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Characterization and
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gene from hot pepper to
enhance waterlogging tolerance
Huaizhi Tian1,2†, Gaoling Fan3†, Xingwei Xiong1, Hui Wang1,
Suqin Zhang1* and Guangdong Geng1*

1College of Agriculture, Guizhou University, Guiyang, Guizhou, China, 2Institute of Pepper, Zunyi
Academy of Agricultural Sciences, Zunyi, Guizhou, China, 3Institute of Pepper, Guizhou Academy of
Agricultural Sciences, Guiyang, Guizhou, China
Basic helix–loop–helix (bHLH) proteins are important in abiotic stress control.

Here, a specific bHLH transcription factor gene, CabHLH18, from a strong

waterlogging-tolerant pepper cultivar, ‘ZHC2’, was successfully cloned. The

CabHLH18 gene presented a coding sequence length of 1,056 bp, encoding

352 amino acids, and the protein was the closest to Capsicum annuum

XM016694561.2 protein. The CabHLH18 protein was located in the nucleus.

The transformation of the CabHLH18 overexpression vector into the plumules of

hot peppers, ‘DFZJ’ and ‘ZHC1’, exhibited 21.37% and 22.20% efficiency,

respectively. The root length, plant height, and fresh weight of the ‘DFZJ’

overexpression lines were greater than those of wild-type (WT) plants under

waterlogging conditions. Compared with the WT plants, the overexpression lines

generally showed greater contents of water, the amino acid, proline, soluble

sugar, root viability, and superoxide dismutase activity, but lower

malondialdehyde content under waterlogging conditions. Plant fresh weight,

amino acids, proline, and soluble sugar levels of the overexpression lines were

39.17%, 45.03%, 60.67%, and 120.18% greater, respectively, compared with the

WT plants at 24 h after waterlogging stress. Therefore, theCabHLH18 gene could

be implicated in conferring waterlogging tolerance in hot peppers and holds

promise for enhancing their overall waterlogging tolerance.
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Introduction

Capsicum annuum of the Solanaceae family is a vegetable crop of worldwide importance.

In 2020, global production was approximately 39.28 million tons (FAO, 2020). Waterlogging

is a major abiotic stress that affect plants (Mickelbart et al., 2015). Waterlogging obviously

decreases crop production by 32.9% on average (Tian et al., 2021). The annual economic loss
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is more than billions of dollars (Sauter, 2013; Voesenek and Bailey-

Serres, 2015). Waterlogging stress causes physiological and

biochemical changes in plants, leading to inhibition of growth and

development (Perata and Voesenek, 2007; Bailey-Serres and

Voesenek, 2008; Vidoz et al., 2010; Phukan et al., 2016). Under

waterlogging stress, the inhibition of plant aerobic respiration limits

energy metabolism, thus restraining plant growth and development,

including seed germination, vegetative growth, and reproductive

growth (Pan et al., 2021). Plants also respond to waterlogging

stress by regulating their morphology, energy metabolism,

hormone biosynthesis, and signal transduction (Shinozaki and

Yamaguchi-Shinozaki, 2007; Hirabayashi et al., 2013; Kuroh et al.,

2018). Pepper is a shallow root plant with weak roots and poor

waterlogging resistance and can die after a few hours under water,

seriously affecting the yield and quality (Molla et al., 2022).

Consequently, increasing research to improve the waterlogging

resistance of peppers has been conducted. At present, research on

waterlogging stress has been focused on wheat, rice, and corn. Most

of the studies related to waterlogging stress in peppers have

concentrated on morphological observations, physiological

examinations, and biochemical analyses, devoting limited attention

to waterlogging tolerance mechanisms (Kato et al., 2020; Kaur et al.,

2021; Komatsu et al., 2022). Basic helix–loop–helix (bHLH) proteins

play important roles in regulating plant resistance to stress, which

belong to a superfamily of regulatory proteins present in eukaryotes,

having highly conserved bHLH domains (Toledo-Ortiz et al., 2003;

Upadhyay et al., 2018). The HLH domain is located at the carboxyl-

terminus and consists of two hydrophobic residues in a helical–ring–

helical structure, which promotes protein–protein interactions

(Murre et al., 1989). bHLH proteins regulate plant growth and

development, and biological and abiotic stress responses by

suppressing or activating the expression of related downstream

genes through transcriptional regulation or nuclear localization.

Many bHLH transcription factor genes have been identified from

different plants including Arabidopsis (Bailey et al., 2003). Zhang

et al. (2020) identified 122 members of the bHLH transcription factor

family in peppers, among which a few were noted to be involved in

responses to cold, heat, drought, and salt stress (Zhang et al., 2020).

Low temperature stress can induce significant upregulation of

WbHLH046 gene expression in wheat and improve the expression

of the rice bHLH gene (RsICE1) (Man et al., 2017). Arabidopsis

bHLH122 positively regulates drought tolerance, salt tolerance, and

osmotic signaling (Liu et al., 2013), and CdICE1 of the

chrysanthemum bHLH family regulates tolerance to low

temperature, drought, and salt stress (Chen et al., 2012). Pepper

bHLH transcription factor CabHLH035 can enhance salt tolerance

by regulating ion homeostasis and proline biosynthesis (Zhang et al.,

2022), and OrbHLH18 overexpression in Arabidopsis can

significantly improve cold resistance (Li et al., 2010). The

CsbHLH18 gene of sweet orange enhances cold tolerance in

transgenic tobacco (Geng and Liu, 2018). MebHLH18 expression

can increase peroxidase activity, decrease reactive oxygen species

(ROS), and change the abscission rate of cassava leaves at low

temperatures (Liao et al., 2023). However, no studies have been

reported on the waterlogging tolerance effects of the bHLH gene

in plants.
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bHLH genes are involved in regulating plant tolerance to abiotic

stresses, such as drought, salinity, and low temperature. However,

there are no reports on the bHLH gene function in hot pepper under

waterlogging stress. In the present study, an important bHLH

transcription factor gene, CabHLH18, in hot pepper was

successfully cloned. Next, the sequence characteristics,

evolutionary relationship, expression pattern, and subcellular

localization of the CabHLH18 gene were examined. Subsequently,

the growth and physiological response of CabHLH18

overexpression lines under waterlogging stress were analyzed, and

the function of the CabHLH18 gene was preliminarily explored. The

results provide a reference for generating waterlogging-

tolerant peppers.
Materials and methods

Plant materials and treatment

Three hot pepper cultivars, ‘ZHC2’ (waterlogging-tolerant),

‘ZHC1’, and ‘DFZJ’ (waterlogging-sensitive) were used in this

study. ‘ZHC2’ and ‘ZHC1’ are inbred lines, which were donated

by the Zunyi Academy of Agricultural Sciences (Zunyi, China), and

‘DFZJ’ is a local inbred line from Guizhou province. Pepper

seedlings were planted in plastic pots (length × width × depth:

32 × 24 × 13 cm, with one seedling per pot) filled with sand and

cultured at 25 ± 2/20 ± 2°C for a 10-h/14-h light/dark photoperiod

with an irradiance of 270 mmol m−2 s−1. Before and after the

formation of two leaves, the pepper seedlings were watered with

1/2 Hoagland solution (only macroelements halved, while

microelements were not) and further Hoagland solution once a

day. After the formation of five leaves, seedlings with uniform

growth were transferred to trays for waterlogging treatment and

placed into 2-cm-deep water above the sand surface. The seedlings

were subjected to three treatments as follows: 6 h (T1) and 24 h (T2)

of waterlogging stress and 1 h of recovery (R) after 24 h of

waterlogging stress according to the preliminary experiments.

Normal culture (no waterlogging stress) conditions served as the

control (CK). At each stage, leaf, stem, and root samples were

selected from 10 plants, mixed, immediately frozen in liquid

nitrogen, and stored in a −80°C freezer until use for gene cloning.

The phenotype and physiology of T3 pure transgenic hot pepper

‘DFZJ’ and wild-type (WT) plants were determined and cultured as

mentioned earlier. Three biological replicates with 10 plants per

replicate were established for the experiments.
RNA reverse transcription, CabHLH18
amplification, and construction of
overexpression vector

RNA was reverse-transcribed into cDNA using a PrimeScript

RT kit (Takara, Dalian, China). The full-length coding sequence of

the CabHLH18 gene was amplified from the hot pepper ‘ZHC2’

(under 24 h of waterlogging stress) cDNA, using primers with BsaI

restriction sites at the 5′- and 3′-ends. The primers used for
frontiersin.org
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amplification are shown in Table 1. The amplified fragment was

digested with SacI/SpeI and BamHI/KpnI and inserted into the

pEGOEPubi-H vector (modified to contain the green fluorescence

protein (GFP) gene), using T4-DNA ligase (Takara), according to

the manufacturer’s protocol. The inserted sequence was driven by a

corn UBI promoter.
Bioinformatics analysis of the
CabHLH18 gene

The CabHLH18 gene sequence was compared using the

DNAMAN global alignment method (Tsai et al., 2006). The NCBI

Open Reading Frame (ORF) Finder was used to analyze the ORF of

the CabHLH18 gene and predict its amino acid sequence. Expert

Protein Analysis System (Expasy) (https://web.expasy.org/protscale/)

was used for hydrophobicity prediction, and NetPhos 2.0 (http://

www.cbs.dtu.dk/services/NetPhos/) and CPHmodels 3.2 (http://

www.cbs.dtu.dk/services/CPHmodels/) were employed for

phosphorylation site analyses. The homologous sequences of the

CabHLH18 proteins were retrieved by BLAST search in the NCBI

database (accession numbers in Supplementary Table S1). A

phylogenetic tree was constructed using MEGA 7 (Mega Limited,

Auckland, New Zealand) with maximum-likelihood method of 1,000

bootstraps (Kumar et al., 2016). MODELLER9.22 (https://salilab.org/

modeller/) was adopted for homology modeling of the CabHLH18

protein (Benjamin and Andrej, 2016), using the X-ray crystal

structure of a putative bHLH protein, 5gnj.1.A, as the template.

The predicted model was analyzed using SAVES (https://

servicesn.mbi.ucla.edu/SAVES/). GROMACS software (http://

www.gromacs.org/) was employed for calculating root-mean-square

deviation and the potential energy value of the model protein (Hess

et al., 2008). Ramachandran plots were examined using Rampage

server (http://mordred.bioc.cam.ac.ukrapper/rampage.php) (Lovell

et al., 2003).
Subcellular localization of
CabHLH18 protein

Subcellular localization of CabHLH18 protein was analyzed

after transient expression in Nicotiana benthamiana leaf

epidermal cells. The plasmid containing the target gene was
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amplified and spliced to the 1300-GFP vector by seamless cloning

methodology. Agrobacterium GV3101 containing the 1300-

CabHLH18-GFP vector plasmid was cultured. The bacterial cells

were suspended in 10 mMMgCl2 buffer to an optical density of 600

nm (OD600) of 1.0. Two microliters of 100 mM 2-morpholino

ethane sulfonic acid was added to the bacterial suspension, which

was then incubated for more than 3 h. Subsequently, the prepared

bacterial suspension was inoculated into the lower epidermal layer

of 3–4-week-old N. benthamiana leaves and incubated for 72 h for

transformation. As the control, leaf transformation of the 1300-GFP

vector with no target gene was used. After transformation and

20 min of 1 µM 4′-6-diamino-2-phenylindole (DAPI) staining, the

samples were observed using laser confocal fluorescence

microscopy (FV1000 Olympus Corp., Tokyo, Japan). The

excitation and emission spectra used for DAPI were 405 nm and

455–470 nm, respectively. For GFP analyses, the excitation and

emission spectra were 488 nm and 507 nm, respectively. At least

three fields of view from three leaves were examined.
Gene transformation and identification

Agrobacterium rhizobiae strain LBA4404 containing the

CabHLH18 gene was inoculated onto Luria broth (LB) solid

medium (with 20 mg/L rifampicin and 50 mg/L kanamycin

sulfate) and incubated in the dark for 24 h at 28°C. Then, single

colonies were selected and inoculated into LB medium for 24 h

under constant shaking. Subsequently, 50 mL of the bacterial culture
was inoculated into 50 mL of fresh LB medium and incubated in a

shaker (180 rpm, 28°C) for 12 h until OD600 of 0.5–0.6 was reached.

After germination of the seeds of hot peppers ‘DFZJ’ and

‘ZHC1’ to a radicle length of 1–2 mm, the seed coats were

removed to expose their plumules and placed into the suspension

of Agrobacterium containing the CabHLH18 gene, with 200 mL/L
SILWET1-77 surfactant and 1 mL/L acetoeugenone under 15 kPa

pressure for 5 min. Then, the bacterial suspension was removed,

and the seedlings were placed in a clean dish, cultured in dark for 3

days at 28°C, and planted in cell trays with peat substrate. Three

biological replicates with 100 seeds per replicate were employed for

germination and gene transformation. The T0 transgenic seedlings

containing the GFP reporter gene were detected at the cotyledon

stage using a hand-held lamp (LUYOR-3415RG, Shanghai, China).

The leaves of the three-leaf stage putative transformants were

identified by multiple PCR with specific primers for the UBI

promoter and GFP gene, and primers for the housekeeping gene

18S were used as an internal control (Table 1). The PCR products

were separated on 1% (w/v) agarose gels.
Analysis of phenotypes and
physiological indicators

The T3 lines were segregating after self-fertilization of T0

transgenic plants. The T3 pure overexpression lines of hot pepper

were screened by PCR and hygromycin tolerance. The T3 lines of

hot pepper and WT plants were cultured using the abovementioned
TABLE 1 Primers used in this study.

Primer role Primer sequence (5′–3′)

CabHLH18 amplification ActagggtctcGcaccATGGAATATTATGGCT
TTAATCAACAATGG
ActagggtctcTcgccTATAACCATTTTGAGA
GCTGTGTGCAA

PCR identification
of transformant

TTAGCCCTGCCTTCATACGC
GACACGCTGAACTTGTGG

Control 18S TCGGGATCGGAGTAATGA
TTCGCAGTTGTTCGTCTT
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method. After the growth of five leaves, samples were collected after

0 h (CK), 6 h (T1), and 24 h (T2) of waterlogging stress, and at 1 h

(R1) after recovery. The primary root length, seedling height, fresh

weight, water content, and root viability (CAS No. G0124F, Geruisi,

Suzhou, China); root proline content (CAS No. BC0295, Solarbio,

Beijing, China); and amino acid (not including proline and

hydroxyproline, CAS No. BC1575, Solarbio), soluble sugar (CAS

No. BC0035, Solarbio), and malondialdehyde (MDA; CAS No.

BC0025, Solarbio) levels, and superoxide dismutase (SOD; CAS

No. BC0175, Solarbio) activity were analyzed according to the

instructions provided in the respective kits. Plant water content

was calculated as: plant fresh weight − plant dry weight)/plant fresh

weight × 100%.
Statistical analyses

Statistical software (SPSS 20.00, IBM Inc., Armonk, NY, USA)

and graphics software (Origin 2017, OriginLab Inc., Northampton,

MA, USA) were used for the data analysis and figure construction,

respectively. The Duncan’s multiple range test was performed to

determine significant differences between means at a significance

level of p < 0.05, after showing a significant effect using one-way

analysis of variance.
Results

Cloning and bioinformatics analysis of the
CabHLH18 gene

A 1,056-bp cDNA sequence from ‘ZHC2’ was amplified by PCR

(Figure 1A) using LOC107879909-specific primers, and named
Frontiers in Plant Science 04
CabHLH18. Bioinformatics analyses revealed that CabHLH18 is a

hydrophilic protein encoding 352 amino acids (Figure 1B) and has a

bHLH_AtNAI1-like conserved domain at 170–242 at the C-

terminus (Figure 1C), which mediates endoplasmic reticulum

formation and may play a role in plant tolerance to abiotic stress.

Phylogenetic tree analyses based on amino acid sequences of

various plant species found that CabHLH18 protein had

maximum similarity with Capsicum annuum XM 016694561.2

protein (Figure 2A) and that their domains were similar. The

prediction model revealed that the similarity between the 3D

structure model of CabHLH18 and the template 5gnj.1.A was as

high as 99.6% and that both proteins had a bHLH-binding domain

and belonged to the bHLH family, indicating good model quality

(Figure 2B). The root-mean-square deviation curve reached

equilibrium after 2,750 ps, with fluctuations in the range of 1.66–

2.24 nm. These results showed that CabHLH18 had a stable

structure (Figure 2C). The Ramachandran diagram verification of

the protein denoted its suitability because there were no residues in

the disallowed regions (Figure 2D).
Subcellular localization of
CabHLH18 protein

To determine the subcellular localization of CabHLH18 protein,

the 1300-CabHLH18-GFP fusion protein was expressed transiently

in N. benthamiana mesophyll cells. The infective solution was

injected into N. benthamiana from the lower epidermis of the

leaves, and the sample was analyzed after 72 h. CabHLH18 protein

was localized in the nucleus, while the empty vector GFP signal was

distributed throughout the cell, indicating that CabHLH18 might

have a regulatory role as a transcription factor (Figure 3).
B

C

A

FIGURE 1

Molecular identification of CabHLH18 gene in ‘ZHC2’. (A) Amplification of bands using ‘ZHC2’ cDNA as template. M: 2,000-bp DNA marker; 1-2:
‘ZHC2’ cDNA. (B) Hydrophilic analysis of CabHLH18 protein. (C) CabHLH18 protein domains.
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Transformation and identification of
CabHLH18 gene in hot pepper

To investigate the function of CabHLH18 gene, CabHLH18

overexpression vector was transformed into the plumules of hot

pepper. The specific primers of CabHLH18 and housekeeping gene

18S were identified by multiple PCR analyses. The seedlings of hot

peppers ‘DFZJ’ and ‘ZHC1’ were selected for transformation, which

presented efficiencies of 21.37% and 22.20%, respectively, indicating

that this transformation technique was stable and repeatable

(Figure 4A). The housekeeping primers amplified in all plant

samples, indicating that the DNAs were of good quality. Lanes 1,
Frontiers in Plant Science 05
4, 7, and 9 showed amplification with construct-specific primer sets,

ind i ca t ing tha t the s e p l an t s had incorpora t ed the

transgene (Figure 4B).
Overexpression of CabHLH18 gene
improved waterlogging tolerance in
hot pepper

After 7 days of waterlogging stress, the leaf wilted degree of hot

pepper ‘DFZJ’ overexpression lines was lower than that of the WT

plants (Figure 5), whereas the root length, seedling height, and fresh
A

B

FIGURE 3

Subcellular localization of CabHLH18 protein in N. benthamiana mesophyll cells. (A) Vector 1300-GFP was introduced into tobacco leaves.
(B) Fusion protein 1300-CabHLH18-GFP was introduced into tobacco leaves. The sample was observed under a confocal laser-scanning
microscope. Green fluorescent protein (GFP), nuclear fluorescence (blue), combined images (green and blue), and bright-field, phase-contrast
images are displayed. Bar = 25 µm.
B C

DA

FIGURE 2

Phylogenetic tree, homology modeling, and molecular simulation of CabHLH18 protein. (A) Phylogenetic tree of bHLH proteins in various plant
species with bHLH homologs. (B) Homology modeling of CabHLH18 protein using MODELLER9.22. (C) Molecular dynamics simulation. Backbone of
root mean squared deviation (RMSD) plotted versus time (in ps). (D) Ramachandran plot analysis. A, B, and L regions: most favored residues; a, b, l,
and p regions: additional allowed residues; ~a, ~b, ~l, and ~p regions: generously allowed residues.
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weight of the overexpression lines reached 1.29-, 1.17-, and 1.39-

fold that of the WT plants at the T2 (24 h after waterlogging stress)

stage, respectively (Figures 6A–C). The overexpression lines showed

greater height and longer roots than the WT plants (Figures 6A, B).

Under normal culture conditions, no difference was observed in the

water content between the overexpression lines and WT plants.

However, at the T1 and T2 stages, the water content in the WT

plants was less than that in the overexpression lines, showing

reductions of 0.70% and 2.69%, respectively. At the R stage, the

water content in both the overexpression lines and WT plants

increased, and the overexpression lines had higher water content

than the WT plants (Figure 6D). At the T2 and R stages, the root

viability of the overexpression lines was 28.14% and 26.56%,

respectively, when compared with the WT plants (Figure 6E).
Frontiers in Plant Science 06
Under waterlogging stress, the amino acid content (Figure 6F),

proline level (Figure 6G), and soluble sugar level (Figure 6H) in the

roots of the overexpression lines reached a peak at the T2 stage and

were 45.03%, 60.67%, and 120.18% higher, respectively, than those

in the roots of the WT plants. However, at the R stage, the amino

acid content, proline level, and soluble sugar level decreased in the

overexpression lines, and the decrease was more rapid than that

noted in the WT plants, indicating that the overexpression lines

responded more sensitively to waterlogging stress and recovery.

The SOD activity of both the overexpression lines and WT plants

increased under waterlogging stress, peaked at the T2 stage, and

decreased at the R stage (Figure 6I). In particular, the SOD activity

of the overexpression lines was higher than that of theWT plants under

waterlogging conditions, indicating that the overexpression lines had
BA

FIGURE 4

Transformation and identification of CabHLH18 gene in hot pepper. (A) Transformation of CabHLH18 overexpression vector into the plumules of
two pepper cultivars. (B) PCR identification of CabHLH18 transgenic plants. PCR detection of CabHLH18 gene in the genomic DNA of transgenic T0
plant leaves. The yellow arrow indicates the target fragment of the CabHLH18 gene. The white arrow shows the amplification band of the
housekeeping gene 18S. M: 2,000-bp DNA marker; lanes 1, 4, 7, and 9: transgenic plants; lanes 2, 3, 5, 6, 8, and 10–12: non-transformed plants; P:
positive control (CabHLH18 recombinant plasmid); N: negative control (wild-type DNA).
FIGURE 5

Effects of waterlogging stress on hot pepper ‘DFZJ’ overexpressing CabHLH18 gene. (A, B) Growth of WT pepper under normal and waterlogging
stress conditions, respectively. (C, D) Growth of overexpression lines under normal and waterlogging stress conditions, respectively.
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better ROS scavenging ability. After a longer waterlogging stress period,

the MDA content in both the overexpression lines and WT plants

increased, reaching a peak at the T2 stage and decreasing at the R stage

(Figure 6J). However, theMDA content in the overexpression lines was

lower than that in the WT plants under both waterlogging stress and

recovery conditions, with the overexpression lines presenting greater

MDA decline rates than the WT plants after recovery.
Frontiers in Plant Science 07
Discussion

Cloning and expression characteristics of
the CabHLH18 gene

The bHLH family of transcription factors responds to plant

abiotic stresses (Kiribuchi et al., 2004; Zhang et al., 2020). A novel
B

C D

E F

G H

I J

A

FIGURE 6

Effects of waterlogging stress and recovery on the (A) root length, (B) seedling height, (C) fresh weight, (D) water content, (E) root viability, (F) amino
acid content, (G) proline content, (H) soluble sugar content, (I) SOD activity, and (J) MDA content of the overexpression line. CK, T1, T2, and R
denote control, 6 h after waterlogging stress, 24 h after waterlogging stress, and 1 h after recovery, respectively. The column represents mean value
of SD (n = 3), and values with different letters are significantly different (p < 0.05).
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bHLH transcription factor, PtrbHLH66, from Triloba orange has

been reported to actively regulate plant drought tolerance by root

growth effects and ROS clearance (Liang et al., 2022). Arabidopsis

AtbHLH122 positively regulates plant responses to drought and salt

stress by inhibiting CYP707A3 expression and increasing abscisic

acid levels (Liu et al., 2015). Overexpression of SlbHLH22 in tomato

has been observed to increase secondary metabolites and

osmoregulatory substances, enhance ROS scavenging ability, and

improve drought and salinity tolerance (Waseem et al., 2019).

Zhang et al. (2020) identified 122 members of the bHLH

transcription factor family in C. annuum, among which only a

few were noted to regulate plant responses to stresses, such as cold,

heat, drought, and salt stress (Zhang et al., 2020). The bHLH

transcription factor gene CabHLH035 in peppers has been found

to improve salt tolerance by regulating ion homeostasis and proline

biosynthesis (Zhang et al., 2022). Currently, most of the studies

related to waterlogging stress on peppers have only concentrated on

morphological observation, physiological examination, and

biochemical analysis, devoting limited attention to waterlogging

tolerance mechanisms (Kato et al., 2020; Kaur et al., 2021; Komatsu

et al., 2022). In the present study, the CabHLH18 gene was cloned

from hot pepper ‘ZHC2’ with strong waterlogging tolerance.

Phylogenetic tree analyses of bHLH proteins from different plant

species showed that CabHLH18 and capsicum-related proteins

clustered together, thus suggesting that they might have close

genetic relationships in evolution and function.
Subcellular localization of
CabHLH18 protein

A majority of the bHLH transcription factor proteins are

located in the nucleus and might have nuclear protein functions.

For instance, bHLH122 is localized in the nucleus and plays an

important role in drought resistance, osmotic stress resistance, and

inhibition of Arabidopsis abscisic acid catabolism (Liu et al., 2013).

The ThBHLH1-encoded protein of the bHLH gene of Salix sphinx is

localized in the nucleus and improves abiotic stress tolerance by

increasing osmotic potential and reducing ROS accumulation (Ji

et al., 2016). The wheat transcription factor TabHLH39 is located in

the nucleus and improves the tolerance of transgenic plants to

abiotic stress (Zhai et al., 2016). In the present study, CabHLH18

protein was also localized in the nucleus, indicating that it may

predominantly function in the nucleus and might regulate gene

expression and control plant responses to waterlogging stress.
Establishment of the plumules
transformation system of hot pepper

The transformation complexity of peppers restricts their

development of genetic engineering, breeding, and molecular

biology (Mahto et al., 2018). Owing to high genotype dependence

and tenacity of pepper (Kothari et al., 2010), it is difficult to achieve

a stable transformation system, impeding the development of

pepper transgenic technology development (Heidmann and
Frontiers in Plant Science 08
Boutilier, 2015). The transformation of peppers mainly uses

Agrobacterium-mediated and gene-gun methodologies. For

example, cotyledon (Kim et al., 2017) and hypocotyl (Kumar

et al., 2012) were used as explants to establish an Agrobacterium-

mediated transformation system of Capsicum; however, this

method was unstable and not only required complicated tissue

culture processes but also needed specific plant materials to achieve

regeneration. Currently, achieving a highly efficient hot pepper

transformation system is particularly important, and transgenic

plants obtained without tissue culture can significantly reduce the

cost. In one study, plant meristems were induced to produce shoots

with targeted DNA modifications, and targeted genes were

transmitted to the progeny, which sidesteps the need for tissue

culture (Maher et al., 2020). Cao et al. (2023) achieved the

transformation of several plant species by using a cut–dip–

budding delivery system to transform plant genes without tissue

culture (Cao et al., 2023). In our study, the seed coats of hot pepper

were removed to expose the plumules and then infected with

Agrobacter ium conta ining the target gene . Effect ive

transformation of peppers could be achieved with radicle length

of 1–2 mm, Agrobacterium density (OD600) of 0.50–0.60 nm, at 15

kPa. Two pepper cultivars (‘ZHC1’ and ‘DFZJ’) were transformed

by this method, and no significant difference was found in the

transformation efficiency, indicating that the transformation system

was stable in the hot peppers. This transformation method does not

depend on tissue culture, thus avoiding some problems associated

with tissue culture such as contamination, browning, and soma

clonal variation, and the efficient transformation system might

provide strong technical support for pepper genetics and

breeding studies.
Effect of the CabHLH18 gene on
waterlogging tolerance of
transgenic peppers

Waterlogging stress inhibits root respiration and ATP synthesis,

blocking the generation of water potential gradients and ion

transport systems on the root endodermis and causing plant

withering (Sairam et al., 2008). Under well-watered conditions,

the overexpression of the Populus euphratica gene, oxPebHLH35, in

Arabidopsis resulted in longer taproots, higher leaf numbers, and

increased leaf area, thus improving the plant water stress tolerance,

when compared with the vector control plants (Waseem et al.,

2019). After treatment with 100 mM and 150 mMNaCl, the roots of

the CabHLH035 transgenic tobacco lines were longer than those of

the WT plants. In comparison with the WT plants, the CabHLH035

transgenic lines had substantially lower water loss (Zhang et al.,

2022). In our study, under waterlogging stress, the WT pepper

plants exhibited higher leaf wilting degree and lodging at the T2

stage and had lower water content, when compared with those

noted in the overexpression lines. Furthermore, the seedlings of the

overexpression lines were stronger than the WT plants under the

same growth conditions (Figures 6A–E). These results are similar to

those reported in a previous study (Waseem et al., 2019; Zhang

et al., 2022). Thus, under waterlogging stress, the growth of the WT
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pepper plants was inhibited, whereas the overexpression lines

adapted to this stress and maintained normal growth.

Plants can adapt to waterlogging stress through the

accumulation of proline and soluble sugar (Nanjo et al., 1999;

Hildebrandt et al., 2015; Hildebrandt, 2018; Khan et al., 2020).

Proline is a main solute molecule involved in plant osmotic

regulation and is also a free radical scavenger, protecting the

plant’s photosynthetic activity and cells from damage, to ensure

sustained plant growth under long-term stress (Silva-Ortega et al.,

2008; Kavi Kishor and Sreenivasulu, 2014). The increase in higher

proline content regulates the osmotic potential and improves

abiotic stress tolerance (Ji et al., 2016). The ThbHLH1 gene has

been reported to activate proline biosynthesis by inducing the

expression of P5CS and BADH/ALDH (Ji et al., 2016).

Overexpression of VvbHLH1 in Arabidopsis has been found to

increase the proline content, maintain osmotic balance between

intracellular and extracellular environments, and protect membrane

integrity, thus enhancing salt and drought tolerance (Wang et al.,

2016). Furthermore, TabHLH39 transgenic plants have been noted

to exhibit higher levels of soluble sugars and proline and lower levels

of electrolyte leakage. The TabHLH39 protein in the transgenic

plants can protect the plant cells by increasing the soluble sugar

content to provide energy and redistribute the soluble osmotic

sugars and improve plant stress resistance by promoting proline

accumulation. The soluble sugars and proline act as osmotic

regulators and molecular chaperones to protect the protein

integrity and enhance enzyme activity, thus improving

Arabidopsis resistance to abiotic stress (Zhai et al., 2016). The

synthesis of soluble sugars and other substances can provide

sufficient reducing sugars under waterlogging stress (Sairam et al.,

2009). In the present study, the contents of proline, soluble sugar,

and amino acid levels in CabHLH18 overexpression lines were

significantly higher than those in the WT plants under waterlogging

stress. The overexpression lines accumulated more substances

involved in osmotic regulation and energy supply, leading to

stronger osmotic regulation ability and adequate energy supply,

which mitigated the damage caused by waterlogging stress.

Limited oxygen levels can cause ROS accumulation under

waterlogging stress, resulting in membrane lipid peroxidation,

structural changes in proteins and nucleic acids (Mittler et al.,

2004; Bansal and Srivastava, 2012; Mittler, 2017), decreased activity

of antioxidant enzymes, and increased MDA. Plants maintain ROS

homeostasis to adapt to abiotic stress by activating the antioxidant

system, and the increased SOD activity can enhance plant resistance

(Tavanti et al., 2021). Zhang et al. (2022) reported CabHLH035-

protected plants from oxidative damage by removing ROS through

increased expression of the SOD gene (Zhang et al., 2022). In the

present study, SOD activity was higher, and MDA content was

lower in the overexpression lines, when compared with those in the

WT plants under waterlogging stress, indicating that CabHLH18

overexpression lines could reduce the damage caused by ROS under

waterlogging stress.
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Conclusion

In this study, the CabHLH18 gene was found to contain a 1,056-

bp ORF and encode 352 amino acids. The CabHLH18 protein was

determined to be located in the nucleus. Subsequently, an effective

transformation system of hot pepper was established, with an

efficiency of 22.20%. Under waterlogging stress, CabHLH18

overexpression lines showed significantly greater root length,

plant height, fresh weight, water content, and root viability, when

compared with WT plants. The contents of amino acids, proline,

soluble sugars, and SOD activity were also significantly higher, but

the MDA level was lower in the overexpression lines, when

compared to the WT plants. Thus, the CabHLH18 gene could

enhance waterlogging tolerance of CabHLH18-overexpressing hot

pepper and might be a valuable gene for improving waterlogging

tolerance of crops.
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