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Continuous planting has a severe impact on the growth of Casuarina

equisetifolia. In this study, the effects of three different long-term

monocultures (one, two and three replanting) on the physicochemical

indexes, microbial functional diversity, and soil metabolomics were

analyzed in C. equisetifolia rhizosphere soil. The results showed that

rhizosphere soil organic matter content, cation exchange capacity, total

and available nitrogen, total and available phosphorus, and total and

available potassium contents significantly decreased with the increasing

number of continuous plantings. The evaluation of microbial functional

diversity revealed a reduction in the number of soil microorganisms that

rely on carbohydrates for carbon sources and an increase in soil

microorganisms that used phenolic acid, carboxylic acid, fatty acid, and

amines as carbon sources. Soil metabolomics analysis showed a significant

decrease in soil carbohydrate content and a significant accumulation of

autotoxic acid, amine, and lipid in the C. equisetifolia rhizosphere soil.

Consequently, the growth of C. equisetifolia could hinder total nutrient

content and their availability. Thus, valuable insights for managing the

cultivation of C. equisetifolia and soil remediation were provided.
KEYWORDS

Casuarina equisetifolia, rhizosphere soil, long-term monoculture plantations,
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1 Introduction

Continuous planting refers to the recurrent monoculture of

the same plant in the same soil, and long-term continuous

planting may lead to the deterioration of the soil environment,

which in turn inhibits the growth of plants (Hufnagel et al., 2020;

Tan et al., 2021). Casuarina equisetifolia is an evergreen tree of

Casuarinaceae, native to Oceania, the Pacific Islands and

Southeast Asia. It was introduced to China in the 1950s, and is

now mainly distributed in the coastal areas of Guangdong,

Fujian and Hainan provinces of China (Zhong et al., 2010). C.

equisetifolia has a lifespan of about 30 years, reaches a height of

30 meters and a maximum diameter at breast height of 70

centimeters, and can be harvested after 10 years of planting.

The wood of C. equisetifolia is solid and economically important

as a ship’s sole and as a building material. Secondly, C.

equisetifolia has a well-developed root system and strong

resistance, which plays an important role in soil and water

conservation and tidal erosion prevention in the coastal zone,

and has been widely planted in the coastal areas of China

(Athikalam and Karur Vaideeswaran, 2022). Due to the more

specialized environment of the coastal sandy areas, fewer species

are suitable for planting, so C. equisetifolia, which has long been

the main species planted, can only continue to be replanted in

situ after harvesting (Anbarashan et al., 2022). C. equisetifolia

was reported to have decreased in height, diameter and volume

by about 23.7%, 24.4% and 29.0%, respectively, after three

continuous plantings (Zhang et al., 2000). The emergence of

this phenomenon of continuous planting obstacle greatly

constrains the sustainable development of C. equisetifolia’s

protective forest resources.

There have been numerous reports on the effect of

continuous planting on soil microbial ecosystems, with

studies focusing on herbal medicines, agricultural crops,

vegetable (Li et al., 2021a; Pang et al., 2021; Wu et al., 2021).

However, there is still less information on the effects on soil

microorganisms after continuous planting of artificial timber

trees, especially C. equisetifolia (Liu et al., 2020; Li et al., 2021b;

Xu et al., 2021; Ma et al., 2023). Previous studies, using high-

throughput sequencing, analysed the effect of continuous

planting on the microbial diversity of C. equisetifolia

rhizosphere soil and found a significant decrement in the

microbial population, especially probiotics, and diversity after

continuous planting, whereas the pathogenic bacteria

significantly increased, and the nutrient cycling capacity of

the soil was impeded (Zhou et al., 2019). The microbial

diversity and gene expression related to nitrogen cycling in

the soil were further analysed, showing a reduction in the

nitrogen cycling capacity and a decrease in the available

nitrogen content in the soil subject to C. equisetifolia

recurrent monoculture (Zhou et al., 2021; Zhou et al., 2022).

This series of studies found that continuous planting leads to a

reduction in the nutrient cycling capacity of the soil from a soil

microbial perspective. The plant root system is an important

tissue for sensing changes in the soil environment. Plant root

systems have been reported to influence the number, species,
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and function of rhizosphere soil microorganisms through the

release of root secretions when sensing changes in the external

environment, thereby altering the nutrient cycling of the

rhizosphere soil in order to adapt to the environment (Shen

and Lin, 2021; Tan et al., 2022; Ye et al., 2023). Therefore, in-

depth analysis of the effects of continuous planting of C.

equisetifolia on rhizosphere soil microorganisms and nutrient

cycling from the perspective of rhizosphere soil metabolites is

of great significance in further revealing its growth and changes

in the rhizosphere ecosystem.

Rhizosphere soil metabolomics is an integrated study of low

molecular weight compounds in plant rhizosphere soils and is an

important tool for evaluating the diversity of soil microbial

communities and soil function (Withers et al., 2020). In recent

years, metabolomics technology was applied to analyze the

interactions among metabolites, microorganisms, and

environmental factors, and their impacts on soil function (Brown

et al., 2021; Liang et al., 2021; Sun et al., 2022; Wu et al., 2022).

However, studies using soil metabolomics to analyze the effects of

metabolites in rhizosphere soils of continuous planting C.

equisetifolia on microorganism functional diversity and nutrient

cycling have rarely been reported. An in-depth understanding of

the effects of continuous planting on soil metabolites and microbial

functions in the root system ofC. equisetifolia and their interactions is

important for clarifying how continuous planting leads to changes in

soil metabolites in the root system of C. equisetifolia, which in turn

affects the functions of the microbial community and alters the

nutrient cycling of the soil.

Accordingly, in this study, C. equisetifolia rhizosphere soils were

collected from the first, second, and third continuous plantings to

analyze the effects of continuous plantings on nutrient cycling,

microbial functional diversity, and metabolites in the rhizosphere

soils. Soil metabolomics analysis was used to screen and obtain

metabolites for key changes in the rhizosphere soil of continuous

planted C. equisetifolia and to analyze the effects of soil metabolites

on microbial function and soil nutrient cycling. From the

perspective of rhizosphere soil microorganisms and metabolites,

this study initially revealed the causes of growth retardation of C.

equisetifolia due to continuous planting, with a view to providing

certain references for the cultivation and management of

continuous planting of C. equisetifolia.
2 Materials and methods

2.1 Experimental site and rhizosphere soil
sample collection

The researches of this study were performed at the national

protective forest farm (118°55′ E, 24°35′ N), an area of about

433 ha located in Chihu Township, Hui’an County, Fujian

Province, China. Climate conditions were those typical of the

southern subtropical climatic zone of China, with an annual

mean temperature of 19.8°C and an annual rainfall of 1,029

mm. C. equisetifolia plants were grown on sandy soil, with a

stand density of about 950 plants·ha-1 and managed in
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accordance with the “Technical regulation on cultivation of

casuarina seedlings and trees” (LY/T 3092-2019) issued by the

State Forestry and Grassland Administration of the People’s

Republ ic of China (National Forestry and Grassland

Administration of the People's Republic of China, 2019).

In March 2018, C. equisetifolia seedlings were planted in plots

that had never cropped with C. equisetifolia. These plots were

defined as M1 (first planting). Plots cultivated with C.

equisetifolia from 1987 to 2018 in which C. equisetifolia plants

were cut, removed and re-planted in 2018 were selected to define

the M2 (second planting) experimental thesis. Plots in which C.

equisetifolia was planted in 1987, cut and replanted in 2011,

removed and replanted in March 2018, defined M3 (third

planting) experiment. All plots were transplanted with 2-year-old

seedlings (0.8 m in height and 0.9 cm in diameter). M1, M2, and M3

were set up for three replicate plots, each with an area of 30 × 30 m

(950 trees·ha-1, i.e., 85 plants per replicate).

In March 2022, the rhizosphere soils of C. equisetifolia with

different number of continuous plantings (M1, M2, and M3) were

collected for the determination of soil physicochemical indexes,

functional diversity of soil microorganisms, and soil metabolites.

Rhizosphere soil was sampled as follows: 6 plants were randomly

selected by the “S” sampling method. The leaf litter layer was

removed, and the upper layer of soil was shoveled out up to the

root system (about 30 cm). The fine roots were cut, and the

rhizosphere soil was removed by gently shaking (with a small

brush), collected and mixed well into a self-sealing bag. A total of

about 300 g was considered as one replicate. The collected

rhizosphere soil was placed in an ice box. For each experimental

plot, three independent replicates were set up.
2.2 Rhizosphere soil characterization

2.2.1 Physicochemical indexes
Rhizosphere soil samples were naturally air-dried, ground, and

passed through a 2 mm sieve before physicochemical indexes

determination. Soil pH, organic matter content (OM), cation

exchange capacity (CEC), total nitrogen (TN), total phosphorus

(TP), total potassium (TK), available nitrogen (AN), available

phosphorus (AP) and available potassium (AK) were determined

with the methods described by Lu (2000). Briefly, soil pH was

determined by the water leaching potential method (2.5:1 of water-

soil ratio); OM was determined by oxidation with potassium

dichromate; CEC was determined by ammonium acetate exchange;

TN was determined by Kjeldahl nitrogen fixation; AN was determined

by alkaline dissolution diffusion; TP and AP were determined by

molybdenum antimony colorimetric assay; and TK and AK were

determined by flame atomic absorption spectrophotometry.

2.2.2 Microbial functional diversity
The functional diversity of rhizosphere soil microorganisms of

C. equisetifolia was determined using the BIOLOG ECO microplate

method (Zhang et al., 2023). Briefly, 10 g of freshly collected

rhizosphere soil sample was taken in a conical flask containing 90

mL of sterile saline, sealed and placed in a shaker, shaken at 120
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r·min-1 for 10 min, and left to stand for 3 min. 5 mL of supernatant

was removed and 45 mL of sterile water was added to obtain a 1:100

dilution, which was repeated once to obtain a 1:1000 dilution. The

diluted solution was added to the BIOLOG ECO microplate by

adding 150 mL to each well, and the well with 150 mL of sterile water
was added as a blank control, and the absorbance was immediately

measured at 590 nm using an enzyme labeling apparatus and

recorded as the initial absorbance. The BIOLOG ECO microplates

were incubated at 28°C in the dark and the absorbance at 590 nm

was measured regularly for 7 consecutive days. The functional

diversity of the soil microbial community was expressed as

average well color development (AWCD) per well on BIOLOG

ECO microplates. AWCD was calculated as [∑(C-R)]·31-1, where C

is the absorbance measured in each of the 31 wells and R is the

absorbance measured in the control well. Based on the types of the

31 carbon sources in the BIOLOG ECO microplate, the carbon

sources were categorized as carbohydrate, carboxylic acid, phenolic

acid, fatty acid, amines and amino acid.

2.2.3 Metabolomics
Soil metabolites were extracted with reference to the method

of Ye et al. (2023). Briefly stated, fresh collected rhizosphere soil

was weighed 0.5 g, added to 1 mL of methanol:isopropanol:water

(3:3:2 V/V/V) extract, vortexed for 3 min, ultrasonicated for

20 min, and centrifuged for 3 min at 12,000 r·min-1 at 4°C. The

supernatant was transferred to a sample vial, 0.02 mL of internal

standard (10 mg·mL-1) was added, and nitrogen was blown dry

for further sample derivatization. Sample derivatization was

pe r f o rmed by mix i ng th e s amp l e w i t h 0 . 1 mL o f

methoxyamine pyridine (15 mg·mL-1) and incubating at 37°C

for 2 h. 0.1 mL of N,O-bis(trimethylsilyl)trifluoroacetamide

(containing 1% trimethylchlorosilane) was added, and the

sample was vortexed and shaken at 37°C for 30 min. After

derivatization, 0.2 mL of the liquid was taken and diluted to 1

mL by adding n-hexane, passed through a 0.22 mm filter tip and

tested by GC-MS.

Agilent 8890 gas chromatograph coupled to a 5977B mass

spectrometer with a DB-5MS column (30 m length × 0.25 mm

i.d. × 0.25 mm film thickness, J&W Scientific, USA) was employed

for GC-MS analysis of the extracting solution. Helium was used as

carrier gas, at a flow rate of 1.2 mL·min-1. Injections were made in

the front inlet mode with a split ratio 5:1, and the injection volume

was 1 mL. The oven temperature was held at 40°C for 1 min, and

then raised to 100°C at 20°C·min-1, raised to 300°C at 15°C·min-1,

and held at 300°C for 5 min. All samples were analyzed in scan

mode. The ion source and transfer line temperature were 230°C and

280°C, respectively.
2.3 Statistical analysis

Excel 2017 software was used to perform preliminary data

processing and calculate the mean. IBM SPSS Statistics 21.0

software was used for data T-text and correlation analysis. R

version 4.2.3 software was used to produce box plots (R libraries

was gghalves version 0.1.4), principal component analysis (PCA,
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R libraries was ggbiplot version 0.55), heat plots (R libraries was

pheatmap 1.0.12), volcano plot analysis (R libraries was ggplot2

version 3.4.0), orthogonal partial least squares discriminant

analysis (OPLS-DA, package used for this was ropls and

mixOmics) (Jia et al., 2023), redundancy analysis (RDA, R

libraries was vegan version 2.6.4) and correlation matrix

analysis (R libraries was linkET 0.0.7.1) (Watkins, 2020). The

entropy weight TOPSIS statistical analysis was performed on the

SPSSAU online platform (https://spssau.com/) (Çelikbilek and

Tüysüz, 2020).
3 Results and discussion

3.1 Casuarina equisetifolia rhizosphere
soil characterization

3.1.1 Physicochemical indexes
Continuous monoculture of plants may lead to changes in

the physicochemical indexes of the rhizosphere soil, which in

turn changes the nutrient content of the soil and affects plant

growth (Guo et al., 2022; Wang et al., 2022). In this study, as the

number of continuous planting of C. equisetifolia increased (M1-

M3). (Table 1), the rhizosphere soil pH did not change

significantly, while OM, CEC, TN, TP, TK, AN, AP and AK

contents showed a decreasing trend.

3.1.2 Microbial functional diversity
Continuous planting imbalances soil microbial communities,

alters the function of soil microbes, disturbs nutrient cycling in the

soil, and, in turn, affects plant growth (Zhao et al., 2022). As

BIOLOG ECO results (Figure 1A) showed, in the C. equisetifolia

rhizosphere soil, the number of microorganisms utilizing phenolic

acid, carboxylic acid, fatty acid, and amines as a carbon source

significantly increases with the rise of continuous planting. At the

same time, the number of microorganisms utilizing carbohydrates

as a carbon source showed a significant decreasing trend, while no

significant difference was recorded by microorganisms utilizing

amino acid as a carbon source.

PCA (Figure 1B) effectively differentiated data on microbial

communities collected at the three tested continuous planting

conditions. Microorganisms using carbohydrates or amino acids as

carbon sources were relevant in M1 and M2 samples, respectively.

Microorganisms using phenolic acid, carboxylic acid, fatty acid, and

amines as carbon sources characterized M3 samples. Starting with

these preliminary remarks, TOPSIS weight (Figure 1C) revealed that

continuous planting had the greatest effect on microorganisms using

carbohydrate, carboxylic acid, or phenolic acid as carbon sources.

This experimental evidence agrees with Xie et al. (2021) regarding the

continuous cropping of peanuts. Continuous planting promotes the

accumulation of carboxylic acid and phenolic acid in the rhizosphere

soil, and the increment of microorganisms that use them as carbon

sources. These groups of microorganisms include plant-pathogens

which induce plant diseases or hamper plant growth (Li et al., 2021c).
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C. equisetifolia continuous planting reduces carbohydrates in

rhizosphere soil and increases the concentration of fatty acid,

amines, and especially carboxylic acid and phenolic acid in soil,

which could alter the number and function of soil microorganisms

and affect plant growth.

3.1.3 Metabolomics
It has been reported that continuous planting of plants leads

to changes in rhizosphere soil metabolites, which in turn affects

plant growth (Pervaiz et al., 2020). In this study, it was found

(Figure 2A; Table S1) that there was no significant difference in

total rhizosphere soil metabolites among M1, M2 and M3 (p =

0.98). After classification of soil metabolites, their contents

were analyzed (Figure 2B) and it was found that the content

of acid, aldehyde, aromatics, heterocyclic compound, lipid,

nitrogen compounds, phenol, and others tended to increase

with the number of continuous plantings of C. equisetifolia

(M1~M3), whereas the content of alcohol and carbohydrate

tended to decrease. PCA (Figure 2C) effectively differentiated

data on soil metabolites collected at the three tested continuous

planting conditions. Soil metabolites such as aromatics, acid,

nitrogen compounds, others, aldehyde, lipid, phenol, and

heterocyclic were relevant in M1. Soil metabolites such as

ester, alcohol, and hydrocarbons were relevant in M2. Soil

metabolites such as amine, amino acid, and carbohydrate

characterized M3 samples.

Accordingly, further analysis using volcano plots in this study

revealed that the contents of 69 metabolites in the rhizosphere soil of
TABLE 1 Analyses of physicochemical indexes of Casuarina equisetifolia
rhizosphere soil collected after the first (M1), the second (M2) and the
third (M2) continuous planting*.

Index M1 M2 M3

pH value 5.34 ± 0.04a
5.38

± 0.05a
5.31

± 0.02a

Organic matter content (g·kg-1) 3.34 ± 0.03a
2.37

± 0.07b
1.63

± 0.02c

Cation exchange capacity
(cmol·kg-1)

2.68 ± 0.07a
1.66

± 0.05b
1.54

± 0.03c

Total nitrogen (g·kg-1) 9.50 ± 0.07a
3.84

± 0.05b
2.68

± 0.08c

Total phosphorus (g·kg-1) 0.26 ± 0.02a
0.12

± 0.01b
0.11

± 0.02b

Total potassium (g·kg-1) 1.21 ± 0.02a
1.15

± 0.01b
0.97

± 0.02c

Available nitrogen (mg·kg-1)
23.130
± 0.469a

7.60
± 0.189b

6.29
± 0.077c

Available phosphorus (mg·kg-1) 8.16 ± 0.05a
2.22

± 0.02b
1.36

± 0.06c

Available potassium (mg·kg-1)
105.89
± 1.35a

95.58
± 0.70b

86.98
± 1.53c
fr
* Data are the means of three replicates ± SE. For each physicochemical index, different letters
indicate a significant level at p < 0.05.
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C. equisetifolia changed significantly with the increase in the number

of continuous planting, with 12 metabolites showing an increasing

trend and 57 metabolites showing a decreasing trend (Figure 2D).

The 69 metabolites could be categorized into 13 groups, of which 10

showed an increasing trend and 3 showed a decreasing trend as the

number of continuous planting increased (Figure 2E).

The OPLS-DAmodel can be used to simulate the relationship of

metabolites among different samples and to obtain metabolites with

key differences through the variable importance projection values

(VIP values) of different metabolites (Li et al., 2023). Moreover,

after the model is constructed, the fit and predictability of the model

need to be tested, and reaching a significant level indicates that the

model is reasonably constructed before it can be used in subsequent

analysis (Rivera-Pérez et al., 2022). On the basis of the previous

differential metabolite analysis, this study further constructed the

OPLS-DA model of rhizosphere soil metabolites of C. equisetifolia
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with different numbers of continuous planting. The results showed

(Figure 3A) that the R2Y value of the goodness-of-fit of the OPLS-

DAmodel was 0.995 after 200 random simulations and the Q2 value

of predictability was 0.995, which were significant (p < 0.005). It can

be seen that the model constructed in this study can effectively

distinguish different samples and can be used for subsequent

analysis. Scores OPLS-DA plot analysis showed (Figure 3B) that

different samples could be effectively distinguished in different

regions, with intra-group differences of 5.56% and inter-group

differences of 71.3%. It can be seen that the reproducibility of

three replicates of the same sample was high, while there were

significant differences between samples. The S-Plot plot analysis of

OPLS-DA showed (Figure 3C) that a total of 42 key soil metabolites

were obtained, of which 35 metabolites showed an increasing trend

and 7 metabolites showed a decreasing trend as the number of

continuous planting increased.
Carbon source

A

B C

FIGURE 1

Functional diversity of Casuarina equisetifolia rhizosphere soil microorganisms determined by the BIOLOG ECO microplate method at the first (M1),
second (M2) and third (M3) continuous planting expressed as utilization rate of carbon sources: (A) average well colour development (AWCD, data
are the means of three replicates ± SE); (B) principal component analysis; (C) TOPSIS weighting (Data are the means of three replicates ± SE). Data
are the means of three independent replicates.
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Further classification analysis of the key metabolites showed

(Figure 3D) that the 42 metabolites could be classified into six

groups, of which the content of alcohol, aldehyde, acid, amine, and

lipid showed a significant upward trend with the increase in the

number of continuous planting, while the content of carbohydrate

showed a significant decreasing trend. Alcohol can be oxidized to

aldehyde, which is further oxidized to acid, and the content of

alcohol and aldehyde in the soil rises, which in turn increases the

accumulation of acid in the soil. It has been reported that

continuous planting is highly likely to lead to an increase in the

content of acids in the rhizosphere soil of plants, and the

accumulation of large amounts of acids can inhibit plant growth

(Bao et al., 2022). Cheng et al. (2020) found that the main

substances that lead to the continuous planting obstacle of

tomato belong to fatty acids, and reducing fatty acids in the soil

can alleviate the phenomenon. Chen et al. (2023) found that

continuous tobacco cropping leads to amines accumulation in

rhizosphere soil, which in turn inhibits tobacco growth.

Carbohydrate in soil is the main carbon source for microbial

reproduction, which is closely related to microbial diversity and

function, while continuous planting can lead to a decrease in its

content, which in turn reduces soil microbial diversity and reduces
Frontiers in Plant Science 06
soil nutrient cycling capacity (Wang et al., 2019; Xie et al., 2019). It

can be seen that the continuous planting of C. equisetifolia leads to

an increase in the content of acid, amine and lipid in the soil, which

have an autotoxic effect, and an increase in the soil autotoxic effect;

on the other hand, a decrease in the content of carbohydrate in the

soil, which in turn may have reduced the diversity of soil

microorganisms and reduced the nutrient cycling capacity of

the soil.
3.2 Interaction network analysis

On the basis of the previous study, this study further analyzed

the interactions among physicochemical indexes, microorganisms

and key metabolites in the rhizosphere soil of C. equisetifolia. The

redundancy analysis (Figure 4) showed that the metabolite

significantly associated with M1 was carbohydrate, the

significantly associated microorganisms were microorganisms that

used carbohydrate as a carbon source, and the significantly

associated soil physicochemical indexes were TK, AK, OM, TN,

CEC, AP, TP, and AN; and the metabolites significantly associated

with M3 were alcohol, aldehyde, acid, amine, and lipid, and the
M2 VS M1

M3 VS M2

A B

D

E

C

FIGURE 2

Effect of the first (M1), second (M2) and third (M2) continuous planting on Casuarina equisetifolia rhizosphere soil metabolomics: (A) metabolites
relative content; (B) metabolite subdivision per chemical categories (color changes from -1 to 1 indicate small to large contents); (C) principal
component analysis; (D) volcano plot analysis; (E) differential metabolites subdivided per chemical categories (color changes from -1 to 1 indicate
small to large contents). Data are the means of three replicates. For metabolites definition and concentration see Table S1.
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significantly associated microorganisms were those using phenolic

acid, carboxylic acid, fatty acid, and amines as carbon sources.

The correlation matrix analysis (Figure 5) showed that

rhizosphere soil key metabolites were not significantly correlated

with soil pH and microorganisms using amino acid as carbon

source; rhizosphere soil carbohydrate was significantly and

positively correlated with microorganisms using carbohydrate as

carbon source, and with soil physicochemical indexes, such as TK,

AK, OM, TN, CEC, AP, TP and AN, whereas they were significantly

and negatively correlated with microorganisms using phenolic acid,

carboxylic acid, fatty acid, and amines as carbon sources. Secondly,

alcohol, aldehyde, acid, amine and lipid in rhizosphere soil were
Frontiers in Plant Science 07
significantly and negatively correlated with soil physicochemical

indexes such as TK, AK, OM, TN, CEC, AP, TP, and AN, and

significantly and positively correlated with microorganisms using

phenolic acid, carboxylic acid, fatty acid, and amines as

carbon sources.

Carbohydrate, alcohol, aldehyde, acid, amine and lipid are all

important carbon sources for soil microbial propagation, and their

levels affect the number of soil microorganisms that use them as

carbon sources (Fallahi et al., 2021). It has been reported that the

continuous planting of tea trees promotes the accumulation of acid

and lipid in the soil, which in turn promotes the propagation of

microorganisms that use phenolic acid, carboxylic acid, and fatty
A B

D

C

FIGURE 3

OPLS-DA model of the first (M1), second (M2) and third (M2) continuous planting on Casuarina equisetifolia rhizosphere soil key metabolites: (A) plot
of the goodness-of-fit test; (B) differentiation analysis between and within sample groups; (C) distinction plot (red points indicate significantly
different metabolites); (D) content analysis subdivided per chemical categories. Data are the means of three replicates.
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acid as carbon sources, and reduces the available nutrient content of

the soil (Li et al., 2017). Continuous planting of tobacco promotes

soil acid and amine accumulation, which in turn promotes the

propagation of microorganisms using phenolic acid, carboxylic

acid, and amines as carbon sources, and reduces soil nutrient

cycling capacity (Yang et al., 2011). Continuous planting of

Rehmannia glutinosa leads to a prol i ferat ion of soi l

microorganisms that use acid as a carbon source, which in turn

leads to a decrease in available nutrients in the soil, andRehmannia

glutinosa growth is significantly inhibited (Wu et al., 2013). In

summary, the content of different metabolites in rhizosphere soil
Frontiers in Plant Science 08
changed significantly after continuous planting of C. equisetifolia,

altering soil microbial quantity and function, reducing soil nutrient

cycling capacity, and significantly reducing total nutrient and

available nutrient content in rhizosphere soil.
4 Conclusion

In this study, it was found that continuous planting led to an

increase in the levels of metabolites with autotoxic effects, such as

acid, amine, and lipid, in the rhizosphere soil of C. equisetifolia,
FIGURE 4

Redundancy analysis among physicochemical indexes (black words), microorganisms using different carbon sources (green words) and key
metabolites (red words) in the rhizosphere soil after the first (M1), second (M2) and third (M2) continuous planting of Casuarina equisetifolia.
Physicochemical indexes include organic matter content (OM), cation exchange capacity (CEC), total nitrogen (TN), total phosphorus (TP), total
potassium (TK), available nitrogen (AN), available phosphorus (AP) and available potassium (AK). Average well colour development (AWCD) expresses
microorganisms using different carbon sources.
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which, in turn, enhanced the propagation of microorganisms in the

soil that use phenolic acid, carboxylic acid, fatty acid and amines as

carbon sources. At the same time, continuous planting reduced

carbohydrate content in the rhizosphere soil of C. equisetifolia and

decreased the number of microorganisms in the soil that used

carbohydrate as a carbon source. The results of the interactions

network analysis showed that the rhizosphere soil physicochemical

indexes of C. equisetifolia were significantly and positively correlated

with carbohydrate content and the number of microorganisms using

carbohydrate as a carbon source, while they were significantly and

negatively correlated with the content of acid, amine, and lipid and

the number of microorganisms using them as carbon sources. It can

be seen (Figure 6) that continuous planting of C. equisetifolia reduced
Frontiers in Plant Science 09
the rhizosphere soil carbohydrate content, increased the content of

acid, amine, and lipid, and then reduced the number of soil

microorganisms using carbohydrate as a carbon source, and

increased the number of microorganisms using phenolic acid,

carboxylic acid, fatty acid, amines as carbon sources, and finally

reduced the nutrient cycling capacity of C. equisetifolia. In this study,

we analyzed the causes leading to the formation of obstacle to

continuous planting of C. equisetifolia from the perspectives of

rhizosphere soil metabolites and microbial functional diversity,

which is of great significance for the management of continuous

planting of C. equisetifolia and soil remediation. However, changes in

rhizosphere soil metabolite content of the continuous planting of C.

equisetifolia affected microbial functioning, so are changes in
FIGURE 5

Correlation matrix heat map of physicochemical indexes, microorganisms using different carbon sources and key metabolites in the rhizosphere soil
after the first (M1), second (M2) and third (M2) continuous planting of Casuarina equisetifolia. Physicochemical indexes include organic matter
content (OM), cation exchange capacity (CEC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available
phosphorus (AP) and available potassium (AK). Average well colour development (AWCD) expresses microorganisms using different carbon sources.
The correlation ranges from +1 to −1. The variables were considered uncorrelated (0), positively (> 0) or negatively (< 0) correlated. “*” and “**”
indicate statistical significance at p < 0.05 and p < 0.01 level, respectively.
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microbial functioning related to changes in microbial communities?

Which key microorganisms change significantly after continuous

planting of C. equisetifolia, and is there some connection between

them and soil nutrient cycling? Further research on this area needs to

be explored in depth.
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