotypes are depicted (dwarf bushy, columnar bushy, tall spindle) along with a leaf with
increased trichome density. Morphotype images generated using Biorender.com. Leaf photograph credit: W. Patrick Bewg.
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development (Bewg et al., 2022) provide the foundation to not only

modify the density of trichomes on the leaf surface but also to hijack

the trichome for synthesis of terpenoids with biofuel and

bioproduct use (Figure 1). These chassis will have altered ratios of

leaves to stem and/or trichome density in which further engineering

of cell wall composition for biomaterial production and/or novel

bioproducts such as precursors for drop-in fuels, thus making

chemotypes that are ‘customized’ to their application and

simultaneously ‘maximized’ in optimal morphotypes. As it is

likely that the initial morphotypes/chemotypes will have

pleiotropic effects, an iterative design process, in which

developmental and metabolic pathways are optimized to create

unique morpho-/chemotypes with tailored biomaterial/bioproduct

composition, will be required. Through iterative design-build-test-

learn cycles, poplar can be engineered into a multi-purpose

feedstock, not only for bioenergy but also for biomaterial and

bioproduct production.

Genome engineering technologies permit gene editing at the

single-base level and in the case of outcrossing species such as poplar,

with allelic resolution. The interspecific F1 hybrid P. tremula x P.

alba INRA 717-1B4 (717 hereafter) (Mader et al., 2016) is highly

amenable to Agrobacterium transformation (Leple et al., 1992) and

CRISPR genome editing (Zhou et al., 2015). Key to this success is a

custom variant database which facilitates SNP-aware guide RNA

designs for mono-, bi- or multi-allelic editing (Tsai and Xue, 2015),

and a recently generated haplotype-resolved, telomere-to-telomere

assembly of the hybrid genome (Zhou et al., 2023). This has enabled

efficient mutagenesis of multigene families, including genome

duplicates and/or tandem repeat (Tsai et al., 2020; Bewg et al.,

2022; Chen et al., 2023). Importantly, nearly 100% of edits are

biallelic in 717 (Zhou et al., 2015; Tsai et al., 2020; Bewg et al., 2022).

Efficient and specific editing along with demonstrated stability over

multiple clonal generations (Bewg et al., 2018; Chen et al., 2023)

suggests complex multi-gene engineering strategies are feasible in

elite woody perennials that are propagated by vegetative means.
5.1 Tree architecture traits

Crown architecture, including branching characteristics, is a

strong determinant of growth and productivity of woody biomass

crops (Ceulemans et al., 1990). In temperate trees, crown

architecture is the result of numerous developmental factors,

some of which can be subject to environmental influence

including phyllotaxy, bud dormancy (influenced by apical

dominance and apical control), branch and leaf angles (influenced

by light and gravity sensing), internode length, and branching

pattern (Hollender and Dardick, 2015).

Branching pattern is primarily determined by prolepsis through

outgrowth of overwintering buds (proleptic branching). Some

species, including poplars, can also produce sylleptic branches

through outgrowth of newly formed axillary buds (Wu and

Hinckley, 2001; Oshima et al., 2013). Sylleptic branches increase

leaf area for efficient photosynthetic light capture, and have long

been proposed as a highly desirable trait in poplar ideotype breeding

for biomass production (Ceulemans et al., 1990). However, the
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been fully realized. Synthetic biology approaches can facilitate

development of designer poplar ideotypes to meet the growing

demands of bioproducts and biomaterials. While the molecular

regulation of sylleptic branching is not fully understood, studies

from herbaceous models, fruit trees, and poplar have shed light on

several transcription factors with evolutionarily conserved roles in

plant architecture. A prime example is the TCP family of

transcription factors, including TEOSINTE BRANCHED1 (TB1)

in maize and BRANCHED1 (BRC1) in Arabidopsis, which suppress

axillary bud outgrowth (Doebley et al., 1997; Aguilar-Martıńez

et al., 2007). Accordingly, mutations of TB1/BRC1 and their

orthologs in multiple monocot and dicot species, including

poplar, promote shoot branching and alter plant architecture

(Muhr et al., 2018). These and other transcription factors can be

targeted to engineer designer poplar morphotypes, i.e., chassis, in

which tree architecture is altered simultaneously resulting in

improved photosynthetic light capture, harvest index, and

metabolic pathways such as cell wall composition.

To design trees with altered branching patterns, it is critical to

modulate branch angles to minimize competition between sylleptic

branches and optimize light capture within dense canopies (Osada

and Hiura, 2017). In maize, upright leaf angles improve light

capture under crowded conditions (Pendleton et al., 1968).

Therefore, designing a poplar morphotype needs to encompass

branching patterns along with optimized branch and leaf angles.

Over the past decade, significant progress has been made in

understanding the genetic influences on branch growth angles.

Branch angle is strongly influenced by the IGT family including

Tiller Angle Control 1 (TAC1) and LAZY1 genes. Loss of TAC1 in

plum leads to upright branch, leaf, and flower bud angles (Dardick

et al., 2013; Hollender et al., 2018b). The TAC1 pathway is known to

be modulated by photosynthetic signals, suggesting a direct

connection between plant architecture and light use efficiency

(Waite and Dardick, 2018). In contrast, loss of LAZY1 expression

leads to horizontally oriented branches and downward oriented

leaves. Transgenic poplar overexpressing TAC1 showed increased

branch angle, whereas overexpression of LAZY1 decreased the

branch angle (Xu et al., 2017). Loss of WEEP expression leads to

downward shoot growth angles in peach and plum (Figure 2) and

steeper root angles in Arabidopsis and its orthologue EGT2 controls

root gravity responses in wheat and barley (Hollender et al., 2018a;

Kirschner et al., 2021). Manipulation and fine tuning of IGT family

genes in combination with branching genes will allow for the fine-

tuning of chassis designs to optimize biomass.

Overall tree size is another critical component of optimized

poplar chassis for different biomass and biomaterial applications.

Smaller trees enable simpler management strategies that are more

amenable to mechanization. Tree height is influenced by a

combination of branching patterns and stem elongation.

Elongation is controlled by cell expansion, predominantly

regulated by gibberellic acid (GA) via the GA receptor Gibberellin

Insensitive Dwarf 1 (GID1). GID1 is negatively regulated by DELLA

proteins that mediate proteasomal degradation of GID1 via direct

interactions with GA (Wang and Deng, 2014). Reduced GID1 or

over-expression ofDELLA can lead to shorter internode lengths and
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reduced tree size (Mauriat and Moritz, 2009; Hollender et al., 2016).

Alternatively, GA levels and tree size can be manipulated by altered

expression of GA metabolic enzymes (Mauriat and Moritz, 2009;

Jeon et al., 2016).
5.2 Trichomes as chemical factories for
production of biofuels

Glandular trichomes are known for their ability to synthesize,

store, and secrete large quantities of specialized metabolites,

especially terpenoids, that function primarily in plant defense

(Schuurink and Tissier, 2020). Many petroleum-derived

commodity chemicals and fuels can be alternatively derived from

terpenoids. Thus, trichomes offer a unique opportunity to hijack a

natural tissue for production of targeted compounds as not only are

there large pools of precursors to drive their biosynthesis, but the

final molecules are naturally sequestered from other cells and

organs. Non-glandular trichomes are present in a broad range of

plant taxa, including Arabidopsis and Populus, and they synthesize

and store predominantly phenolics but do not possess secretory

abilities (Payne, 1978; Karabourniotis et al., 2020). We recently

showed that poplar non-glandular trichomes are also sites of

triterpene biosynthesis and accrual (Bewg et al., 2022).

Trichome initiation and development are under strict

spatiotemporal regulation, involving the ‘MBW’ transcription

activation complex of R2R3-MYB, bHLH and WD40 proteins

(Maes et al., 2008; Zhao et al., 2008). Previously, activation-

tagging identified PtaMYB186 as a positive regulator of trichome

development in 717 (Plett et al., 2010). PtaMYB186 is orthologous

to Arabidopsis AtMYB106 involved in trichome branching (Folkers

et al., 1997) and cuticle development (Oshima et al., 2013). This
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clade of MYB family is expanded in poplar, with four members

derived from whole-genome and tandem duplications. Gene editing

of PtaMYB186 and its paralogs PtaMYB138 and PtaMYB38 resulted

in glaborous plants with eight edited alleles, two more than

anticipated due to unexpected duplications in one of the 717

subgenomes (Bewg et al., 2022; Zhou et al., 2023). The only

exception is KO-27 which retains two wild-type (unedited) alleles

with greatly reduced trichome density. The data together with

previous findings of increased trichome density by PtaMYB186

overexpression (Plett et al., 2010) support the premise that trichome

density can be fine-tuned in a dose-dependent manner by

manipulation of MYB copy number and/or expression.

Interestingly, analysis of solvent extractable leaf cuticular wax

revealed a complete absence of triterpenes in the glabrous

mutants, while b-sitosterol was significantly reduced (Bewg et al.,

2022). Reduced accrual of wax components may reflect a greatly

reduced surface area due to loss of trichomes. This is the case for b-
sitosterol as its levels were unchanged in whole leaf analysis.

However, triterpenes remained absent in whole leaves of the

mutants, implicating poplar trichomes in triterpene biosynthesis

and storage (Bewg et al., 2022).

As trichomes play multiple protective roles against feeding

insects, excessive transpiration, and UV radiation (Bickford,

2016), precise targeting of one to multiple alleles by CRISPR-KO

or CRISPR activation (CRISPRa) can generate a spectrum of

trichome phenotypes as chassis for poplar chemotype engineering.
6 Engineering chemotypes

With increased knowledge of biochemistry, engineered

morphotype chassis can be further customized to produce
FIGURE 2

Manipulation of plum branch angle by altering known regulatory genes. (A) Representative control, (B) silencing of TAC1 (Hollender et al., 2018b),
(C) over-expression of Arabidopsis TAC1, (D) silencing of WEEP (Hollender et al., 2018a).
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biofuels, biomaterials and bioproducts tuned to their morphology.

There are several target organs in poplar with potential for

sustained production of biofuels, biomaterials and bioproducts:

leaves and wood.
6.1 Trichome and leaf cuticle

Chemotype engineering of heterologous, high-value terpenes in

a trichome and/or cuticle over-producing morphotype would yield

a customized chemo-/morphotype. One candidate for chemotype

engineering of trichomes and cuticles is the sesquiterpene,

bisabolene, which has been engineered for its ability to be

converted to bisabolane, a biodiesel (Peralta-Yahya et al., 2011).

Rewiring plant metabolism to over accumulate bisabolene requires

three strategies. First, sesquiterpenes like triterpenes are primarily

produced through the mevalonate pathway, and use of feedback-

insensitive enzymes will enable increased flux through the

mevalonate pathway. Specifically, a truncated 3-hydroxy-3-

methylglutaryl coenzyme A reductase has been widely used in

such metabolic engineering efforts and shown to work in plants

(Polakowski et al., 1998); by coupling this approach with the

introduction of bisabolene synthase, we expect to increase

production of bisabolene. Second, the plastid methyl-D-erythritol

phosphate pathway can be used to increase production of

bisabolene in the chloroplast (Wu et al., 2012) which has been

demonstrated previously to increase production of bisabolene in

Nicotiana benthamiana using gene stacking approaches (Shih et al.,

2016). As sesquiterpenes are not natively produced via the methyl-

D-erythritol phosphate pathway in the chloroplast, introducing a

farnesyl diphosphate synthase into the plastid, the precursor to

bisabolene, farnesyl diphosphate, can be biosynthesized and

converted to bisabolene. This strategy led to an over 400%

increase in production of bisabolene in N. benthamiana, and

should be transferable to poplar as well. Third, selectively

decreasing the flux to competing triterpenoid pathways by

CRISPRi or gene-/allele-specific CRISPR-KO will reduce

expression of key triterpene enzymes natively expressed in

trichomes and/or cuticles, thereby enhancing production of the

sesquiterpene of interest, bisabolene. Overall, trichomes and cuticles

are an attractive platform for the sustainable production and

accumulation of various terpene products of interest.
6.2 Cell wall modification

Fifty billion tons of carbon is assimilated by terrestrial plants

annually each year (Melillo et al., 1993), representing a sustainable

source of chemicals and energy. Historically, industrial applications

of woody biomass have been limited mainly to bulk construction

materials, viscose and lyocell textile fibers, cellulose pulps, food and

feed additives, and fuel for direct combustion. The plant cell walls

that make up the bulk of poplar biomass are primarily composed of

cellulose, hemicellulose, and lignin (Sannigrahi et al., 2010).

Cellulose provides essential mechanical support, whereas lignin

and hemicellulose form additional interactions that further
Frontiers in Plant Science 07
strengthen cell walls (Albersheim et al., 2010). Due to these

hierarchical structures and interactions, plant biomass can also be

used at micro-, nano-, and molecular levels for diverse applications

to address current and future societal needs in the energy,

environmental, materials, and manufacturing fields. Our ability to

design and genetically modify the structure and interactions of the

polymers in the plant cell wall is key to realizing this potential.

Progress in biorefining technologies has provided chemical and

biocatalytic routes for selective valorization of leafy and woody

biomass, enabling controlled fractionation to produce compounds

suitable for fuel and chemical production while preserving useful

glycopolymers and micro- and macro-structures (Li et al., 2022).

Relative to cellulose and lignin, hemicellulose biosynthesis represents

an underexplored target for altering the molecular structure and

composition of cell walls. The hemicellulose xylan is a polymer

composed of five-carbon (C5) sugars and is the second most

abundant polysaccharide in poplar biomass after cellulose (Smith

et al., 2017). It constitutes 25-35% of the cell walls of most

lignocellulosic feedstocks, and roughly 10 billion metric tons of

CO2 are assimilated by terrestrial plants into xylan each year

(Smith et al., 2017). Despite their abundance, hemicelluloses have

not been widely utilized to produce value-added products in modern

integrated biorefineries, largely due to their complexity and

structural diversity (Smith et al., 2017). Hemicelluloses are major

byproducts of the multimillion tons of lignocellulose used in the

production of viscose, paper products and fuels. However, C5 sugars

are underutilized or considered recalcitrant (Beri et al., 2020) during

the production of second-generation biofuels (Van Vleet and Jeffries,

2009), resulting in the accumulation of oligosaccharide and

polysaccharide byproducts. Thus, many research efforts have

aimed to reduce xylan/C5 sugar content (Yan et al., 2018), rather

than optimizing its structure for more facile removal/fractionation

and downstream upgrading into value-added products, such as

xylan-based bioplastic building blocks or pre-biotics.

Strategies can be designed to shape desirable polymer structures,

increase or decrease susceptibility to chemical or enzymatic

deconstruction or modification, impact wall architecture via

modulation of polymer-polymer interactions, and homogenize or

alter composition to reduce downstream requirements for

extraction, separations, and/or purification (Figure 3). For poplar,

integrating morphotypes that have altered physical branching

patterns together with genome engineering of genes responsible

for xylan synthesis and diversification in a tailored, cell-type-

specific manner will enable production of material with improved

chemical features amenable for processing or advanced

manufacturing (Smith et al., 2017; Smith et al., 2020).
7 Conclusion

Through the development of high-resolution cell atlas data

coupled with new genome and epigenome engineering tools,

morphotypes of poplar with altered tree architecture and

trichome density can be generated (Figure 1). These morphotypes

will have altered biomass potential via increased stand density, tree

integrity (particularly when modifying cell wall properties),
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trichome density, and photosynthetic capture, and serve as the

foundational chassis. These chassis will have altered ratios of leaf to

wood and/or trichome density in which we can further engineer cell

wall composition for biomaterial production and/or novel

bioproducts such as precursors for drop-in fuels, thus making

chemotypes of poplar that are ‘customized’ to their application

and simultaneously ‘maximized’ in optimal morphotypes.
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