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Petunia as a model for MYB
transcription factor action
under salt stress

Baltasar Zepeda, Leo F. M. Marcelis, Elias Kaiser
and Julian C. Verdonk*

Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University &
Research, Wageningen, Netherlands
Salinity is a current and growing problem, affecting crops worldwide by reducing

yields and product quality. Plants have different mechanisms to adapt to salinity;

some crops are highly studied, and their salinity tolerance mechanisms are

widely known. However, there are other crops with commercial importance

that still need characterization of their molecular mechanisms. Usually,

transcription factors are in charge of the regulation of complex processes such

as the response to salinity. MYB-TFs are a family of transcription factors that

regulate various processes in plant development, and both central and

specialized metabolism. MYB-TFs have been studied extensively as mediators

of specialized metabolism, and some are master regulators. The influence of

MYB-TFs on highly orchestrated mechanisms, such as salinity tolerance, is an

attractive research target. The versatility of petunia as a model species has

allowed for advances to be made in multiple fields: metabolomic pathways,

quality traits, stress resistance, and signal transduction. It has the potential to be

the link between horticultural crops and lab models, making it useful in

translating discoveries related to the MYB-TF pathways into other crops. We

present a phylogenetic tree made with Petunia axillaris and Petunia inflata R2R3-

MYB subfamily sequences, which could be used to find functional conservation

between different species. This work could set the foundations to improve

salinity resistance in other commercial crops in later studies.
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Effects of salinity on crops

Salinity is among the most detrimental factors affecting plant growth and crop yield.

Currently, 20% of irrigated crop land is affected by salinity, and due to climate change this

problem is expected to worsen (Li et al., 2023). Salt stress starts with osmotic stress, a rapid

response that results in reduced water uptake by the roots, and is followed by an ionic
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stress, which occurs over a period of days to weeks (Munns and

Tester, 2008). Osmotic stress reduces water uptake through the

roots, with the first and most prominent effect being stomatal

closure, which subsequently reduces the rates of CO2 assimilation

and transpiration (Munns and Tester, 2008). Another consequence

of osmotic stress is a reduction in the rates of cell elongation,

hampering cell division and slowing down growth rates (Munns

et al., 1995). Ionic stress is caused by a prolonged exposure to

salinity, wherein sodium (Na+) and chloride (Cl-) accumulate in

plant cells and cause, among other effects, an increased rate of leaf

senescence (Rodrıǵuez Coca et al., 2023). Due to leaf senescence and

reduced leaf area expansion (caused by osmotic stress), plants may

have a reduction in whole-plant light interception, and additionally

leaves may show reduced photosynthetic capacity; both

consequences directly impact biomass (Munns et al., 1995; Zörb

et al., 2019). In most cases, yield is reduced when crops are grown

under high salinity conditions (Zörb et al., 2019). In the case of

fruits and vegetables, this could result in smaller final products or

products that do not meet consumer quality standards (Saied et al.,

2005). However, examples do exist where quality related

metabolites are elevated under salinity stress, often leading to

higher customer appreciation (Rouphael et al., 2018; Moles et al.,

2019). Breeding for high productivity under salinity requires an

understanding of different mechanisms that plants have evolved in

their response to salinity.
Molecular mechanisms of
salt tolerance

Salt tolerance in plants involves intricate molecular mechanisms

that aim to keep plants functioning. Higher Na+ ion concentrations

inside plant cells act as competitive inhibitors of enzymes and other

ions, such as potassium (K+), disrupt photosynthesis and cell

homeostasis, and result in higher levels of Reactive Oxygen

Species (ROS) (Zörb et al., 2019). Because these effects are

detrimental for plant functioning, plants have developed several

responses as adaptation mechanisms to soil salinity—such as

osmotic adjustment, ion compartmentalization, and selective ion

exclusion (Serrano and Rodriguez-Navarro, 2001; Parida and Das,

2005; Zhao et al., 2020). Several antiporters have been proposed as

primary actors, to some extent, of the previously mentioned salinity

stress resistance processes. These antiporters include the CHX,

KEA, and NHX families, which play a critical role in the

adaptation to stress of Na+ either by controlling the uptake into

the membranes or by compartmentalizing into the vacuoles

(Munns, 2005; Asif et al., 2011; Sze and Chanroj, 2018). To

synchronize their expression in the tissues of interest, signal

transduction depends on large, orchestrated changes in gene

expression that can be induced by transcriptional modules

(Mantri et al., 2007; Shaar-Moshe et al., 2017; Franzoni et al.,

2019). In this light, we propose to investigate the involvement of a

ubiquitous transcription factor (TF) family that may coordinate

different physiological processes, and which in some cases have

been shown to enhance salinity resistance (see below).
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What are MYB-TFs?

MYB-TFs were originally named after the avian myeloblastosis

virus (MYB), and are among the most prominent TF families in

plants (Klempnauer et al., 1982). They have been demonstrated to

be a cornerstone of plant functioning (Allan and Espley, 2018;

Wang X. et al., 2021). As an example, MYB-TFs are involved in the

regulation of different central metabolism processes, such as cell fate

specification in the root epidermis (Ryu et al., 2005), differentiation

of cells into trichomes (Oppenheimer et al., 1991), pigmentation of

flowers and tissues (Koes et al., 2005; Liu et al., 2021), and

controlling stomatal aperture in guard cells (Cominelli et al.,

2005; Liang et al., 2005).

Different classifications of MYB-TFs, depending on homology,

have been described (Stracke et al., 2001; Dubos et al., 2010; Allan

and Espley, 2018; Pucker et al., 2020). The structure of a MYB-TF

consists of a highly conserved DNA binding domain (MYB

domain) with a helix-turn-helix (HTH) motif. These HTH motifs

form a DNA recognition site (R), allowing the interaction with

different target DNA sequences (Dubos et al., 2010). Depending on

the number of R sites, the MYB-TF family is subdivided into four

subfamilies: 1R-MYB, R2R3-MYB, 3R-MYB, and 4R-MYB (Dubos

et al., 2010). Among the four subfamilies of MYB-TFs, the R2R3-

MYB subfamily is by far the largest, the best studied (see below, Du

et al., 2012). Therefore, we focus on the R2R3-MYB subfamily and

its potential interaction on salinity tolerance mechanisms.
Why study MYB-TFs?

Several R2R3-MYBs have been characterized as master

regulators, i.e., genes at the top of the hierarchy of a regulatory

pathway (Kin Chan, 2013). MYB-TFs are an integral part of plant

development, cell fate, and specialized metabolism. In particular for

specialized metabolism, they have a key role as master regulators in

processes related to anthocyanin biosynthesis (Quattrocchio et al.,

2006; Pérez-Dıáz et al., 2016; Feng et al., 2018; Zhou et al., 2019),

fragrance (Verdonk et al., 2005; Yoshida et al., 2018), and lignin and

secondary cell wall biosynthesis (Zhong et al., 2008). Even with

the discovered functions, many other gene copies and different

species remain uncharacterized, leaving many MYB-TFs with

unknown roles.

The function of MYB-TFs is closely associated with different

abiotic stress responses. For example, MYB-TFs were shown to be

involved in drought, salt, and cold stress responses in wheat (Triticum

aestivum), Arabidopsis thaliana, and rice (Oryza sativa) (Jung et al.,

2008; Cai et al., 2011; Qu et al., 2022). OsMYB91 coordinates plant

growth in rice and contributes to salt stress tolerance by promoting the

accumulation of abscisic acid (ABA)—a phytohormone that, among its

numerous roles, plays a key role in abiotic stress resistance by

regulating stomatal conductance, thereby impacting rates of water

loss and carbon gain (Zhu et al., 2015). Two other rice MYBs

(OsMYB6 and OsMYB48-1) were shown to be involved in abiotic

stress responses. Overexpression increased drought and salinity stress

tolerance in rice, by inducing abiotic stress-responsive genes and
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promoting ABA signaling genes, respectively (Xiong et al., 2014; Tang

et al., 2019).

Transcriptomic studies can be used to detect salinity responses in

different crops. For example, in salinity-tolerant wild tomato

(Solanum chilense) salt tolerance was shown to be dependent on

differentially regulated genes related to: hormone signaling, Ca2+

signaling, ROS scavenging, and transcriptional regulation (Kashyap

et al., 2020). Additionally, a comparative analysis on salt-stressed

seedlings of domesticated tomato (S. lycopersicum) when cyclic

guanosine monophosphate (c-GMP) was applied—a secondary

messenger molecule involved in the salt stress response—showed

improved plant osmotic adjustment, reduced non-stomatal water

loss, and enhanced antioxidant defense pathways (Zhu et al., 2022).

This improved salt tolerance coincided with the differential

expression of 140 MYB-TF, suggesting that this transcription factor

family could be involved in salinity responses (Zhu et al., 2022).

In rice, another connection between salinity and the MYB-TF

family was observed: When growing a salinity-resistant and salinity-

susceptible rice cultivar in saline conditions, transcriptomic analysis

revealed two putative MYB60 transcription factors to be upregulated

in the tolerant cultivar (Formentin et al., 2018). Interestingly, in

Arabidopsis and grape (Vitis vinifera), these MYB60 TFs play a role

in stomatal regulation (Cominelli et al., 2005; Galbiati et al., 2011).

Similarly, when comparing drought-tolerant, salinity-tolerant, and

susceptible rice cultivars, MYB-TFs were differentially expressed in

the salinity-tolerant cultivar compared with the other two cultivars

(Shankar et al., 2016). These examples demonstrate the value of

transcriptomic approaches to identify important TFs. However, a

targeted approach could be better suitable for known genes.

Overexpression of other MYB-TFs reduced various stresses:

salt, drought, and cold stress in tomato and apple (Malus domestica)

(Cao et al., 2013); salt and pathogen resistance in Arabidopsis (Shen

et al., 2017); heat stress in rice (El-kereamy et al., 2012); and drought

stress in cotton (Gossypium barbadense) (Chen et al., 2014).

Similarly, transgenic maize (Zea mays) showed enhanced heat

and drought tolerance, when OsMYB55 was overexpressed

(Casaretto et al., 2016). Another example is SlMYB102, an R2R3-

MYB in tomato; when it was overexpressed, ROS scavenging

enzyme activities and antioxidant content increased, reducing

ROS content, along with increased Na+/K+ homeostasis (Zhang

et al., 2020). Whereas ectopic expression of a wheat MYB

(TaMYB730) in Arabidopsis increased salinity tolerance, by

improving the ionic resistance (He et al., 2012). Furthermore,

GmMYB84 was characterized as a mediator of root elongation

inhibition in response to drought stress in soybean (Glycine max)

(Wang et al., 2017), whereas silencing AtMYB60 resulted in

increased drought tolerance by constitutively reducing stomatal

opening in Arabidopsis (Cominelli et al., 2005). The variety of

species studied and the close relationship to specific functions opens

new possibilities for understanding the diverse roles of MYB-TFs in

various abiotic stress responses.

There is a close relationship between R2R3-MYB sequences and

their function, even between different species (Allan and Espley,

2018). Phylogenetic trees can be used to discover new functions of

different R2R3-MYBs, through homology in the aminoacidic
Frontiers in Plant Science 03
sequences (Stracke et al., 2001; Dubos et al., 2010; Du et al., 2012;

Hou et al., 2014; Pucker et al., 2020). For example, CaMYB101

represses anthocyanin biosynthesis in sweet pepper (Capsicum

annuum) and is closely related to petunia PhMYB27, which has

the same function (Liu et al., 2021). The functional redundancy is

very well illustrated by the regulation of anthocyanin biosynthesis.

In Arabidopsis, petunia, and maize, close R2R3-MYB homologs

PAP1 (AtMYB75), AN2, and C1 respectively were shown to

regulate the anthocyanin pathway (Koes et al., 2005). The same

was shown in other species i.e., apple, litchi (Litchi chinensis), and

grape (Chagné et al., 2007; Cavallini et al., 2014; Lai et al., 2019).

Another example is AtMYB4 , a MYB repressor of the

phenylpropanoid pathway in Arabidopsis. PhMYB4 and FaMYB1

are homolog genes of AtMYB4 that fine-tune volatile production by

controlling flavonoids in petunia and anthocyanins in strawberries

(Fragaria × ananasa) by repressing the same gene in the

phenylpropanoid pathway in both species (Jin et al., 2000;

Aharoni et al., 2001; Colquhoun et al., 2011). In banana (Musa

acuminata) fruits,MaMYB3 acts as a repressor in the modulation of

starch degradation; when overexpressing MaMYB3 in transgenic

tomatoes, this MYB prevented normal ripening of tomato fruits

(Fan et al., 2018). In this context, we can take advantage of R2R3-

MYBs with known functions related to abiotic stress resistance as

candidates to test in other species and investigate if their function

is conserved.
Petunia as a model to study salinity

Petunia, together with Arabidopsis and maize, is among the first

plant species where many different R2R3-MYBs with different

functions were identified (Koes et al., 2005). Petunia belongs to

the Solanaceae family, and is a perfect link between lab and crop

models due to its close relation with common crops such as tomato,

sweet pepper, potato (Solanum tuberosum), and eggplant (Solanum

melongena) (Vandenbussche et al., 2016). Furthermore, petunia

flowers have several known quality traits—e.g., fragrance, color,

morphological patterns—that are regulated by R2R3-MYBs (Santos

and Handro, 1983; Verdonk et al., 2005; Quattrocchio et al., 2006;

Baumann et al., 2007; Hoballah et al., 2007). Similarly agronomic

and horticultural traits—such as abiotic resistance—are expected to

be regulated by MYB-TFs as well (Wang et al., 2020; Hussain et al.,

2021). Nevertheless, petunia contains >100 hypothetical R2R3-

MYBs that remain uncharacterized. Hence, we propose to identify

homologous genes and new functions of different R2R3-MYBs,

which could be used later in genome-wide association studies or

functional characterization studies. Such studies should emulate the

harsh conditions that field crops often grow under—such as salinity,

drought, high light, or heat—and elucidate the R2R3-MYBs related

to a given stress response.

We made a phylogenetic tree (Figure 1) to group the two openly

available genome sequences of petunia: Petunia axillaris and

Petunia inflata (Jin et al., 2017). This tree can be used to predict

complete groups with potential homologous genes related to

salinity resistance. R2R3-MYBs can be visualized with 27 groups
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of R2R3-MYBs with homologous sequences. With this strategy, we

aim to have these groups as a foundation for future studies and help

characterize stress tolerance in different species.

We constructed the phylogenetic tree with information from both

Petunia axilaris and Petunia inflata because of gene redundancies

during their evolution (Bombarely et al., 2016). Gene redundancies are

important because there are examples of paralogs and diversification in

petunia: for example AN2 and AN4 are genes that code for R2R3-

MYBs in charge of flower coloration. These are expressed in different

locations in flower tissues and flower developmental stages, producing

a clear difference in anthocyanin expression between the two wild

parental lines (Bombarely et al., 2016, Supplementary note 7). To

confirm the previous duplication and potential search of salinity related

R2R3-MYB, we align previously mentioned MYB-TFs: OsMYB55,

OsMYB91 , and AtMYB60 . For OsMYB55 , g roup 10

(Peaxi162Scf00311g01112.1, Peaxi162Scf00096g01718.1,

Peaxi162Scf00682g00009.1, and Peaxi162Scf00847g00211.1, including

the sequence for Petunia inflata :Peinf101Scf05325g00004.1) showed

the homolog sequence in the same clade. The homolog sequence, on

the other hand, for OsMYB91 and AtMYB60 were part of group 11.

This example suggests that groups 10 and 11 in this tree could be

related to abiotic stress resistance in petunia, and it may help future
Frontiers in Plant Science 04
studies to begin with these groups first. With this strategy, it will be

possible to transfer this knowledge from petunia to other species.

Petunia presents a high tolerance to a number of abiotic stresses.

Petunia is more salinity tolerant when compared with tomato,

eggplant, or potato, which are respectively moderately salt-tolerant,

moderately salt-sensitive, and sensitive to salinity (Fornes et al., 2007;

Ünlükara et al., 2010; Villarino and Mattson, 2011; Charfeddine et al.,

2019; Moles et al., 2019; Parkash and Singh, 2020; Altaf et al., 2023).

Under stressful conditions such as high light intensity, petunia

modulates vegetative anthocyanin and volatile production as a

coping mechanism (Albert et al., 2009; Colquhoun et al., 2013).

Nevertheless, even when petunia presents tolerance to abiotic

stresses, the current trend is to study the final phenotype—

physiological and metabolomics responses—but understanding

transcriptomic regulation could be a more direct way to improve

resistance when breeding for new varieties. Some transcriptomics

studies have been conducted to identify the different pathways

involved in salinity resistance mechanisms on petunia under salinity

stress (Villarino et al., 2014). For example, salinity and drought

resistance are partially achieved by modulating ion transport inside

the vacuoles (Xu et al., 2009; Asif et al., 2011; Banjara et al., 2012). In

these studies, the overexpression of AtNHX1—a vacuolar Na+/H+
FIGURE 1

Phylogenetic tree with R2R3-MYBs based on aminoacidic sequences of Petunia axilallis and Petunia inflata. (1) The sequences of the MYB-TF family
were retrieved from the Plant transcription factor database (Jin et al., 2017). (2) Using the Levenshtein distance method in R, the dissimilarity
between sequences was measured (Pagès et al., 2023). (3) The phylogenetic tree was then built using the BioNJ algorithm (Gascuel, 1997), and (4)
visually illustrating the relationships among the sequences using (Yu et al., 2017). The red circle between Group 27 and Group 1 represents 23
individual clades, each with single sequences, that were omitted from this tree.
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antiporter gene—significantly enhanced the resistance to salinity and

drought stresses. The transgenic expression of FvMYB24 inArabidopsis

enhanced the salinity tolerance of transgenic plants, and among other

genes AtNHX1 was upregulated (Wang S. et al., 2021). However, the

connection between those studies and intermediary regulatory

pathways remains uncharacterized.

To summarize, we argue that salinity is a problem affecting

commercially important crops worldwide, and that studying R2R3-

MYBs in petunia could help to address this issue. Petunia, as a

member of the Solanaceae family, is a suitable link between lab and

crop models, and is highly salinity tolerant. We suggest the use of

petunia as a model plant to study salinity resistance and to identify

the R2R3-MYB regulators in response to salinity. We picked R2R3-

MYB, because they are known to be related with different

developmental pathways, specialized metabolisms pathways, and

stress responses pathways. The most important aspect is that the

function of those MYB-TFs is usually maintained between different

plant species, making the extrapolation of these discoveries to other

crops feasible. We proposed to functionally characterize these

MYB-TFs by the use of homology and phylogeny. Here, we

present an example based on Petunia axillaris and Petunia

inflata, and suggest that it should be possible to extrapolate this

idea to other crops with known sequences.
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