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With the increasing environmental awareness and the demand for sustainable

agriculture, herbicide reduction has become an important goal. Accurate and

efficient weed detection in soybean fields is the key to test the effectiveness of

herbicide application, but current technologies and methods still have some

problems in terms of accuracy and efficiency, such as relying on manual

detection and poor adaptability to some complex environments. Therefore, in

this study, weeding experiments in soybean fields with reduced herbicide

application, including four levels, were carried out, and an unmanned aerial

vehicle (UAV) was utilized to obtain field images. We proposed a weed detection

model—YOLOv7-FWeed—based on improved YOLOv7, adopted F-ReLU as the

activation function of the convolution module, and added the MaxPool

multihead self-attention (M-MHSA) module to enhance the recognition

accuracy of weeds. We continuously monitored changes in soybean leaf area

and drymatter weight after herbicide reduction as a reflection of soybean growth

at optimal herbicide application levels. The results showed that the herbicide

application level of electrostatic spraying + 10% reduction could be used for

weeding in soybean fields, and YOLOv7-FWeed was higher than YOLOv7 and

YOLOv7-enhanced in all the evaluation indexes. The precision of the model was

0.9496, the recall was 0.9125, the F1 was 0.9307, and the mAP was 0.9662. The

results of continuous monitoring of soybean leaf area and dry matter weight

showed that herbicide reduction could effectively control weed growth and

would not hinder soybean growth. This study can provide a more accurate,

efficient, and intelligent solution for weed detection in soybean fields, thus

promoting herbicide reduction and providing guidance for exploring efficient

herbicide application techniques.
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1 Introduction

Soybean is an important source of high-quality protein and an

important grain, oil, and feed crop. With the improved living

standards of Chinese residents, the demand for soybeans is

increasing. Enhancing soybean production and quality is of great

significance to safeguarding the security of the soybean industry and

national grain and oil security. Over the past few years, our soybean

production has increased significantly. However, weeds continue to

be a major problem that hinders soybean yield improvement.

Weeds compete with crops for nutrients and water and provide a

host environment for pests and diseases, and weed seeds can

accumulate in the soil and affect the next year’s crops (Ahmad

et al., 2020). Weeding is a key task in agricultural production, which

not only improves crop yield and quality but also reduces the use of

herbicides and environmental pollution (Teimouri et al., 2022).

Chemical weeding has gradually become an important weeding

method due to its easy operation and significant effect, but it also

brings environmental and food safety problems. Therefore, finding

an environmentally friendly and efficient weeding method is an

important task in current agricultural production.

In order to solve the problems caused by traditional chemical

weeding, herbicide reduction has become a trend. Efficiency

reduction and green weeding have been advocated, and herbicide

reduction measures have been proposed by researchers (Fang et al.,

2022). Herbicide reduction achieves the best weeding effect by using

the smallest possible dose of drugs, which improves weeding

effic iency , reduces product ion costs , and minimizes

environmental pollution (Wang et al., 2023).

In the process of herbicide spraying, the use of appropriate

spraying techniques will dramatically increase the weeding

effectiveness. Electrostatic spraying technology can improve the

herbicide adhesion rate and control effect and also improve the

weeding efficiency and quality. Electrostatic spraying utilizes

charging methods such as corona, induction, and contact to make

droplets electrostatically charged, which are adsorbed onto crop

leaves through directional motion (Lan et al., 2018). In electrostatic

spraying, large droplets in the electric field force and surface tension

under joint action are broken into smaller droplets, increasing the

uniformity of the droplets (Gong et al., 2022). Ru et al. (2015) found

that electrostatic spraying increased droplet coverage and liquid

deposition in the canopy, middle, and lower layers of the target. Yu

et al. (2005) realized that the droplet spectrum of electrostatic

spraying was narrower and the effective deposition of pesticides

increased significantly. Soybeans can be better protected from

herbicide damage through reduced herbicide use and improved

herbicide attachment rates. Weeding in soybean fields can be better

achieved through a combination of reduced herbicide use and

electrostatic spraying techniques.

The traditional assessment of the weeding effect is mainly

through manual field survey, and human subjective factors have a

large impact and need to enter the field several times, which

significantly increases the labor force and low efficiency. UAVs

have been tested as a high-throughput crop growth assessment tool

with high-resolution, timely and rapid, and wide-area

characteristics, providing the means to support on-farm
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information detection (Feng et al., 2020). UAVs are now

improving weed monitoring for different types of crops in a more

efficient and environmentally friendly way (Mohidem et al., 2021).

In addition, with the rapid development of artificial intelligence

technology in the agriculture field, smart agriculture is gradually

replacing traditional agricultural techniques that can increase crop

yields but are harmful to the environment, such as the excessive use

of pesticides and fertilizers. Smart agriculture has become a new

form to realize sustainable agriculture development, which can

improve the efficiency of agricultural production, reduce

production costs, and improve the quality of agricultural products

(Tang et al., 2023). Deep learning techniques are playing an

increasingly important role in the context of smart agriculture. By

training and learning from a large amount of agricultural image and

video data, there are many applications in crop image classification,

detection, and segmentation, which can lead to a better

understanding of crop growth and timely measures for

intervention (Wu et al., 2023). Currently, deep learning has been

combined with UAV remote sensing technology to automatically

extract deep information from UAV-captured images and model

complex problems, which has significant advantages in crop

identification research in field environments (Rakhmatulin et al.,

2021; Rai et al., 2023). The YOLO series algorithm, as a typical

algorithm for single-stage target detection, obtains the target area,

position, and category of the corresponding object through direct

regression, which has the advantage of faster detection speed

compared with two-stage target detection algorithms (Jiang et al.,

2022). The YOLO series algorithms have been widely used in weed

detection and have achieved some research results. Wang Q. et al.

(2022) constructed a YOLO-CBAM model by incorporating the

attention mechanism in YOLOv5, which can be applied to the real-

time detection of Solanum rostratum Dunal seedlings in the field

with a precision of 0.9465 and a recall of 0.9017. However, the study

did not explore the effects of environmental changes, lighting

conditions, etc. on model performance. Pei et al. (2022) used

improved YOLOv4 to detect weeds in corn fields, introduced the

Meta-ACON activation function, added the CBAM module, and

replaced NMS with Soft-NMS. The mean of average precision

(mAP) of the improved model reached 86.89%, but the authors

did not explore the effects of different light conditions and different

crop growth stages on the model performance. Zhang et al. (2022)

proposed an EM-YOLOv4-tiny model based on YOLOv4-tiny

fusing multiscale detection and attention mechanisms for weed

detection in peanut fields. The mAP reached 94.54%, but the

recognition range in the image was small, limiting the model

application in large field experiments. Other scholars such as

Yang et al. (2022) detected weeds in alfalfa through YOLOv3.

Fatima et al. (2023) developed a lightweight weed detection

mechanism to assist laser-weeding robots through YOLOv5. Liu

M. et al. (2022) constructed a weed detection model for maize fields

based on the MSRCR-YOLOv4-tiny, which provides a feasible real-

time weed identification method for precision weed control systems

in fields with limited hardware resources.

In recent years, YOLO has gone through several versions of

updates and development, including YOLOv5, YOLOv6, YOLOv7,

and YOLOv8. They are constantly driving the development and
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progress in the field of target detection and have gradually improved

and optimized their respective performance and characteristics.

YOLOv5 has received widespread attention for its lightweight and

efficient performance. It optimizes the network structure, improves

operation speed and memory utilization, and excels in real-time

applications and resource-limited scenarios. YOLOv6 combines the

segmentation and detection tasks by introducing a hybrid matching

strategy, which helps to reduce the occurrence of false detections by

combining global and local information but may increase the

complexity of the model and computational requirements.

YOLOv7 has simple yet powerful features, with a relatively simple

architecture that is easy to understand and implement, and offers

advantages in terms of accuracy and speed of operation. YOLOv8

also introduces a hybrid matching strategy to further improve

accuracy, which shares many similarities with YOLOv7 but differs

in some key aspects, with YOLOv8’s architecture potentially being

more complex and requiring more computational resources. The

performance of different YOLO algorithms may vary in different

scenarios. It is not necessary that the latest YOLO algorithm is the

best choice, and it is necessary to consider the scenarios, resource

constraints, speed and accuracy, and other needs to determine the

most appropriate algorithm version.

The YOLO series of target detection models are sufficient for

weed detection tasks in field environments. Therefore, this study

constructed a weed detection model based on YOLOv7 and

enhanced the model performance by improving the model,

enhancing the image dataset and other operations. The specific

research ideas are as follows: We designed four levels of herbicide

reduction spraying experiments, utilized UAV to obtain image

information of soybean fields, performed weed detection based on

the improved YOLOv7 model to determine the optimal level of

herbicide application, and examined soybean growth status by

obtaining soybean leaf area and dry matter weight at different

growth stages.
2 Materials and methods

2.1 Experimental site

The experiment was conducted in May–June 2023 at Jianshan

Farm (48°86′22''N, 125°36′43''E), Jiusan Reclamation District, Heihe

City, Heilongjiang Province, China. Jiusan is the soybean capital of

China. Black soil is a fertile and nutrient-rich soil type, and the

region’s rich black soil and light-rich climate conditions provide good

conditions for soybean growth. The region’s soybean varieties are

excellent, and using scientific growingmethods, the soybeans here are

leading in yield and quality. The experimental area was 440 m × 8 m

and the soybean variety was Longken 306. The planting pattern was

three rows on a 1.1-m ridge, which fully utilized the marginal effect of

the ridge and increased the yield by increasing the number of seedling

holding plants per unit area through dense cultivation (Chen et al.,

2018). The schematic diagram of the experimental site and planting

pattern is shown in Figure 1.

As shown in Figure 1C, the overall width of a soybean ridgeW1

is 110 cm, the width of the ridge platform W2 is 70 cm, and the
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distance between each two rows of soybeans on the platform W3 is

22.5 cm. The height of the ridge platform to the ground H is 25 cm,

which is to minimize water evaporation. The angle formed between

the ridge platform and the ground A1 is 51.34°, and the angle

formed between the two ridges A2 is 77.32°, which are designed to

increase the light area and ventilation capacity of the ground.
2.2 The soybean field weeding experiments

In soybean fields, weeds have a strong growth rate and

reproduction capacity and can dominate soybean fields if not

controlled in a timely manner. Therefore, it is necessary to choose

the right herbicide and dosage to improve the control effect, and this

choice is based on a solid scientific basis. Herbicide spraying

operations require years of testing and application to prove that

the use of combinations of these herbicides is the most suitable for

weeds in specific plots, aiming at optimal crop growth and effective

weed control.

The field experiments were divided into two parts: one was

carried out after the soybean was sown until the emergence of

seedlings. This experiment used a soil treatment with herbicides to

seal out weeds that were about to emerge and was called the pre-

emergence weeding experiment. The second was to use herbicides

to spray directly on the stems and leaves of weeds between the

emergence of soybeans and the first compound leaf, so as to kill the

weeds by inhibiting photosynthesis, which was called the post-

emergence weeding experiment. The pre-emergence weeding

experiment was conducted at four levels: conventional herbicide

spray treatment, electrostatic + reduction of 30%, electrostatic +

reduction of 20%, and electrostatic + reduction of 10%. The

conventional herbicide spray treatment used the optimal

herbicide combinations derived from years of operations at

Jianshan Farm (water + acetochlor + thifensulfuron-methyl).

When water was 20 L, 150 mL of acetochlor and 4 g of

thifensulfuron-methyl were added. The herbicide combination

used in the post-emergence weeding experiment was water +

fomesafen + thifensulfuron-methyl + bentazone. Based on the

results of the four levels of the pre-emergence weeding

experiment, the post-emergence weeding experiment was

conducted after the dosage of each herbicide was determined

using the optimal levels.

Both groups of experiments used backpack sprayer to carry out

herbicide spraying operations: the forward speed of the sprayer was

8 km/h, the spray width was 8 m, and the spraying was carried out

on seven rows in one operation, with a spray pressure of 0.4 MPa.

One experimental area was delineated for each level, with each area

measuring 800 m2 (100 m long and 8 m wide), and each

experimental level was spaced with 10 m.
2.3 Research methods

2.3.1 Image dataset preparation
A DJI Mavic 3M UAV as shown in Figure 2 was utilized to

acquire RGB images at soybean emergence (VE), cotyledon (VC),
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and first node (V1) stages, with an image resolution of 5,280 × 3,956

pixels. RGB sensors are capable of capturing high-resolution images

and are suitable for large-scale applications in agricultural

production by analyzing details and features in the images (Zhang

and Zhao, 2023).

In field environments, UAV images captured under different

lighting and weather conditions often have a significant impact on

the results of weed detection. On sunny days with sufficient light,

the color and texture characteristics of plants are obvious, and they

contrast significantly with the surrounding environment. However,
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on cloudy and rainy days with insufficient lighting, the image

quality captured by digital devices will significantly decrease,

resulting in unclear edges of the target object, color distortion,

lack of texture features, etc., which will affect the detection results.

Therefore, in order to better adapt the model to the real field

environment and reduce the impact of complex background

interference on detection results, image construction datasets

were obtained in various environments such as sunny, cloudy,

rainy, and strong light, including 500 images.

In our study, the YOLO algorithm was utilized to construct a

weed detection model. The model has a large number of

parameters; if the dataset size is small, it may cause overfitting

and the model cannot converge, thereby affecting detection

performance. Therefore, sufficient data are needed to train the

model to achieve optimal results. Image enhancement can achieve

data augmentation, allowing limited original images to be

transformed to increase data diversity and maximize the value of

the data. The image enhancement methods we used include

horizontal mirroring, brightness enhancement, contrast

enhancement, and random flipping of the original image,

expanding the number of images to 3,000.

Image annotation is a crucial process, and the accuracy and

quality of annotation directly affect the training effectiveness of the

model and the accuracy of object detection. We used the image

annotation tool LabelImg to annotate weeds in.xml format and

stored the annotated images in PascalVOC format. The PascalVOC
FIGURE 2

DJI Mavic 3M UAV.
A B

C

FIGURE 1

The schematic diagram of the experimental site and planting pattern. (A) Experimental site. (B) Experimental area. (C) Planting pattern.
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format contains rich label information, such as categories, target

positions, and image sizes. During the labeling process, we set the

label of the detected weed target as “weed.” The training set, testing

set, and validation set were divided according to the ratio of 8:1:1.

The training set is used to train the model, the testing set is used to

evaluate the performance of the model and tune it, and the

validation set is used to adjust the hyperparameters of the model.

2.3.2 Construction of the weed detection model
YOLOv7 is a continuous improvement of the previous YOLO

series, with accuracy and speed surpassing other YOLO series

algorithms on the MSCOCO dataset, achieving a better balance

between detection speed and accuracy (Zhu et al., 2023). Therefore,

YOLOv7 was used in this study to construct the weed detection

model, and we compared its performance in detecting weeds with

YOLOv5, YOLOv6, and YOLOv8. The schematic diagram of the

weed detection model based on YOLOv7 is shown in Figure 3.

The model structure mainly includes the input layer, backbone

layer, and head layer. The input layer preprocesses the input image

and scales the image to a uniform size in order to meet the training

requirements of the backbone network. The backbone layer consists

of a number of CBS convolutional modules, ELAN modules, and

MP modules. The CBS module consists of a convolutional layer, a
Frontiers in Plant Science 05
batch normalization layer, and SiLU activation function. The ELAN

module consists of a number of convolutional modules, which

allows for more efficient learning and convergence. The MP module

consists of a maximal pooling layer with a number of convolutional

modules, which is able to improve the model’s feature extraction

capability and detection efficiency. The head layer performs

multiscale feature fusion through the path aggregation feature

pyramid network (PAFPN) structure. At the prediction end, the

REP module is used to adjust the number of image channels of the

output features of different scale sizes into bounding boxes,

categories , and confidence information, and then the

convolutional layer is used as the detection head for

downsampling to realize the multiscale detection of large,

medium, and small targets. The structure of each module is

schematically shown in Figure 4.

2.3.3 Improvement and optimization of the weed
detection model

Aiming at the problem of easy leakage of weed targets with few

pixels, small coverage area, and little information during target

detection, this study proposed YOLOv7-FWeed, a weed detection

model based on improved YOLOv7. The model uses F-ReLU as the

activation function of the convolutional module in YOLOv7, which
FIGURE 3

Schematic of the YOLOv7-based weed detection model.
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can expand the range of the sensory field of the convolutional layer

and equip the ordinary convolutional layer with the ability to

capture complex visual layouts, thus allowing the convolutional

layer to learn more features. It also speeds up model convergence,

prevents gradient explosion or gradient vanishing, and solves the

spatial insensitivity problem. Another improvement was the

addition of the MaxPool multihead self-attention (M-MHSA)

module to enhance the network’s learning of global information,

which in turn improved the network’s accuracy in recognizing

weeds, as shown in Figure 5 for the M-MHSA module.

The M-MHSA module consists of a maximum pooling layer

with a multihead self-attention mechanism, which improves the

model learning ability and prevents gradient degradation through

the fusion of different feature maps. The input feature maps are first

downsampled using the maximum pooling layer, which reduces the

feature map size while retaining the main features of weeds and

expanding the perceptual field, thus allowing the MHSA module to

learn on smaller resolution feature maps. The feature map is then

fed into the MHSA module, thus learning a rich hierarchy of

associated features across long sequences. This module not only

improves the feature extraction ability of the model in complex

backgrounds but also avoids the disadvantage of overly focusing
Frontiers in Plant Science 06
attention on itself, and it has a stronger feature representation

ability with the same amount of computation.

2.3.4 Evaluation of crop growth after
herbicide spraying

If the dosage is too low to achieve effective weed control,

uncontrolled weed will continue to grow and reproduce, leading

to losses in soybean yield and quality. Therefore, it is necessary to

comprehensively evaluate the effectiveness of herbicide reduction

spraying based on the growth of weeds and soybeans.

Five sample points were selected in each experimental plot

according to the five-point sampling method, each point was

approximately 1 m2 (0.91 m × 1.1 m), and the number of weeds

in the sample points was recorded. The accumulation of

physiological metabolites in plants can reflect their growth and

development status. During the growth process of weeds, they

compete with soybeans for nutrients, leading to changes in

soybean nutrient absorption and physiological indicators. When

weeds continue to harm soybeans, the changes in soybean leaf area

and dry matter weight will decrease with the increase of harm time.

Six consecutive plants with consistent growth were selected in each

plot during the soybean R1 to R5 stages, and the soybean leaf images
FIGURE 4

Schematic diagram of each module structure.
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were analyzed using an Epson Perfection V19 scanner (Epson Co.,

Ltd., China) to measure the length and width of their leaf blades and

calculate the leaf area, as shown in Figure 6. The plants were dried

using a WGL-230B electric blast drying oven (Tianjin Tester

Instrument Co., Ltd., China), and the dry matter weight of the

plants was obtained using an electronic balance.
2.4 Evaluation indicators and
platform configuration

To evaluate the performance of the YOLOv7 model for weed

detection, precision (P), recall (R), F1, and the mAP were used as

evaluation metrics. P, R, and F1 are calculated as shown in Equation

(1–3).

P =
TP

TP + FP
(1)

R =
TP

TP+FN
(2)

F1 =
2PR
P + R

(3)
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Where TP represents the number of samples that were correctly

predicted as positive, FP represents the number of negative samples

that were predicted as positive, and FN represents the number of

positive samples that were predicted as negative.

The mAP is the average of the AP of all categories, average

precision (AP) is the average precision of individual categories, AP

can reflect the accuracy of the prediction of each category, andmAP

is used to reflect the accuracy of the whole model. The formulas for

the calculation of AP and mAP are shown in Equation (4, 5).

AP = ∫1∫drO  Precision� Recall (4)

mAP = o
s
j=1AP(j)

S
(5)

Where r is the integral variable, which is the integral of the

product of recall and precision; S is the number of all categories, and

only weeds were detected in the study, so S = 1.

The coefficient of determination (R2), root mean square error

(RMSE), and mean absolute error (MAE) were used to analyze the

differences between the number of predicted weeds and true weeds.

R2 represents the degree of fitting of the trend line, which can reflect

the degree of fitting between the number of weeds of model

prediction and manually measured. RMSE represents the degree

of error dispersion between model prediction and manually
A B

FIGURE 6

Epson Perfection V19 scanner and scan image. (A) Epson Perfection V19 scanner. (B) Leaf scan image.
FIGURE 5

M-MHSA module.
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measured, representing the stability of the algorithm. MAE is the

average error between model prediction and manually measured,

indicating the accuracy of the algorithm. R2, RMSE, and MAE are

calculated as shown in Equation (6–8).

R2 = o
i(yip − ym)

oi(yit − ym)
(6)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oi(yip − yit)

2

N

s
(7)

MAE = o
i yip − yit

�� ��
N

(8)

Where i is the i-th monitoring site, the range of i is 1–50, and

the summation limit is 50. yit is the number of true weeds in the i-th

monitoring site, yip is the number of predicted weeds in the i-th

monitoring site, ym is the mean value of the number of weeds in

each monitoring site, and N is the number of monitoring points.

To meet the training requirements for deep learning, the

computer environment was configured as follows: an NVIDIA

GeForce RTX3080 Ti graphics card with 12 GB of video memory;

the CPU was a 9-core Intel(R) Xeon(R) CPU E5-2686 V4 with 32

GB of RAM running on it; and the operating system was Linux,

using Pytorch 1.13, Python 3.8, and Cuda 11.6.
3 Results

3.1 Experimental results of different target
detection models

In this study, weed detection was performed using YOLOv5,

YOLOv6, YOLOv7, and YOLOv8 models, respectively. The batch

size of the model was set to 8 and the number of iterations was 500.

The comparison of the experimental results for different target

detection models is shown in Table 1.

As can be seen from Table 1, within the same number of

iterations, the P, R, F1, andmAP of the YOLOv7 model were higher

than those of the other models, and the detection time for a single

image was 0.0475 s, which was slightly lower than that of YOLOv5.

YOLOv5 had a slight advantage in detection time, which was

mainly due to the relatively lightweight network structure, but it
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was obviously lower than the other models in other indexes.

YOLOv8, the newest model in the series, also achieved good

results in detection performance, but due to its relatively complex

network structure, in addition to its inferiority to YOLOv7 in other

metrics, it additionally increased the detection time. Although the

detection time of YOLOv7 was not the shortest, it was able to meet

the needs of weed detection in soybean fields. Therefore, YOLOv7

was chosen as the weed detection model for this study and was

improved and optimized on this basis to enhance the detection

performance in the field environment.
3.2 Analysis of weed growth at different
herbicide reduction spray levels

In order to evaluate whether image enhancement can bring

substantial improvement to the performance of the model, YOLOv7

was utilized to compare the test accuracy on the original image

dataset (500 images) and the enhanced image dataset (3,000

images), which were named YOLOv7 and YOLOv7-enhanced,

respectively. In this study, YOLOv7 was improved by using the F-

ReLU activation function and adding the M-MHSA module to

obtain the YOLOv7-FWeed model, which was utilized to train and

test the enhanced image dataset. The official YOLOv7.pt pretraining

weights were used in model training; YOLOv7, YOLOv7-enhanced,

and YOLOv7-FWeed were utilized to train and test the weed

dataset, respectively; and the experimental results of the model

precision and loss were obtained as shown in Figure 7.

As shown in Figure 7A, the fluctuation amplitude of YOLOv7-

enhanced was smooth in comparison with YOLOv7. The image

enhancement has a certain effect on the model stability

enhancement: it improves the image quality, enriches the amount

of information, and strengthens the image interpretation and

recognition effect. YOLOv7-FWeed achieved superior results in

terms of precision compared with the previous two models. The

loss curves during 500 epoch were plotted, as shown in Figure 7B.

The precision and loss of the YOLOv7-FWeed model leveled off

approximately 200 epoch, confirming that 500 epoch of training

was sufficient, further demonstrating the usefulness of the improved

method proposed in this study for weed detection.

There is a balance between precision and recall that needs to be

weighed when adjusting model settings. If the model is too sensitive, it

may result in an increased error rate, misidentifying non-weed targets
TABLE 1 Comparison of experimental results for different target detection models.

Model
Evaluation indicators

P R F1 mAP Time/s

YOLOv5 0.7896 0.8174 0.8033 0.8706 0.0432

YOLOv6 0.8427 0.8569 0.8497 0.8817 0.0573

YOLOv7 0.8525 0.8642 0.8583 0.8926 0.0475

YOLOv8 0.8245 0.8298 0.8271 0.8732 0.0512
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as weeds. In addition to the above twometrics, the YOLOv7, YOLOv7-

enhanced, and YOLOv7-FWeed models were compared in R, F1, and

mAP, and the experimental results are shown in Table 2.

Overall, YOLOv7-FWeed achieved the best results in all the

metrics. The P was 0.9496, the R was 0.9125, the F1 was 0.9307, and

the mAP was 0.9662. All the metrics were improved by 0.0483–0.0971

compared with the original model of YOLOv7. These results proved

the effectiveness of YOLOv7-FWeed for weed detection. This model

achieved detection by dividing the image into grids and predicting

whether each grid contains weeds. After the model has completed

training and testing, field images were acquired and input to the model

for validation, and the model assigned detection frames to the detected

weed targets and gave a confidence level for each detection frame.

Confidence is a quantitative metric that indicates how certain the

model is about the targets included in a given detection frame. The

results of applying the YOLOv7-FWeed model to detect weeds at

different stages of soybean growth are shown in Figure 8.

The area of the plots covered in the figure was approximately 1

m2, and in this study, it was necessary to capture as many weed

targets to be detected as possible, as long as the weeds were selected

by the frame, which could be regarded as a valid result whether the

confidence level was high or low. It could be seen that the weeds

could be accurately selected in different growth stages, and basically,

no weeds were missed, indicating that the model learned the real

characteristics of the weed targets, and the recognition effect was

satisfactory. To further evaluate the model performance, images of

50 points were acquired in the field to obtain the number of weeds

detected using the model and manually measured, respectively. The
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analysis was carried out using Equations (6)–(8) and a linear

relationship graph was obtained as shown in Figure 9.

As can be seen in Figure 9, R2 was 0.9889, indicating a good fit of

the model and a strong correlation between the number of predicted

and true weeds. RMSE was 1.3638 and MAE was 0.98. The values of

RMSE andMAEwere small, indicating that the model predicted better.
3.3 Analysis of weed growth at different
herbicide reduction spray levels

3.3.1 Results of the pre-emergence
weeding experiment

The number of weeds was monitored during May 23–June 11,

which was from the beginning of soybean emergence until the

seedling weeding experiment, and the number of weeds statistics

was obtained as shown in Table 3.

Level 1 is the conventional herbicide spray treatment, level 2 is the

electrostatic + reduction of 30%, level 3 is the electrostatic + reduction

of 20%, and level 4 is the electrostatic + reduction of 10%. As can be

seen in Table 3, on May 23, the number of weeds in the field ranged

from 1 to 24/m², with most of them being less than 10/m². Over time,

the number of weeds gradually increased, and by June 1, each point had

a mean value greater than 40/m². After that, on June 7 and June 11, the

number of weeds was greater than 50/m² and 60/m².

Based on the total number of weeds at different herbicide

reduction spray levels on different dates in Table 3, changes in

the number of weeds were plotted as shown in Figure 10.
TABLE 2 Comparison of experimental results.

Model
Evaluation indicators

P R F1 mAP

YOLOv7 0.8525 0.8642 0.8583 0.8926

YOLOv7-enhanced 0.8865 0.8980 0.8922 0.9347

YOLOv7-FWeed 0.9496 0.9125 0.9307 0.9662
A B

FIGURE 7

Model precision and loss test results. (A) Change in precision. (B) Change in loss.
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The trend of the total number of weeds over time for different

herbicide reduction spraying levels can be further observed from

Figure 10. It can be seen that during May 23–June 4, the number of

weeds of level 1, level 2, and level 3 showed a rapid growth trend;

after June 4, the number of weeds grew at a relatively slow rate.

Level 4, on the other hand, showed a trend of slow growth in the

number of weeds throughout the cycle, and the total number of

weeds at this level has been at a minimum.
Frontiers in Plant Science 10
When conducting reduced herbicide spraying experiments, the

dosage is too low to achieve effective weed control, and uncontrolled

weeds will continue to grow and multiply, leading to losses such as

reduced crop yields and poorer quality. When the application dose

exceeds the recommended level, chemical pesticides may remain in

the soil, water sources, and crops, with negative impacts on the

ecosystem. Therefore, based on the results of the above analysis,

effective herbicide spraying measures need to be taken in

controlling weeds in the field, level 4 carried out a reduction of

10% and had a certain inhibitory effect on the growth of weeds, and

the level was used in subsequent experiments to observe whether

the number of weeds was effectively controlled.

3.3.2 Results of the post-emergence
weeding experiment

The post-emergence weeding experiment was conducted on

June 13, which was during the V2 and V3 stages of soybean, a

critical time for field management for chemical herbicide spraying.

Herbicide spraying was conducted on the four previous

experimental areas using the electrostatic + reduction of 10%.

When water was 120 L, fomesafen was 0.9 L, bentazone was 1.5

L, and thifensulfuron-methyl was 20 g. Changes in the number of

weeds were monitored at 2, 6, and 9 days after spraying, and the

results are shown in Table 4.

As can be seen from Table 4, 2 days after spraying, the number

of weeds showed a slow decreasing trend; 6 days after spraying, the

number of weeds showed a sharp decreasing trend; 9 days after
FIGURE 9

Fit effects of model prediction and manually measured.
A B

C

FIGURE 8

Results of weed detection at different growth stages in soybean. (A) VE stage. (B) VC stage. (C) V1 stage.
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TABLE 3 The number of weeds at different points.

Date Sampling point location
Number of weeds

Level 1 Level 2 Level 3 Level 4

5.23

1 10 3 3 2

2 5 1 4 1

3 14 3 5 2

4 9 24 2 6

5 3 5 1 1

Total number 41 36 15 12

5.27

1 35 17 8 15

2 14 8 5 14

3 39 15 16 16

4 30 34 42 23

5 4 17 25 4

Total number 122 91 96 72

5.29

1 57 31 18 20

2 19 14 12 21

3 64 22 38 21

4 45 82 62 42

5 7 26 38 9

Total number 192 175 168 113

6.1

1 72 40 23 20

2 30 20 15 26

3 79 23 48 25

4 64 91 73 56

5 9 37 42 13

Total number 254 211 201 140

6.4

1 75 58 34 25

2 36 28 19 30

3 99 38 62 31

4 77 108 93 69

5 11 49 65 18

Total number 298 281 273 173

6.7

1 84 63 38 40

2 41 30 23 38

3 116 42 66 41

4 81 121 104 81

5 12 62 70 25

Total number 334 318 301 225

6.11
1 89 66 40 47

2 48 31 26 42

(Continued)
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spraying, the decreasing trend of the number of weeds tended to

level off, and the number of weeds was effectively controlled. On

June 22, five points were selected for sampling in the plots where the

conventional herbicide spray treatment was carried out, and the

total number of weeds was 41. Compared with the four

experimental areas treated with the electrostatic + reduction of

10%, the number of weeds in the four experimental areas was

slightly higher than that in the plots where the conventional

herbicide spray treatment was carried out. The results showed

that the experimental protocol utilizing the electrostatic +

reduction of 10% was feasible and effective in using less herbicide,

but it was not clear if the treatment would have an impact on the

subsequent growth of soybean. Therefore, after herbicide spraying

was conducted, continuous attention was paid to the growth and

health of soybean in subsequent stages.
3.4 Analysis of soybean growth after
herbicide spraying

In this study, subsequent growth was assessed by changes in leaf

area and dry matter weight of soybean. Crop leaf area determines

the crop’s ability to absorb solar radiation energy for photosynthesis

(Chen et al., 2022). Different spray rates of herbicides may reduce

the leaf area, and if the leaf area increases after spraying, the soybean

is growing well; if the leaf area decreases, there may be a growth
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problem. The changes in leaf area of soybean at stages R1–R5 are

shown in Figure 11.

The results showed that at the R1–R5 stages of soybean, the

soybean leaf area showed an increasing trend with the continuous

change of time, indicating that the electrostatic + reduction of 10%

did not hinder the increase of soybean leaf area.

Dry matter weight reflects the true crop growth status because it

eliminates the effect of moisture on measurements and is the basis

for crop yield formation (Liu et al., 2016). If the dry matter weight

increases after spraying, soybean is performing well in terms of

overall growth and development; if the dry matter weight decreases,

there may be problems such as growth limitation or insufficient

nutrient uptake. The changes in dry matter weight of soybean from

R1 to R5 stages are shown in Figure 12.

The results showed that in the R1–R5 stages of soybean, the dry

matter mass of soybean showed an increasing trend with the

continuous change of time, indicating that the electrostatic +

reduction of 10% does not hinder the accumulation of nutrients

in soybean. Taken together, both soybean leaf area and dry matter

weight showed an increasing trend, indicating that this spray level

can be utilized during the seedling weeding stage of soybean, which

can effectively control the growth of weeds on the basis of reduced

herbicide spraying and does not impede the growth and

development of soybean.
4 Discussion

4.1 Comparative analysis of related studies

In this study, deep learning was used for weed detection in

soybean fields and achieved better results. In a similar weed

detection work, this work is very challenging due to the similarity

between crops and weeds. To overcome these problems, Wang A.

et al. (2022) proposed a pixel-level integrated data enhancement

method and the TIA-YOLOv5 network for weed and crop detection

in complex field environments, and their F1 and mAP were 0.7 and

0.9, respectively. We used F-ReLU as the activation function of the

convolutional module in YOLOv7 to give the ordinary

convolutional layer the ability to capture complex visual layouts,

thus allowing the convolutional layer to learn more weed features

and improve F1 and mAP. Liu S. et al. (2022) proposed a maize

weed detection model—YOLOv4-tiny—that combines an

attentional mechanism and a spatial pyramid pooling structure

with a mAP of 0.8669. We added the M-MHSA module to enable it
TABLE 3 Continued

Date Sampling point location
Number of weeds

Level 1 Level 2 Level 3 Level 4

3 123 44 71 49

4 84 129 108 92

5 13 70 75 32

Total number 357 340 320 262
fro
FIGURE 10

Changes in the number of weeds at different levels.
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to learn on smaller resolution feature maps, which preserved the

main features of weeds and improved the accuracy of the model in

recognizing weeds.

Although the model proposed in this study is able to recognize

weeds in soybean fields, there are still some noteworthy issues that

need to be further investigated; for example, the model still misses

or incorrectly detects weeds on some small targets, and small target

detection is still a challenge. Therefore, we will consider adding

appropriate feature fusion algorithms to our model to further

improve the model’s ability to recognize weeds. In the future, by

combining deep learning with other techniques, we can improve the

automatic feature learning and adaptation capabilities of deep

learning, so that it can realize its great potential to better solve

the problem of weed detection in complex environments.
4.2 Application of precision spraying
herbicide technology

Weed detection is the basis for conducting future applications

of precision spraying herbicide technology, and there is a great need
Frontiers in Plant Science 13
for ongoing research. Detection and identification of weeds in the

field using computer vision and data analytics are at the core of

precision herbicide spraying in agriculture, and these techniques

help the spraying equipment to distinguish between the types of

plants, identify weeds, and motivate spraying actions. Precision

spraying herbicide technology allows for the application of precise

doses of herbicides only on target plants and avoids open soil areas,

which can dramatically reduce the cost of herbicide inputs

(He, 2022).

Current precision herbicide spraying also faces significant

challenges, such as missing the best time to spray and failing to

accurately identify weed distribution. The most effective solution is

to map and track spray areas by constructing and processing field

data and designing and training AI algorithms for crop growth stage

monitoring and accurate weed identification. With the amount of

data in the field increasing every year, it can be difficult for growers

to process it all on their own, which can be simplified by building

databases and preparing them for the specific tasks they will be used

for. AI-based agricultural management systems can plan spraying at

the optimal time when weeds are in the early stages of canopy

development and quickly analyze new images to identify weeds and
TABLE 4 Changes in the number of weeds.

Date Sampling point location
Number of weeds after electrostatic spraying + herbicide reduction of 10% treatment

Level 1 Level 2 Level 3 Level 4

6.15

1 72 49 27 34

2 35 20 21 31

3 95 38 59 35

4 70 106 94 72

5 6 34 65 25

Total number 278 247 266 197

Reduced number 79 93 54 65

6.19

1 29 7 8 12

2 12 8 5 18

3 18 7 14 9

4 58 14 15 35

5 2 12 6 6

Total number 119 48 48 80

Reduced number 159 199 218 117

6.22

1 22 7 8 10

2 10 7 5 15

3 16 6 14 8

4 5 12 13 24

5 2 12 6 6

Total number 55 44 46 63

Reduced number 64 4 2 17
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FIGURE 11

Changes in soybean leaf area.
FIGURE 12

Changes in soybean dry matter weight.
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other plants. By collecting field images from UAVs and applying

weed recognition algorithms to plan the exact distribution of

herbicides on each field at the early stages of weed development,

and then generating weed distribution maps, we can accurately

monitor weed growth and record weed location information, so as

to control spraying equipment to spray accurately.
4.3 Applications of satellite remote
sensing technology

Satellite remote sensing technology has a wide range of

applications in agriculture. Zhang et al. (2021) extracted rice

planting area using multitemporal Gaofen 6 wide-format camera

remote sensing images of the critical rice season. Song et al. (2022)

applied satellite-borne LiDAR data to realize the estimation of forest

aboveground biomass. He et al. (2022) estimated the ratio of

photosynthetically active radiation absorption and production

potential of regional maize based on the resampling of ground-

truth canopy hyperspectral reflectance by GF1 satellite. However,

limited by the temporal and spatial resolution of data acquisition,

satellite remote sensing is more difficult to be applied to small

experimental areas and high-frequency dynamic monitoring

(Sindhuja et al., 2015), and the satellite revisit cycle is long and

subject to greater interference from the atmosphere, clouds, rain,

and snow (Yue et al., 2017). However, when faced with the task of

continuous monitoring of large plots of land, the endurance of

UAVs and the need for long hours of operation bring certain

limitations. With the continuous development of satellite remote

sensing technology, it provides new technical means for the precise

management of crop fields. In the future, we can try to utilize

satellite remote sensing to carry out weed detection research, and

strive to provide effective solutions for the application of satellite

remote sensing technology in the detection of small targets.
4.4 Challenges and prospects

In this study, we used leaf area and dry matter weight to evaluate

soybean growth after reduced herbicide spraying, and these metrics

can provide a basis for the extent to which herbicides affect crop

growth and development. However, in the actual assessment, the

possible influence of crop varieties, growing environment, weather

conditions, and other factors on the results should also be taken into

account. In addition, appropriate indicators should be selected for

assessment based on the particular herbicide and target weed. The

above patterns are trends in general but may vary depending on crop

varieties, growing environments, and other factors. In the next study,

crop growth can be comprehensively assessed and judged by

combining with other factors observed and recorded in the actual

field, such as environmental conditions, herbicide doses, crop

varieties, and so on.
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We have studied weed detection and different herbicide reduction

spray levels in soybean fields, but there are still some limitations. The

relationship between herbicides and weeds may have long-term and

complex effects, and over the course of a year, while we could observe

changes in weed growth, we did not take into account other factors

that may affect weed abundance and distribution. We need to

consider more variables and the effect of data quality on model

performance to improve the generalization ability of the model.

Finally, we should actively explore the possibility of extending the

duration of the experiment, expanding the scope of the experiment,

etc., in order to conduct a more comprehensive assessment. Through

these measures, we hope to gain a deeper understanding of the

number and distribution of weeds in soybean fields, develop more

accurate herbicide reduction spraying strategies, and provide a

scientific basis for agricultural production.
5 Conclusions

Herbicide reduction spraying can be achieved through rational

dosing and spraying practices. This study explored the combination

of electrostatic spraying technology with reduced herbicide use to

achieve the goal, and the effect was reflected by weed detection and

subsequent soybean growth. We proposed weed detection via the

YOLOv7-FWeed model by adding the M-MHSA module,

consisting of a maximum pooling layer with a multihead self-

attention mechanism, to the original YOLOv7 model. This

module reduced the feature map size while retaining the main

features of weeds and expanding the perceptual field, allowing the

model to learn on smaller-resolution feature maps. By doing so, the

model’s ability to extract features in complex backgrounds was

improved, and the drawback of overly focusing attention on itself

was also avoided. The model was able to accurately detect weeds at

different growth stages, with essentially no missed detections. After

spraying soybean utilizing reduced herbicide rates, soybean

performed well in terms of overall growth and development,

showing a consistent increase in leaf area and dry matter weight.

Weeding in soybean fields can be better achieved through the

combination of herbicide reduction and electrostatic spraying

techniques. In the future, we can explore the incorporation of

new modules in the weed detection model to further improve its

performance, and by combining more factors to comprehensively

assess soybean growth, the weed distribution in the plot can be

mapped based on the results of weed detection, laying a theoretical

foundation for application of precision spraying herbicide

technology. The technology proposed in this study helps to better

understand the growth and distribution pattern of weeds in

agricultural fields, better manage weeds in agricultural fields,

provide a more scientific and reasonable application program,

improve the efficiency of pesticide use, provide more

comprehensive and accurate information support for on-site

diagnostic work, and improve the yield and quality of crops.
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