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MicroRNAs (miRNAs) are widely involved in various aspects of plant growth and

development. However, how miRNAs and their targets regulate natural rubber

metabolism remains unclear in the rubber-producing dandelions, which are

being developed as alternative commercial sources of natural rubber. Here, we

combined small RNA sequencing, degradome sequencing, target gene

prediction, and mRNA sequencing to identify miRNAs and their targets in two

dandelion species, the high rubber-yielding Taraxacum kok-saghyz (Tk) and the

low rubber-yielding T. spadiceum (Ts). A total of 142 miRNAs, including 108

known and 34 novel ones, were discovered, with 53 identified as differentially

expressed (DE) between the latex of Tk and Ts. Degradome sequencing identified

145 targets corresponding to 74 miRNAs. TAPIR and psRNATarget, respectively,

predicted 165 and 164 non-redundant targets for the 53 aforementioned DE

miRNAs. Gene ontology (GO) enrichment analysis indicated the DE miRNAs and

their targets might affect natural rubber production via regulating

macromolecular biosynthesis and metabolism in latex. Four critical types of

regulatory modules, including miR172-AP2/ERF, miR164-NAC, miR160-ARF, and

miRN19-protein kinase, were identified and their interaction networks were

constructed, indicating a potential involvement in natural rubber production.

The findings and the large miRNA dataset presented here are beneficial to further

deciphering the roles of miRNAs in the biosynthesis of natural rubber and

medicinal metabolites in dandelion.
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1 Introduction

Natural rubber (cis-1,4-polyisoprene, NR) is a strategically

important raw material used in the manufacturing of medical,

agricultural and industrial products (Cornish, 2001). It is a high

molecular polymer with collective elite physical and mechanical

properties, such as elasticity, abrasion and impact resistance, heat

dispersion and malleability at cold temperature, making it

irreplaceable by synthetic alternatives in most applications

(Puskas et al., 2014). According to International Rubber Study

Group’s (IRSG) report, the global NR demand and production

surged by 9.4% and 5.7% in 2021, respectively. Total NR production

is forecasted to further grow by 3.7%, reaching 14.80 million tons in

2023. Presently, NR is commercially obtained exclusively from a

single tropical tree species: the Para rubber tree (Hevea brasiliensis).

However, NR supplies fromHevea tree are not sustainable due to its

restriction to specific tropical regions, susceptibility to fungal

infections (especially the South American Leaf Blight, SALB), and

laborious and skilled harvest work (Mooibroek and Cornish, 2000;

van Beilen and Poirier, 2007a; Ahrends et al., 2015; Men et al.,

2019). Therefore, it is urgent to develop alternative rubber crops. So

far, more than 1800 plant species have been identified as containing

rubber in their latex (Metcalfe, 1967). Nevertheless, only a few of

these species, including Parthenium argentatum Gray, two

dandelion species of Taraxacum kok-saghyz (Tk) and T.

brevicorniculatum (Tb), Lactuca sativa, and Ficus bengalensis,

produce NR with an average molecular weight over 1000 kg/mol,

an essential determinant of high rubber quality (Rousset et al., 2021;

Salehi et al., 2021).

The genus Taraxacum, commonly known as the dandelion

plants, is a member of the family Asteraceae, subfamily

Cichorioideae, and is widely distributed in the temperate zones

(Schütz et al., 2006). Taraxacum has long been used as medicinal

herbs in traditional Chinese medicine to treat hepatitis and the

immune response to upper respiratory infections, bronchitis, and

pneumonia (Sweeney et al., 2005; Qadir et al., 2022). In Germany,

the application of Taraxacum is recorded in medicating gout,

diarrhea, blister, spleen, and liver complaints (Faber, 1958). In

North America, the infusions and decoctions of the Taraxacum

are applied to treat kidney disease and heartburn (Sweeney et al.,

2005). In Mexico and Turkey, the dandelion is used as a laxative and

potent anti-diabetic medicine (Schütz et al., 2006). The therapeutic

actions of Taraxacum species have been partially ascribed to some

sesquiterpenes in their roots and leaves. Recently, the extracts of

potential pharmaceutical importance, including a number of

sesquiterpenes, triterpenes, phytosterols, and phenolic compounds

from dandelion roots, were identified in dandelion plants (Leu et al.,

2003; Kisiel and Michalska, 2006). About seventy Taraxacum

microspecies are identified in China, of which Tk and Tb are

known to produce high-quality NR in their latex, the milky

cytoplasm of specialized cells known as laticifers (Post et al.,

2012). Tk, also called Russian dandelion or Rubber dandelion,

was exploited as the rubber-producing crop in the USSR due to it

significant accumulation of high-quality rubber in the root (5% to

24% on a dry weight basis) (van Beilen and Poirier, 2007b). In its
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roots, the laticifer cells, appearing as long tubular vessels produce

and store latex, similar to the laticifers in the rubber tree’s bark

(Ramirez-Cadavid et al., 2017). Meanwhile, its known pathway of

rubber biosynthesis also corresponds roughly with that of the

rubber tree (Tang et al., 2016; Lin et al., 2017). Proteins identified

as important for rubber biosynthesis in the rubber tree, including

CPT (cis-prenyltransferase), CPTL (cis-prenyltransferase-like), and

REF/SRPP (rubber elongation factor/small rubber particle protein),

are also recognized as crucial components of the rubber-producing

machinery in dandelion species (Salehi et al., 2021). The advantages

of Tk as perennial herb, including a relatively simple genome, wide

planting area, small plant architecture, ease to transform and

harvest, and a relatively short life cycle, make it an ideal model

plant for studying natural rubber biosynthesis and production (Lin

et al., 2017; Lin et al., 2021). Hitherto, we know little about the

regulatory mechanisms of the biosynthesis of secondary metabolites

including the high molecular rubber and the component of

therapeutic agents in Taraxacum.

miRNAs are endogenous noncoding RNAs with 20-24

nucleotides (nt) that play important roles in regulating plant growth

and development as well as biotic and abiotic stress (Song et al., 2019).

They are produced through a multistep process including

transcription of miRNA genes, precursor processing, and assembly

of miRNA-induced silencing complex (miRISC). The mechanisms of

miRNA in regulating target gene expression are conserved across

different plant species, including cleavage of target genes by base

pairing, translational repression, and miRNA-dependent DNA

methylation (Jones-Rhoades et al., 2006). The crucial roles of

miRNAs have been reported in the regulation of plant growth and

development (Chen, 2009). For instance, in Arabidopsis, miR156,

miR172, andmiR159 are involved in the regulation of vegetative phase

change, floral transition, and flowering time (Aukerman and Sakai,

2003; Millar and Gubler, 2005; Schwab et al., 2005; Wu and Poethig,

2006). Additionally, miR160 and miR164 play a role in regulating root

development and the emergence of lateral roots (Guo et al., 2005;

Mallory et al., 2005). miRNAs are also involved in the responses of

plants to environmental stimulation as well as biotic and abiotic

stresses (Song et al., 2019). For example, miR396 inhibits leaf growth

by targeting GRFs (Growth Regulating Factor) under UV-B radiation

damage in Arabidopsis (Casadevall et al., 2013). miR393 targets the

auxin receptor genes HvTIR1 and HvAFB, contributing to the

inhibition of root elongation under aluminum stress in barley (Bai

et al., 2017). Overexpression of miR319 enhances cold tolerance of rice

and sugarcane by down-regulating the TCP transcription factors

(Thiebaut et al., 2012; Yang et al., 2013). Down-regulation of

miR165/166 confers enhanced drought resistance via the elevation

of ABA levels in Arabidopsis (Yan et al., 2016). Moreover, miRNAs act

as a key regulator in the production of secondary metabolites, which

are predicted to protect plants from a series of environmental

conditions (Zhang et al., 2022). miR5021 and miR414 regulate the

biosynthesis of terpenoid backbone, sesquiterpenoid, and triterpenoid

in Xanthium strumarium (Fan et al., 2015). miR2161 regulates the

biosynthesis of benzylisoquinoline alkaloids in opium poppy plants by

targeting mRNA encoding enzymes such as S-adenosyl-L-methionine,

30-hydroxy-N-methylcoclaurine, and 40-O-methyltransferase (Gupta
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et al., 2017). Recently, a total of 574 and 396 miRNAs were predicted,

respectively, in Tk and T. officinale by homologous retrieval using the

publicly available RNA-seq and EST data of these two Taraxacum

species (Karimi et al., 2022). Of these miRNAs, miR5021, miR838 and

miR1533 were speculated by the KEGG analysis to participate in the

terpene biosynthesis (Karimi et al., 2022). So far, the miRNAs and

their targets have never been investigated by targeted sequencing

analysis in Taraxacum and the roles of miRNA-target modules in the

regulation of rubber biosynthesis are not known.

Here, to identify the key miRNA-target modules in the natural

rubber biosynthesis pathway of Taraxacum plants, we performed

small RNA sequencing, degradome sequencing, target gene

prediction, and mRNA sequencing in a pair of Taraxacum species

with contrasting ability of rubber production, the elite Tk and the

inferior Ts (T. spadiceum). A vast number of miRNAs were

identified in the two dandelions species, and most importantly 53

ones revealed to be differentially expressed between the latex of the

two dandelion species. The targets of these differentially expressed

miRNAs were significantly enriched in the processes of

macromolecule biosynthesis and metabolism in latex. The

miRNA-target regulatory modules that implicate in the

biosynthesis of natural rubber were further investigated. Together,

the results we obtained provide the first-hand information on the

role of miRNAs in natural rubber biosynthesis and a valuable basis

for exploring the detailed functions of miRNAs in rubber-

producing dandelions.
2 Materials and methods

2.1 Plant material and growth conditions

Tk and Ts germplasm populations were collected in Xinjiang,

China, and the accessions of Ts-01 and Tk-20 from the two

microspecies were selected for the study. Tk and Ts plants were

propagated by tissue culture following the procedures: the leaves

were cut into small pieces of 0.5 cm2 in liquid Murashige & Skoog

(MS) medium (4.4 g/L MS, 20 g/L sucrose, pH 5.8) and put on the

propagation medium (4.4 g/L MS, 20 g/L sucrose, 0.7 mg/L kinetin,

0.2 mg/L IAA, 9 g/L Agar, pH 5.8) for 3 weeks; the regenerated buds

were transferred to the rooting medium (2.2 g/L MS, 30 g/L sucrose,

9 g/L Agar, pH 5.8) for 4 weeks. The resulting plantlets were

transplanted to soil and grown in a growth chamber at 16 h light/

8 h dark, 24°C, and 60% humidity for 8 weeks. Afterwards, these

plants were transferred to a 6°C growth chamber for 4 weeks of

vernalization, and then cultivated in the growth chamber at 16 h

light/8 h dark, 24°C, and 60% humidity until flowering.
2.2 Histochemical staining and rubber
content determination

The roots from five-month-old Tk and Ts plants were fixed in

FAA solution for 24 hours, and then sectioned into 6 mm slices. The

slices were stained with saturated oil red O solution for 10 minutes,

differentiated in 60% isopropanol for 10 seconds, washed with
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double distilled water and then sealed with glycerin gelatin. The

bright field observations were performed using a microscope

(SZX16, Olympus, Japan). One gram of dried roots from the Tk

and Ts plants was ground into a fine powder and boiled in 20 ml of

double-distilled water for an hour. The supernatant was discarded,

and 20 ml of 3% KOH was added and boiled for another 2 hours.

The coagulated rubber was taken out and dried to a constant weight

in a hot air oven at 60°C, and then weighted.
2.3 RNA extraction, library construction
and sequencing

During the full flowering stage, total RNA was extracted from

the flower, leaf, root and latex of Tk and Ts using the TRNzol

Universal Reagent (Catalog Number 4992730) from TIANGEN

Biotech Co., Ltd. (Beijing, China) according to the manufacturer’s

instructions. The quality and integrity of RNA were evaluated using

the INFINTE 200 PRO (TECAN, Switzerland) and Agilent 2100

Bioanalyzer (Agilent Technologies, CA, USA). In total, twelve small

RNA libraries were constructed for the both Taraxacum species,

including one for each of the tissues of flower, leaf and root, and

three for the tissue of latex, and subjected to small-RNA sequencing.

Briefly, the libraries were constructed with approximately 2.5 µg

total RNA per sample by using the NEBNext® Multiplex Small

RNA Library Prep Kit for Illumina (NEB, MA, USA). The small

RNA was ligated with 3′ and 5′ end adapters, respectively, followed

by reverse transcription to synthesize cDNA and sequenced on the

Illumina HiSeq 2500 platform. Six mRNA libraries from latex were

constructed by using the NEBNext Ultra RNA Library Prep Kit

following the manufacturer’s instructions. mRNA libraries were

sequenced by the Illumina NovaSeq™ 6000 platform to generate

150-bp paired-end reads. About 100 µg total RNA from the tissues

of flower, leaf, root and latex of each dandelion species were equally

pooled for degradome library construction. Degradome cDNA

library was also processed on the Illumina HiSeq 2500 platform.
2.4 Identification of miRNA and
differentially expressed miRNA

We processed the raw reads of miRNA sequencing using the

following steps: the data quality was evaluated by fastp v0.210

(Chen et al., 2018); the adapter sequences, low-quality reads, and

inserted reads of less than 18 nt were removed by Cutadapt v2.10

(Martin, 2011); the structural and organelle RNAs, including tRNA,

rRNA, snoRNA, and snRNA, were removed by aligning the reads to

the Rfam database (https://rfam.org/) and organelle RNA database.

To identify known and novel miRNAs, the retained reads were

aligned to the miRBase V22 (https://www.mirbase.org) and the

reference genome (Unpublished data), respectively. The reads were

aligned to the reference genome by using bowtie v1.3.1 with the

following parameters: –all -m 20 –best –strata -v 1 (Langmead et al.,

2009). The novel miRNAs were further identified by sRNAminer

v1.1.1 (https://github.com/kli28/sRNAminer) using the merged

data of all the small RNA sequencing libraries (Axtell and
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Meyers, 2018; Feng et al., 2019). The miRNA expression level was

calculated and normalized to transcripts per 10 million (TP10M),

and the differentially expressed miRNAs were identified and

screened by DESeq2 with log2|FC| > 1, padj < 0.01 and total read

counts >100 of six latex libraries (Love et al., 2014).
2.5 Target prediction, degradome, and
mRNA sequencing analysis

The targets of differentially expressed miRNA were predicted by

TAPIR (score <= 4; free energy ratio >= 0.7) and psRNATarget

(expectation <= 2; other parameters were set to default), and only

the target genes that were jointly identified by two software

programs were used for further analysis (Bonnet et al., 2010; Dai

et al., 2018). Degradome sequencing reads were analyzed by the

CleaveLand v4.5 pipeline using the parameters: mode 1 and a p-

value of less than 0.05 (Addo-Quaye et al., 2009). miRNA targets of

different categories were represented in target-plots (T-plots). The

mRNA sequencing data were analyzed following the HISAT2

v2.2.1/StringTie v2.1.5 pipeline (Pertea et al., 2016). The gene

expression level was normalized by Fragments Per Kilobase of

exon model per Million mapped fragments (FPKM) and the

differentially expressed genes were determined by DESeq2, with

the padj < 0.01.
2.6 GO enrichment analysis

The GO analysis of miRNA targets was performed using the

OmicShare tools, a free online platform for data analysis (https://

www.omicshare.com/tools).
2.7 miRNA-mRNA regulatory networks
construction

The regulatory networks of miRN19, miR160a, miR164a and

miR172a, and their targets were constructed and visualized by

Cytoscape V3.9.1 (Shannon et al., 2003).
3 Results

3.1 Comparison of rubber production
between Tk and Ts

Tk and Ts plants were propagated from leaves by tissue culture,

vernalized and grown in pots in the growth chamber. The rubber

production phenotypes were measured at the peak flowering time,

which was about two months after vernalization (Figure 1A).

Compared to Ts, much more latex outflowed in Tk after cutting

the main root. Oil-red O staining of transverse root sections showed

both Tk and Ts contain ring-shaped and well-dispersed young and

mature laticifer cells (Figures 1B, C). Nevertheless, the intensity of

oil-red staining revealed that the number of rubber particles in the
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laticifer cells of Tk was significantly higher than that of Ts

(Figures 1D, E). When we broke and pulled apart the dried roots,

apparent rubber filaments were observed in Tk but not in Ts,

indicating a much higher rubber content of Tk than that of Ts

(Figure 1F). Moreover, the rubber content of Tk was quantitatively

determined by dry root weight to be 14.07%, whereas that of Ts was

barely 0.03%, confirming a striking difference in rubber content

between Tk and Ts (Figure 1G).
3.2 Small RNA sequencing in Tk and Ts

In order to achieve more integrated miRNA information of the

genus Taraxacum, a total of 12 small RNA (sRNA) libraries were

constructed and sequenced from the tissues of flower (FW), leaf

(LF), root (RT) and latex (LX) in Tk and Ts. Small RNA-Seq

generated raw reads ranging from 9,907,779 to 18,806,129 per

library. The raw sequences were computationally analyzed to

remove low quality sequences, adaptors, and reads shorter than

18 nt. After filtering, 3,520,292 to 8,209,888 clean reads per library,

representing 28%-77% of the initial raw reads, were retained. The

sRNA lengths varied extensively from 18 to 30 nt, with the majority

ranging from 21 to 24 nt (Figure 2).
3.3 Identification of miRNAs and
differentially expressed miRNAs

The clean reads of these miRNA libraries were subjected to

mapping against the miRNABase V22. Furthermore, sRNAmer was

used to identify new miRNA by merging all the miRNA sequencing

libraries. Totally, we detected 108 known and 34 novel miRNAs in

these two dandelion species, with the sequences and genomic

locations of miRNA, miRNA star, and miRNA precursor

summarized in Supplementary Table 1. To identify the

differentially expressed miRNA in the latex between Tk and Ts,

we quantified the expression levels of the 142 identified miRNAs

(Supplementary Table 2). A total of 53 miRNAs, including 32

known and 21 newly identified ones, were differentially expressed

(DE) between the two dandelion accessions (Supplementary

Table 2). Among these DE miRNAs, 34 were up-regulated and 19

were down-regulated in the latex of Tk when compared to that of Ts

(Figure 3; Supplementary Table 2).
3.4 miRNA targets analysis

We combined the degradome sequencing and target prediction

to identify the miRNA targets. Using the degradome sequencing

data, 145 targets corresponding to 74 miRNAs were identified by

the CleaveLand4 pipeline. The target plots (T-plots) revealed the

comprehensive categories and cleavage information of all these

miRNAs and their targets (Supplementary Data 1). The T-plots for

six miRNAs and their representative targets are shown in Figure 4A.

In order to obtain more complete miRNA-target information, 53

DE miRNAs were also used to predict targets by the software
frontiersin.org
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programs TAPIR and psRNATarget. A total of 298 and 306 targets,

corresponding to 165 and 164 non-redundant genes, were identified

by TAPIR and psRNATarget, respectively (Supplementary Table 3).

Among these non-redundant target genes, 127 ones were identified

by both types of software (Figure 4B), and subjected further gene

ontology (GO) functional annotation. The GO results revealed six

statistically significant enrichment for the macromolecule-related

pathways, i.e. “regulation of macromolecule biosynthetic process,

GO:0010556”, “regulation of macromolecule metabolic process,

GO:0060255”, “regulation of cellular macromolecule biosynthetic

process, GO:2000112”, “cellular macromolecule metabolic process,

GO:0044260”, “macromolecule biosynthetic process, GO:0009059”,

and “macromolecule metabolic process, GO:0043170” (Figure 4C;

Supplementary Table 4). The root ontology analysis of the enriched

GO terms revealed that these pathways related to macromolecules

are interconnected and fall within the subcategory of GO:0043170
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(Supplementary Figure 1). KEGG enrichment analysis identified the

involvement of these target genes in five pathways, particularly the

significant enrichment in plant hormone signal transduction

(Figure 4D). These observations suggest the DE miRNAs and

their targets might participate in the biosynthesis and metabolism

of natural rubber, a type of macromolecule.
3.5 miRNA-target modules implicated in
natural rubber metabolism

We compiled the list of miRNA targets involved in

macromolecule-related metabolism based on the GO categories

and compared their expression levels in the latex of Tk and Ts.

Four kinds of target gene families stood out, including AP2/ERF

(APETALA2/Ethylene Responsive element binding Factor), ARF
A

B

D E

F

G

C

FIGURE 1

Phenotypic comparison between Tk and Ts in the flowering period. The representative plants of Tk-20 and Ts-01 in the flowering period (A). In the
insets, the outflow of latex in the Tk and Ts was shown after cutting the roots. Oil red O staining was conducted on root cross section of Tk (B, D)
and Ts (C, E). Rubber filaments were compared between the dried roots of Tk and Ts (F). Natural rubber contents were measured between Tk and
Ts (G). ** indicates p < 0.01.
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A

B

FIGURE 2

Length distribution and abundance of small RNAs in flower (FW), leaf (LF), root (RT) and latex (LX) of Tk and Ts. The sequential length distributions of
clean reads ranging from 18 to 30 nt of Tk (A) and Ts (B) are shown. The red and blue bars indicate the lengths of 21 and 24 nt, respectively.
A B

FIGURE 3

Heatmap of differentially expressed miRNAs. The up-regulated (A) and down-regulated (B) miRNAs are identified in the latex of Tk vs. Ts. The color is
based on the log2(TP10M) value.
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(Auxin Response Factor), NAC (NAM, ATAF1/2 and CUC2

domain containing protein), and protein kinase. Of them, six

AP2/ERF genes, one NAC gene, and eight protein kinase genes

were expressed significantly different between the latex of Tk and Ts

(Figure 5A). The DE target genes of AP2/ERF, NAC, ARF, and

protein kinase were mainly targeted by miR172, miR164, miR160,

and miRN19 families, respectively. To further understand the

regulatory networks between these miRNAs and their targets, the

miRNA-mRNA interaction network maps were constructed,

including the association of miR164 with 15 targets, miRN19a

with 28 targets, miR160a with 5 targets, and miR172a with 11

targets. (Figures 5B–E). These DE miRNAs and their target genes

might play an important role in the metabolism of natural rubber.
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4 Discussion

Plants of the genus Taraxacum, are widespread throughout the

world and about 2800 species within 60 sections have been

identified (Kirschner et al., 2013). In addition to its long history

of use in traditional medicine, the development of rubber-

producing dandelions, especially the Russian dandelion T. kok-

saghyz (Tk), into alternative rubber crops has regained much

attention since the early 2000s (Martinez et al., 2015; Salehi et al.,

2021). However, the disadvantages of Tk, such as poor growth vigor

and self-incompatibility, make essential the incorporation of other

Taraxacum species in Tk breeding and scientific projects (Zeisek

et al., 2019; Salehi et al., 2021). In this study, T. spadiceum (Ts), an
A

B DC

FIGURE 4

miRNA target identification and functional enrichment analysis. The six representative miRNA targets are identified by degradome sequencing (A).
Venn diagram for targets of differentially expressed miRNAs are predicted by TAPIR and psRNATarget (B). The top 20 GO enrichments are shown for
the targets of differentially expressed miRNA (C). The top 5 KEGG enrichments are displayed for the targets of differentially expressed miRNA (D).
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apomictic dandelion species with strong growth vigor and low root

rubber-content, was investigated together with Tk (Figure 1). The

findings of miRNA-targets and the vast amount of small RNA

datasets obtained here from the two dandelion species will benefit

not only the research in rubber production but that in the other

important agronomic traits for Tk domestication.

The read distribution of the sRNA sequencing data generally

showed that the abundances of 21 and 24 nt sRNAs are the highest

in different tissues (Chen, 2009). However, sRNAs of 22 and 23 nt

revealed to be highly expressed in our sequencing data (Figure 2).

Notably, the abundances of the 22-nt sRNA were the highest in all

the three latex samples of Ts when compared to the other length-

types of sRNAs (Figure 2B). In Arabidopsis, DCL2 is thought to

regulate the biogenesis of viral 22 nt siRNAs, which repress the

translation of their cognate mRNAs as well as global translation

(Deleris et al., 2006). In addition, the 22 nt sRNA have also been

shown play an important role in fine-tuning plant growth and stress
Frontiers in Plant Science 08
responses (Wu et al., 2020). Latex produced by rubber-producing

dandelions consists of multiple secondary metabolites and is

thought to defend against biotic and abiotic stresses (Ramos et al.,

2019). Therefore, the highly expressed 22 nt sRNA in latex might

participate in both latex metabolism and plant defense. The

mechanisms of generation and physiological functions have never

been reported for the type of 23 nt sRNAs in plants. Hence, the

exact roles of 22 and 23 nt sRNAs in latex needs to be further

investigated, especially their possible involvement in the latex

metabolism of the rubber-producing dandelion species. miRNAs

and their targets are highly conserved in plants. In this study, 108

conserved miRNAs and 34 dandelion specific miRNAs were

identified. Of which, a total of 53 were differentially expressed

(DE) between the latex of Tk and Ts, including 32 conserved and 21

newly identified miRNAs (Supplementary Table 2). Among the DE

miRNAs, miRN26 and miR319e were, respectively, the most

abundant newly identified and conserved miRNAs (Figure 3).
A B

E

C

D

FIGURE 5

Regulatory networks of miRNA-target involved in the biosynthesis and metabolism of natural rubber macromolecules. Gene families involved in
macromolecule biosynthesis and metabolism and their expression levels in Tk and Ts latex (A), the color is based on the log2(FPKM+1) value. **
indicates a significant difference in gene expression between Tk and Ts at the padj-value < 0.01 level. The regulatory networks are shown between
miRN19a (B), miR160a (C), miR164a (D) and miR172a (E), and their target genes.
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These results imply that species-specific miRNAs may play an

important role in latex formation and rubber production. We

used degradome sequencing to identify the miRNA target genes,

and only 145 targets for 74 miRNAs were obtained (Supplementary

Data 1). Target genes could be detected for some of the conserved

miRNAs, including miR156, miR160, miR166, miR167, miR171,

miR319, miR393, and miR396, but not for nearly half of miRNAs

identified by degradome sequencing. Four possible reasons might

account for this result: the expression abundance of some miRNA

targets is too low to be detected; the expression of some target genes

exhibits strict spatio-temporal characteristics; some novel and

specific miRNAs could have arisen recently and have not

necessarily acquired a target; and the sequencing depth of the

degradome library needs to be increased. To obtain

comprehensive miRNA targets implicated in rubber production,

we further used target prediction to identify miRNA target genes for

the DE miRNAs between the latex of Tk and Ts. TAPIR and

psRNATarget predicted 298 and 307 miRNA targets, respectively,

including 165 and 164 non-redundant genes (Supplementary

Table 3). Notably, a total of 127 non-redundant targets were

detected by both programs. Together, we obtained comprehensive

and credible miRNA target information of these DE

miRNAs.Terpenoids, including monoterpenes, sesquiterpenes,

diterpenes, triterpenes, tetraterpenes and polyterpenes, are types

of natural hydrocarbons that are widely distributed in plants. The

C5 phosphates, isopentenyl diphosphate (IPP) and dimethylallyl

diphosphate (DMAPP), are the common initial molecules for

synthesizing of both terpenoid and natural rubber in plants

(Hossain et al., 2022). Currently, miRNAs have been widely

reported in the regulation of terpenoids biosynthesis. For

instance, miR4995 plays a promoter function in the biosynthesis

of terpenoids that ultimately affects the production of picroside-I in

Picrorhiza kurroa Royle (Vashisht et al., 2015). The miR5021 was

predicted to target the enzymes that affect the synthesis of terpenoid

indole alkaloids in Catharanthus roseus (L.) G. Don (Pani and

Mahapatra, 2013). Overexpression of miRStv_11 and anti-miR319

enhances the biosynthesis of steviol glycosides by suppressing the

expression levels of KO, KS, UGT86C2 and KAH in Stevia

rebaudiana (Saifi et al., 2019). In this work, GO analysis on the

targets of the differentially expressed miRNAs between the latex of

Tk and Ts revealed significant enrichment for six pathways involved

in the regulation of macromolecule biosynthesis and metabolism

(Figure 4; Supplementary Table 4). These target genes might play an

important role in the regulation of natural rubber biosynthesis in

these two dandelion species with distinct rubber content in their

roots (Figure 1). KEGG analysis revealed that the target genes were

enriched in five pathways, with plant hormone signal transduction

being the most significant pathway. Production practices have

demonstrated that extrinsically applying ethylene on rubber trees

can enhance latex metabolism and rubber flow time, ultimately

leading to a significant increase in rubber yield (Domiciano et al.,

2018). JA (jasmonic acid) signaling involves the nature rubber

production by regulating the laticifer differentiation in rubber tree

(Chao et al., 2023). These results indicate that plant hormones play

an important role in the biosynthesis of natural rubber. Four types

of miRNA-target modules are predicted to be widely involved in
Frontiers in Plant Science 09
macromolecule-related processes (Figure 5). Notably, the miRN19-

protein kinase module is a module specific in the rubber-producing

dandelions (Supplementary Table 3). The expression levels of many

protein kinase genes in latex were significantly different between Tk

and Ts, reinforcing the regulatory roles of the DE miRNAs

identified to target protein kinases. Whether the species-specific

miRNA-target regulatory modules in Taraxacum participate

directly or indirectly in natural rubber production warrants

further investigation.
5 Conclusion

In summary, 142 miRNAs were discovered by miRNA

sequencing in the two dandelion species, Tk and Ts, with striking

differences in rubber production, and 53 are differentially expressed

in their latex. The targets of these differentially expressed miRNAs

were significantly enriched in the processes of macromolecular

biosynthesis and metabolism. Four types of miRNA-target

modules, including miR172-AP2/ERF, miR164-ARF, miR160-NAC

and miRN19-protein kinase, might play an important role in rubber

production for their differential expressions in the latex of the two

dandelions. Taken together, the findings and extensive datasets

presented here provide a basis for the deeper understanding of the

regulatory roles of miRNA in dandelion rubber production.
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