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Matthew J. Hayden1,3, Garry M. Rosewarne2

and Sukhjiwan Kaur1,3*

1Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia, 2Agriculture
Victoria, Grains Innovation Park, Horsham, VIC, Australia, 3School of Applied Systems Biology,
La Trobe University, Bundoora, VIC, Australia
Genomic selection (GS) uses associations between markers and phenotypes

to predict the breeding values of individuals. It can be applied early in the

breeding cycle to reduce the cross-to-cross generation interval and thereby

increase genetic gain per unit of time. The development of cost-effective,

high-throughput genotyping platforms has revolutionized plant breeding

programs by enabling the implementation of GS at the scale required to

achieve impact. As a result, GS is becoming routine in plant breeding, even in

minor crops such as pulses. Here we examined 2,081 breeding lines from

Agriculture Victoria’s national lentil breeding program for a range of target

traits including grain yield, ascochyta blight resistance, botrytis grey mould

resistance, salinity and boron stress tolerance, 100-grain weight, seed size

index and protein content. A broad range of narrow-sense heritabilities was

observed across these traits (0.24-0.66). Genomic prediction models were

developed based on 64,781 genome-wide SNPs using Bayesian

methodology and genomic estimated breeding values (GEBVs) were

calculated. Forward cross-validation was applied to examine the prediction

accuracy of GS for these targeted traits. The accuracy of GEBVs was

consistently higher (0.34-0.83) than BLUP estimated breeding values (EBVs)

(0.22-0.54), indicating a higher expected rate of genetic gain with GS. GS-led

parental selection using early generation breeding materials also resulted in

higher genetic gain compared to BLUP-based selection performed using

later generation breeding lines. Our results show that implementing GS in

lentil breeding will fast track the development of high-yielding cultivars with

increased resistance to biotic and abiotic stresses, as well as improved seed

quality traits.
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1 Introduction

Lentil is a self-pollinating, diploid (2n = 14), cool season legume

crop grown in temperate climates, with world production increased

from 3.15 to 6.54 million metric tons in the last two decades (Kaale

et al., 2023). Canada is a major producer of lentils, contributing to

more than 50% to global trade, while Australia makes up another 10-

15% (Sadras et al., 2021). In 2020-21, Australia produced 900,000

tons of lentil of which 864,403 tons were exported, accounting for

13.3% of global trade (ABARES, 2021; Semmler, 2021). Over the past

3 decades, the National Australian lentil breeding program achieved

an average annual genetic gain of 1.2% using conventional breeding

and management practices (Sadras et al., 2021). These findings align

with global trends in lentil productivity over the past six decades, as

reported by Kumar et al. (2021). Despite this good rate of genetic

gain, it is below the level required to meet increasing global demand

caused by population growth, as well as the changing dietary habits in

western countries, where people are opting for nutritious, sustainable,

and healthier foods. Lentil grain has about 26% protein content,

which makes it an attractive choice for plant-based diets (Ismail et al.,

2020). To keep up with this ever-increasing demand, it is critical to

increase and stabilize lentil crop production through the: 1)

development of varieties with high yield potential; 2) cropping area

expansion; and 3) continuous germplasm improvement to withstand

changing climatic conditions.

Recent studies have demonstrated considerable yield variations

in lentil cultivation across diverse environments in Australia, with

an average production of 1.2 tons/ha (Sadras et al., 2021; Suri et al.,

2022). These variations arise primarily from the influence of various

biotic and environmental stress factors. Of these, ascochyta blight,

botrytis grey mould, boron and salinity have been identified as key

limiting factors across a wide range of production regions

(Davidson et al., 2016; Sudheesh et al., 2016; Rodda et al., 2017;

Rodda et al., 2018; Dissanayake et al., 2020; Kumar et al., 2021) that

can result in yield losses of 30-40% (Kumar et al., 2013). Climate

variability and complex genotype-by-environment (G × E)

interactions on the expression of phenotypic traits also contribute

to low genetic gain in lentil breeding (Kumar and Ali, 2006; Kumar

et al., 2020). As more than 95% of the Australian lentil crop is

exported, grain quality traits such as grain weight, seed size and

protein content are also important in meeting market demands. The

abovementioned traits, as well as crop yield improvement, remain

the primary focus of lentil breeding in Australia.

The advent of DNA markers opened new opportunities in plant

breeding that have enabled breeders to make more informed and

accurate selections through marker-assisted selection (MAS) (Kaur

et al., 2014; Jain et al., 2017). In lentils, quantitative trait loci have

been identified for ascochyta blight resistance, boron and salinity

toxicity tolerance, yield, winter hardiness, seed weight, seed size and

milling quality (Taylor et al., 2006; Barrios et al., 2007; Kaur et al.,

2014; Verma et al., 2015; Sudheesh et al., 2016; Singh et al., 2017;

Subedi et al., 2018; Singh et al., 2020). While some success has been

achieved in the use of MAS to accelerate genetic gain in breeding

programs, it is neither effective nor practical for quantitative traits,

which are controlled by multiple genes with minor effects (Galli

et al., 2020).
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GS uses genome-wide marker information to estimate the

genetic potential of an individual and has emerged as a dominant

approach for genetic improvement in plant and livestock breeding,

where selections are made based on genomic estimated breeding

values (GEBVs) (Meuwissen et al., 2001). GS involves developing

genomic prediction equations using genotyping and phenotyping

data obtained from a training population, which are then used to

estimate the GEBVs of individuals in a testing population that have

not been phenotyped. GS is more beneficial for traits with low

heritability and that are difficult to measure. It can outperform

conventional phenotypic and MAS in terms of genetic gain per unit

time and cost (Jannink et al., 2010). The primary advantage of GS is

the ability to predict the phenotypic performance of individuals

earlier in the breeding cycle, which reduces the cross-to-cross

generation interval and increases genetic gain (Lin et al., 2021).

GS was shown to provide a three-fold and two-fold increase in

genetic gain in maize and wheat, respectively, compared to MAS

(Heffner et al., 2010). The adoption of GS in maize breeding has

reduced overall breeding costs by 30-50% (Crossa et al., 2017;

Beyene et al., 2019). Other studies using simulated data have

shown GS is superior to phenotypic selection, both in terms of

shortening the breeding interval and increasing genetic gain per

unit of time (Gaynor et al., 2017; Gorjanc et al., 2018; Li et al., 2022).

Previous studies on lentils have also revealed that GS can increase

genetic gain for economically important agronomic traits by

reducing both cost and breeding cycle time (Haile et al., 2020;

Janghel and Sharma, 2022; Li et al., 2022). Additionally, GS has been

also studied in other grain legumes, such as common bean, field pea,

and chickpea, as evidenced by several published studies (Roorkiwal

et al., 2018; Annicchiarico et al., 2019; Keller et al., 2020; Diaz et al.,

2021). However, it is worth noting that these studies have limited

discussions on the practical implications of implementing GS in

crop breeding.

Another advantage of GS is that it can handle G×E interactions

effectively, allowing breeders to select germplasm across multiple

environments. Several studies have assessed the impact of

incorporating G×E into genomic prediction models and reported

an increase in prediction accuracy. For example, a multi-

environment study in barley showed an increase in prediction

accuracy from 0.37 to 0.45 when G×E was included in the

prediction model (Lin et al., 2021). Other studies have shown that

the incorporation of environmental covariates and crop models into

genomic prediction models can increase prediction accuracy by up

to 11% in both tested and untested environments (Heslot et al.,

2014; Jarquıń et al., 2017). More recently, (Jighly et al., 2021)

described an extension to existing GS models that incorporates

genotype plus genotype-environment (GGE) analysis, which

provided a 70% increase in prediction accuracy compared to GS

models that only included G×E.

In the current study, we utilised historical phenotyping data

collected across 10 years (2010-2020) for key target traits from

Agriculture Victoria’s national lentil breeding program (NLBP).

The objectives of this study were to: 1) develop genomic prediction

models for target traits and calculate GEBVs to make selections, and

2) compare the expected rate of change in genetic gain per unit of

time using GS and BLUP-based phenotypic selections.
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2 Materials and methods

A total of 2,081 lentil genotypes including advanced breeding

lines – Stage 2 (F4:F7, 1,496 genotypes) and Stage 3 (F4:F8, 569

genotypes) and 16 commercial cultivars sourced from the NLBP

were used as a training population (Table 1). Phenotyping data

for nine traits were sourced including: grain yield (GYD),

ascochyta blight (AB) resistance (two pathovars; one associated

with lentil variety PBA Hurricane XT (ABH), and another one

with variety Nipper (ABN)), boron (BOR) tolerance, salinity

(SAL) tolerance, botrytis grey mould (BGM) resistance, 100-

grain weight (GWT), seed size index (SSI) and protein content

(PRO). GYD and BGM were evaluated under field conditions

whereas ABN, ABH, BOR and SAL were assessed under

controlled environment conditions. Grain quality traits PRO,

SSI and GWT were measured in a seed phenomics laboratory. All

the phenotyping experiments included the use of released

cultivars as checks and controls. A total of 241 individual

experiments from 16 locations were analysed in this study.

Table 1 summarises the traits investigated in this study.
2.1 Trait phenotyping

2.1.1 Grain yield
GYD was evaluated in 132 field trials across 16 locations over 20

growing seasons between 2010 and 2020 in four Australian states:

South Australia (SA), Victoria (VIC), New South Wales (NSW) and

Western Australia (WA) (Supplementary Table 1). These trials

followed a randomised complete block design with released varieties

as checks (at least five checks per trial) and were managed under

rainfed conditions. Stage 2 trials were replicated twice, whilst stage 3

trials were replicated three times. GYD was expressed in tons/ha

and extrapolated from the plot harvest. Each plot size was 1.25 m

(wide) × 5 m (long) (6.25 m² area) with 0.25 m spacing between

rows. A summary of the GYD tria ls is provided in

Supplementary Table 2.
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2.1.2 Ascochyta blight resistance screening
AB screening was performed as described in (Davidson et al.,

2016; Sudheesh et al., 2016) with minor modifications using two

different Ascochyta lentis isolates (virulent to PBA Hurricane XT

and Nipper lentil varieties) (Supplementary Table 3). Seeds of each

lentil line were seeded into two replications per line, with two to

three seeds per pot, and then placed in plastic tents (160×80×80 cm)

in a controlled environment room (CER) at 15°C, 12/12-h light/

dark. Trials were set up in a randomised complete block design,

with one replication per tent and susceptible and resistant check

plants included in the set. Experiments used a randomised complete

block design, with one replicate per tent with susceptible and

resistant checks included. Seedlings were inoculated two weeks

after sowing and disease symptoms on each seedling were

assessed and visually scored 10-14 days later as percentage area of

plant disease (% APD).

2.1.3 Boron tolerance screening
BOR toxicity tolerance was assessed using a hydroponic

screening method as described in (Rodda et al., 2018)), where six

plants per genotype were grown in trays of peat plugs floating in a

dilute boric acid solution for two weeks. Lentil varieties previously

characterized as intolerant (PBA Blitz and Cassab) and tolerant

(ILL2024) were used as internal controls to determine the ideal

assessment time. The genotypes were scored based on percentage

necrosis using a 0-100 scale, where low score values indicated

tolerance and high score values indicated susceptibility to

boron toxicity.

2.1.4 Salt tolerance screening
A pot-based salinity tolerance screening method was used as

described in (Dissanayake et al., 2020). In brief, the study included

1,755 lines with each experiment conducted as a randomized

complete block design with two replications and six plants per

pot. Salt was applied in the form of diluted commercial nutrient

solution (Nitrosol®, Amgrow Pty. Ltd., Lidcombe, New South

Wales, Australia (nitrogen:phosphorous:potassium (NPK) 4:1:3)
TABLE 1 A descriptive summary of the total number of observations and trials for each trait assessed in the current study.

Trait No. of observations No. of trials Mean SD

GYD 48,336 132 1.80 0.96

ABH 1,772 5 7.61 9.63

ABN 1,920 5 2.36 5.01

BOR 3,988 17 44.58 19.91

SAL 6,659 22 5.14 2.01

BGM 8,913 27 5.79 1.60

GWT 3,234 11 4.05 0.60

SSI 3,234 11 4.46 0.25

PRO 3,234 11 26.74 1.71
frontier
GYD (tons/ha); BOR (1-100, percentage necrosis); SAL (Score 1-10); BGM (Score 1-9); ABH, (percentage area of plant disease); ABN (percentage area of plant disease); GWT (g); SSI (index);
PRO (percentage).
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and Ca(NO3)2H2O at 20% of the recommended concentration) in

increments of 2 ds/m per day to reach the desired level of 6 ds/m.

Each plant’s response to salinity stress was assessed 10 weeks post-

sowing using the visual growth response scale (1-10) developed by

Maher and Connor (2003). The average growth response scale

values for each pot were used for analysis.

2.1.5 Botrytis grey mould tolerance screening
BGM resistance was assessed in the field under natural infection

conditions that occurred in GYD field trials (stages 2 and 3) over

two years (four locations in 2013 and seven locations in 2016). The

Horsham, Melton, Mallala, and Williamulka experiments were

scored in 2013, and Beulah, Curyo, Kadina, Mallala, Melton,

Rupanyup, and Wagga Wagga were scored in 2016. Each

experiment used a randomised complete block design with two

and three replications for stages 2 and 3 genotypes, respectively.

Disease symptoms were assessed on individual plots using a 1-9

scoring scale, where 1 indicated no infection and 9 indicated over

50% of plants within a plot were infected.

2.1.6 Grain quality traits screening
Grain quality traits were assessed in the seed phenomics

laboratory, Horsham, Victoria. SSI was obtained using the

EyeFoss™ (FOSS Analytical, Hoganas, Sweden) image analysis as

described in LeMasurier et al. (2014). Near-infrared spectroscopy

(NIRS) was used to determine PRO, whereas GWT was calculated

as described by (Revilla et al., 2019).
2.2 Genotyping and SNP data calling

All stage 2 and 3 materials (2010-2020) were genotyped using

the imputation enabled multispecies pulse 30K SNP array,

containing 10,528 lentil specific SNPs. In brief, DNA extractions

were performed from 6 seeds per sample using a modified CTAB

protocol (Tibbits et al., 2008). A total of 200 ng DNA per sample

was used for the genotyping assay following the manufacturer’s

protocols for the Infinium XT SNP bead chip array (Illumina Inc.,

San Diego, USA). Initial analysis was performed using

GenomeStudio 2.0 Polyploid software (Illumina) using the

manufacturer’s supplied crop-specific SNP manifest file. Theta

and normalized R values were exported from GenomeStudio and

used to call SNP using the custom genotype calling pipeline.

Phasing and filling of missing data was performed using Eagle/

Beagle (Browning and Browning, 2007; Browning and Browning,

2016). Imputation to the whole genome sequence level (3,528,788

SNPs) was achieved using Minimac3 (Das et al., 2016) and whole

genome sequence (WGS)-based reference haplotypes. The imputed

SNP data was filtered for linkage disequilibrium (r2 > 0.99) with a

window size of 250kb, minor allelic frequency (MAF<0.05),

heterozygosity per SNP (>20%) and heterozygosity per sample

(>50%) using vcftools (Danecek et al., 2011) and bcftools (Li,

2011). A final set of 64,781 filtered SNPs were used for GS. Due

to the usage of proprietary breeding material in this study, the
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genotype and marker names have been de-identified in the

genotyping data file (Supplementary text file 1). However, the

distribution of SNP markers along the lentil genome is shown in

Supplementary Figure 1.
2.3 Grain yield clustering

Pairwise genetic correlations calculated between different

experiments across multiple environments were found to be quite

low. Consequently, as an alternative approach to include G×E in the

analysis, six environmental variables (daily evaporation (mm), solar

radiation (MJ/m2), rainfall (mm), vapour pressure (KPa), and

minimum and maximum temperatures (degree in Celsius)) were

used to cluster the GYD trials. Data for the environmental variables

corresponding to each of the 132 GYD trials was obtained from the

Scientific Information for Land Owners (SILO) (https://

www.longpaddock.qld.gov.au/silo/) for the duration of lentil

growing season (May- early December; 2010-2020), with the

nearest meteorological station selected. The number of clusters

was then determined by applying hierarchical clustering to the

environmental variable data. For hierarchical clustering,

dissimilarity values between clusters were computed using the

Euclidean distance (dE) in (Equation 1), (Fox and Rosielle, 1982).

dE(i, j) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o6

k=1(Xik − Xjk)
2

q
(1)

where Xik is the value for environmental variable k for cluster i,

Xjk is the value for environmental variable k for cluster j where i and

j = 1,…,4, and k = 1,…,6. We applied the hclust function in R to

implement clustering by the distance matrix (Smoliński et al., 2002).
2.4 Statistical analyses

2.4.1 Spatial adjustment
The broad-sense heritability (H2) of traits measured from each

trial was estimated using the linear mixed model shown in Equation

2.

y = Xb + Zg + e (2)

where y is the vector of phenotypic observations, b is a vector of

fixed effects (the population mean and replicates), and g is a vector

of random total genetic effects with a normally-distributed variance

structure N(0,s2
g I) , where s2

g   is the total genetic variance and I is

the identity matrix; and e is a vector of residuals with a variance

matrix R. X and Z are incidence matrices that link phenotypic

observations to the fixed and random effects, respectively. The

residual variance matrix R is decomposed into spatially

dependent (x) and spatially independent (h) residuals by fitting

autoregression (AR) of rows and columns with the formula below in

Equation 3 (Dutkowski et al., 2006):

R = s 2
x ½AR(rc)⊗AR(rr)� + s 2

hI; (3)
frontiersin.org
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where s 2
x is the spatially dependent residual variance, s 2

h is the

spatially independent residual variance, rc and rr are the

autoregression parameters on column and row, respectively.

The broad-sense heritability was calculated as H2 =
s2
g

s 2
g +sh2

. For

genomic analyses, the best linear unbiased estimator (BLUE) of

individuals tested within a trial was estimated using (Equation 2) by

fitting individuals as fixed effects and no random effects.

2.4.2 Genomic selection analyses
The vector of BLUEs of measured traits were modelled with a

general form of the mixed linear models as shown in Equation 4:

y = Xb + Za + e (4)

where b is a vector of fixed effects (the population mean), a is a

vector of the additive genetic effects and e is a vector of the residual

effects. X and Z are incidence matrices that link phenotypic

observations to the fixed and random effects, respectively. For

genomic selection, the marker effects were estimated first in the

training population and then genomic breeding values of the

validation population were calculated. The marker effects were

estimated using a linear mixed model shown in Equation 4 and

implemented with BayesR package developed by (Breen et al., 2022).

The vector of the additive genetic effects a are the SNP effects in

BayesR with an incidence matrix Z with zij =  
zij*−2pjffiffiffiffiffiffiffiffiffiffiffiffiffi
2pj(1−pj)

p , where z*ij is

the genotype of individual i at SNP j. The SNP effects were modelled

by a mixture of four categories of distributions as defined by (Breen

et al., 2022)): one for SNPs with zero effect, one for very small

effects, one for small to medium effects and one medium to large,

with a cumulative genetic variance s 2
a   explained by SNPs. e is a

vector of residual effects following eeN(0,s 2
e I), s2

e is the residual

variance. The BayesR was implemented using a Markov Chain

Monte Carlo (MCMC) process with 50,000 iterations and 25,000

burn-in in 5 chains. Narrow-sense heritability was calculated as h2

= s 2
a

s 2
a +se2

. Genomic estimated breeding values (ĝ , GEBVs) were

predicted as the linear combination of marker effects as under

(Equation 5):

ĝ = Xa (5)

where X is an incidence matrix of SNP genotypes and a is a

vector of the SNP effects that were estimated from Equation 4.

Prediction accuracy of the GEBVs was estimated as the Pearson

correlation between GEBVs and BLUEs.

2.4.3 Genetic correlation for GYD
between clusters

Pair-wise genetic correlations between GYD clusters were

estimated using ASReml-R (Butler et al., 2009). The genetic

correlation between a pair of clusters was calculated as rg =
saijffiffiffiffiffiffiffiffiffiffiffi
s2
ai *s2

aj

p .

In Equation 4, the random additive genetic effects a have a normal

distribution following a normal distribution a eN(0,GA ⊗G), where

GA = ½
s 2
ai saij

saji s
2
aj

�, where s 2
ai is the additive genetic variance for cluster i, s

2
aj is the

additive genetic variance for cluster j, saij is the additive genetic

covariance between cluster i and cluster j, G is the genomic

relationship matrix (GRM) estimated from SNP genotyped using

VanRaden et al. (2009), ⊗ denotes the Kronecker product. The
Frontiers in Plant Science 05
residual effects e follow a normal distribution e eN(0,R⊗ I),, where

R =
s2
ei 0

0 s 2
ej

2
4

3
5, where s2

ei is the residual variance for cluster i, s 2
ej is the

residual variance for cluster j.

2.4.4 Investigation of genomic
prediction accuracy

Three validation scenarios were used to investigate the prediction

accuracy of genomic breeding values: five-fold, Leave One year Out

Validation (LOOV) and forward validation. In the five-fold validation,

individuals were equally divided into five groups randomly, and the

GEBVs of one group were predicted using training data from the

remaining four groups. In LOOV, the GEBVs of one year were

predicted using data of the remaining years for model training. For

forward validation, the GEBVs of current years were predicted using

data of previous years for model training. For all scenarios, the

genotypes that overlapped with the training were removed from the

validation to prevent overestimating the prediction accuracy.

Within-cluster and across-cluster validation were used to

develop prediction accuracies for GYD. All three validation

scenarios – namely five-fold, LOOV, and forward validation –

were applied for prediction accuracy within-clusters .

Furthermore, all validation scenarios were applied to the entire

population (without clustering on the GYD data) in a non-G×E

validation method. For the across-cluster validation data, validation

was initially carried out between clusters, with one cluster being

predicted using data from all other clusters as a training set.

Secondly, validation was performed between clusters by

predicting one cluster using data from another cluster. For all

other target traits, non-G×E interactions were used in all

validation scenarios across the whole population.
2.4.5 Efficiency of GS over BLUP selection
To evaluate the efficiency of GS over BLUP-based selection, the

best linear unbiased prediction (BLUP) EBVs of traits examined

were estimated based on BLUEs and pedigree information using the

model specified in Equation 4 and implemented with ASReml-R

(Butler et al., 2009). The random additive genetic effects a follow a

normal distribution with Var(a) eN(0,s 2
a A), where s 2

a is the

additive genetic variance and A is the numerator relationship

matrix calculated from pedigree (Mrode, 2014). Forward

validation was conducted based on BLUP EBVs to derive the

accuracy of BLUP EBVs for the comparison between GS and

BLUP selection.

Expected genetic gain of GS over BLUP selection based on EBVs

was calculated for different scenarios of selecting parents from

different stages of a breeding cycle: Stage 2, F6, F2 and F1. The

generation intervals were chosen as defined by Li et al. (2022): 8.5, 5,

1 and 0.5 years for selecting parents from Stage 2, F6, F2 and F1 in

GS and 8 years for BLUP selection. Additional expected genetic gain

obtained from GS over BLUP selection was calculated in Equation 7

as that described by (Li et al., 2019):

E =
i ·

rIHg
Lg

· sA − i ·
rIHa
La

· sA

i ·
rIHa
La

· sA
=

rIHg
Lg

−
rIHa
La

rIHa
La

(7)
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where i is the selection intensity, rIHg
is the accuracy of GS

estimated from the forward validation, rIHa
is the accuracy of BLUP

selection estimated from the forward validation based on EBV, sA   is

the square root of the additive genetic variance, Lg is the generation

interval of lentil breeding population under GS and La is the generation

interval of lentil breeding population under BLUP selection.
3 Results

3.1 Clustering of grain yield

Based on six environmental variables, the 132 yield trials were

grouped into four clusters using hierarchical clustering (Figure 1).

Most of the variation (86.8%) was explained by Dimensions 1 and 2.

Total rainfall and evaporation were found to be the most important

climatic factors. GYD-C1 was marked by high rainfall and low

evaporation, GYD-C2 with high rainfall and high evaporation,

GYD-C3 with low rainfall and low evaporation, and GYD-C4
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with low rainfall and high evaporation. The number of trials

grouped into GYD-C1, GYD-C3 and GYD-C4 was 33, 38 and 47

which were screened across 8, 9 and 8 years, respectively (Table 2).

Only 14 trials from 4 years were grouped into GYD-C2.
3.2 Phenotypic and genotypic variations of
target traits

The averagemean BLUE for GYD (tons/ha) was 1.8, with GYD-C1

and GYD-C2 having the highest and GYD-C3 having the lowest yield

(Table 3). For all other traits, spatial adjustment was performed for

each individual trial. We also evaluated connectedness (number of

genotypes in common between environment), where the trials shared

genotypes ranging from 3 to 341 (Supplementary Table 4). For most

traits, moderate to high levels of pairwise genetic correlations were

observed among different environments over years, except (>=0.7)

yie ld where poor correlat ions were found (-1 to 1)

(Supplementary Table 5).
FIGURE 1

Clustering of GYD data based on environmental variables of daily evaporation, solar radiation, rainfall, vapour pressure, and temperatures (Min and Max).
TABLE 2 Summary of environmental variables for trial sites within each grain yield cluster, as well as all trials sites for grain yield.

Cluster MTE MDSR MTR MDVP MDMT MDXT NoY

GYD† 721.0 13.5 246.6 10.6 6.6 19.2 11

GYD-C1 561.4 12.6 326.9 10.4 5.7 18.0 8

GYD-C2 819.9 14.2 347.2 11.5 8.0 19.4 4

GYD-C3 664.0 13.4 188.6 10.0 5.7 19.3 9

GYD-C4 859.9 14.1 203.8 11.0 7.7 20.1 8
frontie
† Data in all clusters was combined, ignoring G×E interactions on GYD, MTE, mean total evaporation; MDSR, mean daily solar radiation; MTR, mean total rainfall; MDVP, mean daily vapour
pressure; MDMT, mean daily minimum temperature; MDXT, mean daily maximum temperature; NoY, number of years when trials within cluster were evaluated.
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3.3 Heritability and variance components

Broad sense heritabilities for GYD, the biotic and abiotic stress

tolerance traits, as well as grain quality traits ranged from 0.47 to

0.83, whilst narrow sense heritabilities were lower, ranging from

0.24 to 0.66 (Tables 4, 5).
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3.4 Genomic prediction accuracies for
grain yield

When comparing the three validation scenarios, random five-fold

validation exhibited the highest prediction accuracy (0.47-0.57),

where GYD-C2 showed the highest accuracy (0.57) and GYD-C1
TABLE 3 Statistical summary of the best linear unbiased estimators of key lentil traits.

Cluster Yield mean (t/ha) SD No. of BLUEs No. of locations No. of genotypes No. of environments

GYD 1.8 0.92 20,857 16 2,081 11

GYD-C1 2.59 0.79 5,114 8 1,610 8

GYD-C2 2.59 0.69 2,300 4 885 4

GYD-C3 1.3 0.74 6,183 6 1,880 9

GYD-C4 1.43 0.63 7,260 7 1,705 8

ABH -0.32 0.58 899 1 823 5

ABN 0.33 1.11 864 1 617 5

BGM 5.82 1.48 3733 11 674 2

BOR 44.26 18.59 2626 1 1870 10

SAL 6.24 2.12 2533 1 1838 9

GWT 4.06 0.59 1298 4 635 3

SSI 4.46 0.25 1298 4 635 3

PRO 26.74 1.67 1298 4 635 3
TABLE 4 Broad-sense heritability (H2), narrow-sense heritability (h2), the additive genetic variance (s 2
a ) and residual variance (s 2

e ) for grain yield
evaluation trial sites.

Clusters H2 s 2
a s 2

e
h2

GYD† 0.38 0.02 0.04 0.37

GYD-C1 0.43 0.02 0.05 0.26

GYD-C2 0.66 0.12 0.14 0.45

GYD-C3 0.28 0.01 0.02 0.33

GYD-C4 0.34 0.01 0.01 0.31
frontiers
†Datasets in all clusters were combined, ignoring G×E interactions on GYD.
TABLE 5 Broad sense heritability (H2), narrow sense heritability (h2), the additive genetic variance (s 2
a ) and residual variance (s 2

e ) for measured biotic
and abiotic stress tolerance and grain quality traits.

Traits H2 s 2
a s 2

e
h2

ABH 0.71 0.15 0.49 0.24

ABN 0.66 0.09 0.14 0.40

BOR 0.47 84.30 139.20 0.38

SAL 0.47 0.73 2.01 0.27

BGM 0.62 0.50 0.39 0.56

GWT 0.87 0.08 0.06 0.58

SSI 0.87 0.02 0.01 0.66

PRO 0.88 0.47 0.38 0.55
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the lowest (0.47) (Figure 2). The prediction accuracies for LOOV

ranged from 0.27 to 0.42, with GYD-C4 (0.41) having the highest and

GYD-C2 having the lowest (0.27) accuracy. The prediction accuracies

for forward cross-validation ranged from 0.25 to 0.41, with GYD-C4

having the highest (0.41) and GYD-C1 having the lowest (0.25)

accuracy. For yield without clustering (GYD), the accuracies ranged

from 0.42-0.63 for all validation methods.
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3.5 Genetic correlation between GYD
clusters and prediction accuracies

The prediction accuracy across clusters was found to be highly

correlated to the genetic correlation between clusters, where higher

genetic correlation led to higher prediction accuracy (Figure 3).

Genetic correlations among GYD-C1, GYD-C3 and GYD-C4 were
FIGURE 2

Prediction accuracies for grain yield clusters (standard error shown in error bar) achieved using three cross-validation methods: five-fold, LOOV and
forward validation.
FIGURE 3

Relationship between prediction accuracy and genetic correlation between yield clusters. The text beside each dot point represents the training (left
to hyphen) and the validation cluster (right to hyphen).
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0.83-1.00, implying a low level of G×E interaction among clusters.

This led to a moderate prediction accuracy, ranging from 0.38 to 0.56.

The correlation between GYD-C2 and the other clusters (GYD-C3,

GYD-C4, and GYD-C1) was lower (0.36-0.76), indicating higher

G×E interaction between GYD-C2 and other clusters. This resulted in

weak to moderate prediction accuracies (0.19-0.44).
3.6 Prediction accuracies for abiotic and
biotic stress tolerances and grain
quality traits

The prediction accuracy for ABH ranged from 0.45 to 0.57, with

the highest achieved in LOOV and lowest in forward cross-

validation (Figure 4). For ABN, similar prediction accuracy (0.60-

0.64) was obtained with each validation method. For BGM,

moderate prediction accuracy (0.63) was achieved using the five-

fold method. The prediction accuracy could not be calculated for

BGM using the LOOV and forward methods due to complete

overlap of genotypes between the training and test sets.

For SAL, the prediction accuracy ranged from 0.39 to 0.52, with

the highest achieved in random five-fold and lowest in forward

cross-validation. For BOR, the prediction accuracy ranged from

0.47 to 0.72, with the highest achieved in random five-fold and

lowest in forward cross-validation. The five-fold method had the

highest prediction accuracies for both BOR (0.72) and SAL (0.52),

while the forward prediction method had the lowest prediction

accuracies, 0.47 and 0.39 respectively.

Prediction accuracies for grain quality traits GWT and SSI were

0.80 in all cross-validation methods. The prediction accuracy for

PRO ranged from 0.51 to 0.65, with random five-fold achieving the

highest and forward cross-validation having the lowest.
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3.7 Comparison of GS to BLUP selection

The expected genetic gain per year from GS and BLUP selection

when parents were selected at the stage 2, F6, F2 and F1 generation in

the breeding cycle is shown in Table 6. In all scenarios, GS

outperformed BLUP selection for all traits. When parents were

chosen from stage 2, GS outperformed BLUP selection by 0.08 to

2.32-fold increase for all traits. Similarly, selecting parents from the

F6 generation led to GS outperforming BLUP selection by 0.84 to

4.65 times. The additional expected genetic gain from GS over

BLUP selection was 9.4 to 27.3-fold when selecting parents from the

F2 generation, and 17.4 to 55.5-fold for selecting parents from the

F1 generation.
4 Discussion

Over the years, lentil breeding in Australia has achieved

significant success in enhancing grain yield through the

utilization of conventional breeding methods and effective

management practices. This continuous effort has resulted in an

encouraging annual increase in the rate of genetic gain, averaging c.

1.2% over the past three decades (Sadras et al., 2021; Silva-Perez

et al., 2022). However, to address increasing global demand for

plant-based protein, it is crucial to explore new tools and

technologies such as GS, which has the potential to further

increase the rate of genetic gain, particularly in environments that

are prone to abiotic and biotic stresses. GS enables more accurate

and informed breeding selections, cost savings, and reduced

breeding cycle times compared to traditional phenotype-based

breeding approaches. Collectively, these advantages of GS lead to

increased rates of genetic gain per unit time. Here, we report the
FIGURE 4

Prediction accuracies (standard error shown in error bar) from random five-fold, LOOV and forward cross-validation for abiotic and biotic stress
tolerance and grain quality traits.
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implementation of GS for target traits in Agriculture Victoria’s

national lentil breeding program. Ten years of historical

phenotyping data (2010-2020) captured from advanced breeding

stages under field and controlled environment conditions was used

to train genomic prediction models for yield, biotic stress resistance,

abiotic stress tolerance and seed quality traits. Various cross-

validation methods achieved moderate to high prediction

accuracies, which varied depending on trait complexity. Simple

traits like boron tolerance had higher accuracies compared to

complex traits like GYD. Despite this, GYD still had moderate

prediction accuracies, making GS a preferred method for lentil

breeders. The observed accuracies are comparable to previous

studies in pulse crops (Li et al., 2018; Annicchiarico et al., 2019;

Keller et al., 2020; Bari et al., 2021; Diaz et al., 2021).

In commercial breeding programs, addressing the G × E

interaction is crucial to achieve yield stability, as it results in

varying genotype performance across different environments.

Including G × E components in GS models has been reported to

improve prediction accuracies. To assess the G x E levels in the

current dataset, pairwise genetic correlations were calculated among

various GYD trials conducted from 2010 to 2020 (data not shown).

The results revealed relatively low correlations, which could be

attributed to the limited number of overlapping entries between

these trials, resulting in low connectedness. As an alternative

approach, environmental variables were utilized to cluster the

GYD data into four groups, primarily based on total rainfall and

evaporation, which accounted for most of the variation. Clustering

of mega-environments into groups based on environmental

variables has been reported in barley (Heslot et al., 2013; Lin

et al., 2021) and wheat (Dawson et al., 2013). Genetic correlations

were high among GYD-C1, GYD-C3, and GYD-C4 (exceeding

0.80), but lower with GYD-C2 (0.36 to 0.76). Predicting GYD-C2

using GYD-C3 and GYD-C4, and vice versa, resulted in lower

accuracies (0.19-0.25). This could be due to GYD-C2 having only 14

trials over four years (2010-2014), while GYD-C3 and GYD-C4

spanned 33-47 trials over ten years (2010-2020), leading to lower

connectedness between GYD-C2 and the other clusters. This would

also mean the training population of GYD-C2 would be genetically

more distant (less related) when compared to GYD-C3 and GYD-
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C4. Despite this, GYD-C2 exhibited higher heritability estimates,

possibly due to higher relatedness within its training population.

Overall, clustering based on environmental variables did not

significantly improve GYD predictions compared to non-

clustering methods, as environmental variables are just one factor

influencing plant performance.

In Australia, lentils are a high-value cash crop, with more than

95% of the harvest exported to the global market. Consequently,

grain quality traits such as seed size, protein content, and seed

colour are priority breeding targets. However, breeding for quality

traits poses further challenges because of the commonly observed

negative correlation between seed protein content and grain yield in

pulse crops such as chickpea, common bean and pigeon pea (Saxena

et al., 1987; Gaur et al., 2016; Keller et al., 2020). When traits are

antagonistically connected, it adds another layer of complexity for

the simultaneous improvement of multiple traits. To address this

complexity, different strategies can be implemented in a breeding

program. One strategy is to apply selection at an early stage of the

breeding program, when a larger number of early generation

progenies are available and stronger selection can be applied.

With larger progeny numbers, the likelihood of identifying

individuals with favourable alleles for both grain yield and

protein content is increased. A wheat GS study found a positive

association between grain yield and protein content in some

progeny groups, despite the fact that the corresponding parents

were negatively correlated (Yao et al., 2018). However, while this

may result in short-term success, it will result in the loss of the

highest yielding genotypes in the breeding program due to

segregation. Another option is the use of a selection index, where

multiple traits of importance are indexed simultaneously (weighted

selection index, culling and tandem selection, index selection or

independent culling) (Batista et al., 2021; Covarrubias-Pazaran

et al., 2021). A weighted selection index is calculated by assigning

a certain weight to each trait based on their relative economic

values. In the absence of economic weights, breeders can define

targeted genetic gain based on long-term breeding goals. This allows

the balance between favorable genetic gain and targeted genetic gain

to be optimized to overcome the problem of targeted gain in which

selection for one trait may lead to unfavorable changes in other
TABLE 6 Expected genetic gain obtained from GS over BLUP selection. Genetic gain was calculated using the accuracy obtained from forward cross-
validation on the parents from stage 2, F6, F2 and F1..

Trait GS accuracy BLUP accuracy Stage 2 (fold) F6 (fold) F2 (fold) F1 (fold)

GYD 0.34 0.26 0.22 1.08 9.4 19.8

BOR 0.39 0.34 0.08 0.84 8.2 17.4

SAL 0.47 0.30 0.47 1.50 11.5 24

ABH 0.49 0.14 2.33 4.65 27.3 55.5

ABN 0.61 0.31 0.86 2.16 14.8 30.6

BGM 0.63 0.45 0.31 1.22 10.1 21.2

PRO 0.51 0.22 1.19 2.72 17.6 36.2

SSI 0.82 0.54 0.44 1.44 11.2 23.4

GWT 0.82 0.57 0.36 1.31 10.5 22.1
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traits due to correlations between traits. Breeders may also aim to

develop product classes (also known as target product profiles) to

maintain balance in the breeding program and meet export

demands for different markets. For instance, Agriculture

Victoria’s national lentil breeding program is targeting different

export markets who have demand for small and large seed size

lentils. To clearly define these product profiles, we are

implementing weighted selection indices to underpin parental

selections for hybridization programs. Based on these decisions,

crossing designs, cross evaluation, and selection tasks are carried

out for each individual product profile. This means that selection

decisions are made at various breeding stages including

intercrosses, bulk-up, preliminary yield trials, Stage 1 trials, and

Stage 2 trials (evaluation of advanced breeding lines).

As grain yield and quality in lentils can be significantly impacted

by biotic and abiotic stresses, (Araujo et al., 2015; Li et al., 2015;

Scheelbeek et al., 2018; Dutta et al., 2022), it is imperative to target

breeding for disease resistance and abiotic stress tolerance. Both AB

and BGM affect lentil production in Australia. For biosecurity

reasons, glasshouse assays are used to screen genotypic responses

to AB resistance. The prediction accuracy (0.45-0.64) for AB

resistance observed in this study was moderately high indicating

that GS could replace some of the phenotypic screens as a selection

tool for this trait. BGM assays, on the other hand, rely on field

endemics that occur under high rainfall conditions. Given the

pathogen’s complexity and the low frequency of high rainfall

seasons across lentil growing regions in Australia, breeders have

relied on opportunistic field scores. In this study, moderately high

prediction accuracy (0.62) was obtained using data captured from

two seasons (2013 and 2016), which is sufficient to enable GS to be

applied for this trait in the breeding program. Similarly, moderate to

high prediction accuracies observed for both boron and salt tolerance

(0.39-0.72) (Figure 4) demonstrated the utility of GS for developing

abiotic stress tolerant lentil varieties. In conclusion, incorporating

these GS results into a breeding strategy will help to accelerate the

development of lentil cultivars with quantitative disease resistance

and abiotic stress tolerance.

Early parent selection in GS is critical for shortening the

breeding cycle and lowering breeding costs. When GS is used in

the breeding program, it is expected to outperform phenotypic

selection in terms of accuracy and genetic gain per unit time (Matei

et al., 2018; Li et al., 2022). In this study, GS was shown to provide

significant genetic gain over BLUP based selection when parents

were selected from stage 2, F6, F2 and F1 (Table 6). Noteworthy was

that prediction accuracy was reduced when parents were selected

from earlier generations. This was likely caused by the training

population only being updated with phenotyped Stage 2 and 3

materials. Historically, updating the parents for selection of the next

breeding cycle could take up to 8 years (F8 or stage 2). However,

with the availability of genomic prediction, parental selection can be

carried out earlier in the breeding program. This is beneficial for

shortening the breeding cycle and cycling back superior individuals

from crosses as parents into subsequent hybridization cycles. (Li

et al., 2022) suggested that using phenotyped F2 families to update
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the prediction model each breeding cycle improved prediction

accuracy. Another point worth mentioning is that increased

genetic gain per unit of time resulting from the selection of

earlier generation parents will result in the rapid loss of genetic

diversity (inbreeding). To mitigate this, breeders can use different

strategies including introducing exotic germplasm into crossing

blocks and using computational algorithms that help chose optimal

parents while maintaining diversity (Lin et al., 2017). Li et al. (2022)

developed a strategy to maximise genetic gain while preserving

genetic diversity by restricting the co-ancestry of selected parents

and the number of alleles fixed. Similarly, (Gorjanc et al., 2018)

developed a method for comparing optimal cross-selection and

truncation selection, and optimal cross-selection to increase long-

term genetic gain while preserving diversity. In conclusion, this

study demonstrates the potential of GS for making informed

selections in breeding programs and for cycling parents back

from earlier stages to accelerate the development of high yielding,

biotic and abiotic stress tolerant, lentil varieties with superior

grain quality.
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