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transform and successive
projections algorithm
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Xiaoyan Shi1,2, Jianghui Song1,2, Tiansheng Li1,2, Weidi Li1,2,
Mingtao Zhong1,2 and Wenxu Zhang1,2

1College of Agriculture, Shihezi University, Shihezi, China, 2Key Laboratory of Oasis Ecological
Agriculture of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
Soil salinization greatly restricts crop production in arid areas for salinity stress

can inhibit crop photosynthesis and growth. Chlorophyll fluorescence and

photosynthetic gas exchange (CFPGE) parameters are important indicators of

crop photosynthesis and have been widely used to evaluate the impacts of

salinity stress on crop photosynthesis and growth. Remote sensing technology

can quickly and non-destructively obtain crop information under salinity stress,

however, at present, the distribution of spectral features of CFPGE parameters in

different regions is still unclear. In this study (2019-2020), under salinity stress

conditions, the spectral data of rapeseed leaves were acquired and the CFPGE

parameters were simultaneously determined. Then, continuous wavelet

transformation (CWT) and standard normal variate (SNV) transformation were

utilized to preprocess the raw spectral data. After that, a CFPGE parameter

estimation model was constructed by using the partial least squares regression

(PLSR) algorithm and the support vector machines (SVM) algorithm based on the

spectral features in the red region (600-800 nm) and those in the red, blue-

green (350-600 nm), and near-infrared (800-2500 nm) regions. The results

showed that the spectral features of CFPGE parameters could be extracted by

successive projections algorithm (SPA) based on the CWT preprocessing. The

CFPGE parameter estimation model constructed based on the spectral features

in the red region (675 nm, 680 nm, 688 nm, 749 nm, and 782 nm) had the highest

Fv/Fm estimation accuracy on day 30, with R2c, R2p, and RPD of 0.723, 0.585,

and 1.68, respectively. Based on this, the spectral features (578 nm, 976 nm, 1088

nm, 1476 nm, and 2250 nm) in the blue-green and near-infrared regions were

added in the variables for modeling, which significantly improved the accuracy

and stability of the model, with R2c, R2p, and RPD of 0.886, 0.815, and 2.58,
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respectively. Therefore, the fusion of the spectral features in the red, blue-green,

and near-infrared regions could improve the estimation accuracy of rapeseed

leaf CFPGE parameters. This study will provide technical reference for rapid

estimation of photosynthetic performance of crops under salinity stress in arid

and semi-arid areas.
KEYWORDS

photosynthesis, continuous wavelet transformation, partial least squares regression,
support vector machines, brassic anapus
1 Introduction

Soil salinization is a global environmental problem (Zhang

et al., 2014; Wang et al., 2020; Zhu et al., 2023)). Currently, about

25% of the world’s arable land is affected by soil salinization, causing

salinity stress to crops (Qadir et al., 2014). Salinity stress exerts

multifaceted effects on crop growth, especially photosynthesis (Ben-

asher et al., 2006). Under salinity stress, the chloroplast

ultrastructure is destructed, and the photochemical efficiency of

photosystem II (PSII) is reduced, leading to decreased

photosynthetic rate of crops. This eventually suppresses crop

growth (Fariduddin, 2013; Banakar et al., 2022).

Chlorophyll fluorescence and photosynthetic gas exchange

(CFPGE) parameters reflect crop photosynthetic performance,

and are key indicators to evaluate the response of crop

photosynthesis and physiological and biochemical activities to

environmental stress. Under salinity stress, the CFPGE

parameters of crops change prior to chlorophyll content and salt

ions, that is, CFPGE parameters are sensitive to salinity stress

(Zarco-Tejada et al., 2003; Liu et al., 2013; Hniličková et al.,

2017). Therefore, CFPGE parameters can be used to monitor

whether the photosynthetic system of crops is damaged by

salinity stress. These parameters are of great importance for

analyzing the response mechanism of crops to salinity stress

(Baker and Rosenqvist, 2004). Traditionally, the CFPGE

parameters of crops was mostly non-destructively monitored

using portable devices. However, the device operation is

complicated and time-consuming. Especially, it requires shading

treatment (dark adaptation) and other treatments before

measurement. All these factors limit its large scale applications

(Li, 2021).

Hyperspectral imaging technique, a new remote sensing

technique, can quickly, accurately, and non-destructively monitor

the photosynthetic and chlorophyll fluorescence signal changes and

the photosynthetic performance of crops over a large area (Hamzeh

et al., 2013; Tirado et al., 2020). Under external stresses such as

salinity, drought, pests and diseases, etc., crop leaf spectral

reflectance changes, reflecting the changes of physical and

biochemical components within crops. This is the direct basis for

spectral detection of the effects of environmental stresses on crops

(Ashourloo et al., 2014; Huang et al., 2019). Previous studies have

found that chlorophyll fluorescence parameters have two peaks
02
(690 nm and 740 nm) in 600-800 nm, which can be used for the

rapid spectral detection of chlorophyll fluorescence (Buschmann

et al., 2000; Zhang et al., 2012). For example, Zarco-Tejada et al.

(2000) constructed a hyperspectral vegetation index based on the

600-800 nm region, and found that the vegetation index based on

R680/R630 accurately estimated the CFPGE parameters. Some

studies have also achieved accurate estimation of CFPGE

parameters in Phyllostachysacuta (Wu et al., 2014), wheat (Zhu

et al., 2007), corn (Tan et al., 2012), and cotton (Xue et al., 2013)

based on the red region. Notably, most of the above studies used

wavelengths in the red region (600-800 nm) to monitor crop leaf

CFPGE parameters. However, the blue-green (350-600 nm) and

near-infrared (800-2500 nm) regions may also contain spectral

information closely related to crop CFPGE parameters, which

deserves further exploration (Magney et al., 2014; Porcar-Castell

et al., 2014).

The chlorophyll fluorescence signal peaks are weak in the blue-

green and near-infrared regions, making it difficult to extract

spectral features (Mohammed et al., 2019). Currently, many

studies eliminate background interference and improve the

correlations between crop physiological components and spectra

by spectral transformation (Zheng et al., 2021). Continuous wavelet

transformation (CWT) can capture subtle changes in reflectance

and highlight the weak spectral features of crops (Liu et al., 2020;

Zhang et al., 2020). Analysis based on full spectrummay cause some

redundancies and collinearity (Liu et al., 2020). Variable

optimization by feature extraction algorithms such as Monte

Carlo uninformative variables elimination (MC-UVE) (Li et al.,

2017) and successive projections algorithm (SPA) can greatly

reduce redundant information and minimize collinear variables

(Galvo et al., 2008; Jia et al., 2019).

In summary, soil salinization affects crop photosynthesis, and

CFPGE parameters can accurately characterize crop photosynthetic

capacity and PSII damage under salinity stress. At present, the

response mechanism of crop CFPGE parameters to salinity stress is

not clear, and whether the spectral features in the blue-green and

near-infrared regions can improve the accuracy of spectral

estimation of crop leaf CFPGE parameters needs to be further

explored. Therefore, in this study, the effects of salinity stress on

rapeseed leaf photosynthesis were explored, and the spectral data of

rapeseed leaves were acquired. After preprocessing the spectral data

using the CWT, the spectral features of rapeseed leaf CFPGE
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parameters in the blue-green, red, and near-infrared regions under

salinity stress were selected by SPA. Finally, CFPGE parameter

estimation models based on PLSR and SVM were constructed. The

objectives of this study were to explore: (1) the response mechanism

of rapeseed CFPGE parameters to salinity stress; (2) the distribution

of the spectral features of CFPGE parameters in the blue-green, red,

and near-infrared regions; and (3) the effects of feature selection and

different modeling strategies on the accuracy of the CFPGE

parameter estimation model. This study will provide technical

reference for accurate, rapid, and non-destructive monitoring of

photosynthetic performance of crops under salinity stress in arid

and semi-arid areas.
2 Materials and methods

2.1 Experimental site

The experiment was conducted from October to December

2019 and from March to May 2020 at the Experimental Station of

Shihezi University (86°3′ N, 44°18′ E, a.s.l. 428 m) in Xinjiang

Uygur Autonomous Region, China. The area has a temperate

continental climate, with an annual average sunshine duration of

2725-2820 h, an annual average accumulated temperature (≥ 10 °C)

of 3595 - 3729 °C, an annual average precipitation of 125.0-207.7

mm, and a frost-free period of 168-171 days. The soil was taken

from an arable land (0-20 cm soil layer) in Yuephu County,

Kashgar, Xinjiang, China (39°02′ N, 77°24′ E), and the soil type

was gray desert soil. The soil pH measured with a PHS-P acidity

meter (Leici, Shanghai, China) was 7.64. The soil organic matter

content was 12.05 mg·kg-1. The soil total nitrogen content measured

by a K9840 Kjeldahl analyzer (Qianjun, Shanghai, China) was 0.89

mg·kg-1. The soil available nitrogen content was 93.6 mg·kg-1. The

soil available phosphorus content was 18.7 mg·kg-1. The soil

available potassium content measured by the flame photometry

(FP-6410, Xinyi Instruments., Shanghai, China) was 242 mg·kg-1.

The soil salts were mainly chlorides, and the soil conductivity

measured by a BPH-6600 conductivity meter (Bell, Dalian,

China) was 1.15 g·kg-1. All above soil properties were measured

according to the methods of Bao (2000).
2.2 Experimental design

Plump rapeseed seeds (variety Huayouza 62, a double-low

rapeseed variety suitable for growing in northern China; provided

by Huazhong Agricultural University) with consistent size were

soaked in 70% alcohol for 30 s, disinfected with sodium

hypochlorite for 10 min, and rinsed with distilled water 5 times.

Then, the water on seed surface were absorbed using absorbent

paper. After that, the seeds were sown in a dish containing humus

and vermiculite (1: 1) (1 seed per hole, 3-5 cm in depth), and

cultivated in an incubator (Ningbo Southeast Instrument Co., Ltd.,

China) (light intensity: 15000 lx; light/dark cycle: 14/10 hours;

temperature: 23 ± 2°C under light and 18 ± 2°C in dark). When

the seedlings had two leaves, seedlings of similar size and good
Frontiers in Plant Science 03
growth status were transplanted to outdoor pots after removing the

root zone soil. Three plants were planted in each pot (upper

diameter: 25cm, bottom diameter: 20 cm, height: 30 cm).

According to the classification standard of salinized soil in

Xinjiang, China (non-saline soils (0-3 g·kg-1), mildly saline soils

(3-5 g·kg-1), moderately saline soils (5-10 g·kg-1), highly saline soils

(10-20 g·kg-1) (Luo, 1985), soils were separately mixed with 0 (S0),

3.5 (S1), 5.5 (S2), and 7.5 (S3) g·kg-1 of NaCl, and filled in pots (5 kg

soil per pot). Each group had 40 pots. Besides, 200 kg·ha-1 of urea

(N, 46%), 90 kg·ha-1 of heavy superphosphate (P2O5, 46-54%), and

75 kg·ha-1 of potassium sulfate (K2O, 50%) were basally applied.
2.3 Data collection and indoor
determination

2.3.1 Data collection
The portable PSR-3500 visible-NIR spectrometer (Spectral

Evolution Inc., Lawrence, MA, USA) with a wavelength range of

350~2500 nm was used to collect the rapeseed leaf spectra 10, 20,

30, and 40 days after transplanting. The spectrometer has three

detectors: (a) A 512-element silicon photodiode array (spectral

range: 350-1000 nm; resolution: 3.5 nm; interval: 1.5); (b) A 256-

element InGaAs array (spectral range: 970-1910 nm; resolution: 7

nm; interval: 3.8); and (c) A 256-element InGaAs array (spectral

range: 1900-2500 nm; resolution: 10 nm: interval: 2.5). The

reflectance was resampled to 1 nm, and 2151 bands were output

from 350 ~ 2500 nm. Spectral data were acquired on cloudless and

windless days (Tian et al., 2022). The spectrometer was calibrated

with a white plate every 10 samples. During spectral acquisition, the

leaf clip connected to the spectrometer was used to acquire the

spectral reflectance of the left, middle, and right parts of the leaves,

and the average value was calculated to obtain the spectral

reflectance (Tian et al., 2022). Finally, two hundred and forty leaf

spectral data were collected for each sampling.
2.3.2 Determination of chlorophyll
fluorescence and photosynthetic gas
exchange parameters

Fully expanded leaves were selected for the determination of

photosynthetic gas exchange parameters and chlorophyll

fluorescence parameters 10, 20, 30, and 40 days after

transplanting. At 9:00-11:00, the LI-6400 portable photosynthesis

system (LI-COR, Lincoln, NE, USA) was used to determine the net

photosynthetic rate (Pn), intercellular carbon dioxide concentration

(Ci), stomatal conductance (gs), and transpiration rate (Tr) of the

top four leaves of each plant. The light intensity was set to 1000

μmol·m-2·s-1, the CO2 concentration was 400 μmol·mol-1, and the

temperature was 25 °C.

The chlorophyll fluorescence parameters were measured by a

PAM-2500 portable instrument equipped with a 2030-B leaf-clip

holder (Walz, Germany). Firstly, the steady state fluorescence yield

(Fs) of rapeseed leaves under photoreaction was determined, and

then a strong light (1200 μmol·m-2·s-1, pulse time: 0.8 s) was given to
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determine the maximum fluorescence yield (Fm′) and the

minimum fluorescence (F0′). After the light transmission hole

was closed for 30 min, a strong light was given, to measure the

maximum fluorescence yield in the dark-adapted state (Fm), initial

fluorescence (F0), and photosynthetically active radiation (PAR).

Finally, the photochemical quenching coefficient (qP), non-

photochemica l quench ing coe ffic ient (NPQ) , ac tua l

photochemical e fficiency of PSII (FPSII) , maximum

photochemical efficiency of PSII (Fv/Fm), potential activity of

PSII (Fv/F0), and electron transport rate (ETR) were calculated

according to the following formulas.

Fv=Fm = (Fm − F0)=Fm (1)

Fv=F0 = (Fm − F0)=F0 (2)

FPS II = (Fm 0 −Fs)=Fm 0 (3)

qp = (Fm 0 −Fs)=(Fm 0 −F0 0 ) (4)

NPQ = (Fm − Fm 0 )=Fm 0 (5)

ETR = PAR �FPSII� 0:84� 0:5 (6)
2.4 Descriptive statistical analysis of
photosynthetic gas exchange and
chlorophyll fluorescence parameters of
rapeseed leaves

The values of the CFPGE parameters were divided into three sub-

classes from high to low, and the values with a large error were

eliminated. Two-thirds of the samples were included into the

modeling set and the left samples were included into the validation

set (Table S1). The high degree of discreteness of each parameter

indicates that the samples are sufficient and representative (Figure 1).
2.5 Spectral preprocessing

During spectral acquisition, the influence of environment and

instrument is easy to cause a large amount of noise in the spectral

data. To eliminate the noise and highlight the useful information in

the spectral data, different preprocessings of the raw spectrum has

been studied, such as SG smoothing, multivariate scattering

correction (MSC), first derivative, etc. (Mahanti et al., 2020;

Zhang et al., 2023). In this study, the raw spectra were

preprocessed with continuous wavelet transform (CWT), which

has great potential for extracting spectral information of CFPGE

parameters. Besides, this study also compared CWT with the

standard normal transform (SNV) with good performance in

existing studies (Cheng et al., 2010). (Figure S1).
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2.5.1 Continuous wavelet transformation
Wavelet transform uses wavelet basis functions to decompose

complex signals into wavelets of different scales (frequencies). It can

extract weak information and highlight regional characteristics

(Koger et al., 2003). The wavelet coefficients have two

dimensions, namely the decomposition scale (i = 1, 2,…, m) and

the band (j = 1, 2,…, n). That is, CWT converts one-dimensional

hyperspectral reflectance into two-dimensional wavelet coefficients

(Cheng et al., 2010).

Wf (a, b) =
Z +∞

−∞
f (l)Ya,b(l)dl (7)

Y(a,b)(l) =
1ffiffiffi
a

p Y(
l − b
a

) (8)

where Wf (a, b) is wavelet coefficient, f(l) is hyperspectral

reflectance, l is the spectral region of 350~2500 nm, and Ya,b(l) is
the wavelet basis function transformed by scale factor a and

expansion factor b.

In this study, Gaus1 wavelet function was selected to carry out

CWT and first derivative preprocessings. To reduce data

redundancy, the decomposition scale of CWT was set as 21

(CWT-1), 22 (CWT-2),…, 210 (CWT-10) (Yao et al., 2018).

2.5.2 Standard normal variate (SNV)
transformation

The SNV algorithm processes each spectrum based on the

assumption that in each spectrum, the absorbance of the

wavelengths are distributed in a certain rule (such as normal

distribution) (Barnes et al., 1989). The essence is to normalize the

raw spectral data, eliminate the constant offset by subtracting the

average value of the whole spectrum, and then divide the standard

deviation of the full spectra, to make the spectrum reach a similar

proportion (Grisanti et al., 2018).

xSNV =
x − �xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
p

i=1
(xi − �x)

p−1

vuut
(9)

where x is the raw spectrum of a sample, �x is the average spectra

of all wavelengths of the sample, i = 1, 2,…, p, and p is the number

of wavelengths.
2.6 Successive projections algorithm

The SPA was used for feature extraction. The SPA compares the

size of the vector by projecting the wavelength onto other

wavelengths, takes the wavelength with the largest projection

vector as the wavelength to be selected, and then selects the

spectral feature based on the correction model. The SPA selects

variables with with minimal redundancy and collinearity. The

specific algorithm can be found in the reports of Galvo et al. (2008).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1284172
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2023.1284172
2.7 Modeling strategies

In this study, the CFPGE parameter estimation model was

constructed based on the spectral features extracted from the red

region and the spectral features extracted from the red, blue-green,

and near-infrared regions, respectively. The modeling strategies

employed were PLSR and SVM. PLSR processes data with high

dimensional and multicollinearity by reducing collinear variables to

non-correlated factors (latent variables, LV). Then, an estimation

model with LVs as independent variables is established (Inoue

et al., 2016).

SVM is superior to other methods in solving problems such as

small sample size, nonlinearity, and multidimensionality. In this
Frontiers in Plant Science 05
study, the Monte Carlo cross-validation was performed to optimize

the penalty parameter c and reciprocal g of the radius of influence of

the sample. The change ranges of the c and g were set to -1~1 (Hong

et al., 2019). The optimal combination of c and g was selected based

on the results of multiple cross-validations (Feng et al., 2018).
2.8 Model validation

The PLSR and SVM models were evaluated using coefficient of

determination (R2), root mean squared error (RMSE), and residual

prediction deviation (RPD). The larger the R2, the smaller the RMSE,

the higher the prediction accuracy of the model. The smaller the RPD,
FIGURE 1

Descriptive statistical analysis of photosynthetic gas exchange and chlorophyll fluorescence parameters of rapeseed leaves. The line in the center of
each box represents the median, the upper and lower boundaries of the extended line are the maximum and minimum values, respectively, and “●”
represents an outlier.
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the poorer robustness of the PLSR model. An increase of RPD value

means the improvement of prediction accuracy (Chen et al., 2016).

RMSEC =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nc
o
nc

i=1
(yci−ŷ ci)

2

s
(10)

R  2
c = 1 −

o
nc

i=1
(yci − ŷ ci)

2

o
nc

i=1
(yci − �yc)

2
(11)

RMSEP =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
npo

np

i=1
(ypi − ŷ pi)

2

s
(12)

R  2
p = 1 −

o
np

i=1
(ypi − ŷ pi)

2

o
np

i=1
(ypi − �yp)

2
(13)

RPD =
SD

RMSECV
(14)
Frontiers in Plant Science 06
where ŷ ci is the predicted value of the i-th sample in the

calibration set, ncis the number of samples in the calibration set,
�yc is the average of the measured values for all samples in the

calibration set, ypi is the measured value of the i-th sample in the

validation set, ŷ pi is the predicted value of the i-th sample in the

validation set, np is the number of samples in the validation set, �yp is

the average of the measured values for all samples in the validation

set, SD is the standard deviation of the measured value for the

sample in the validation set, and RMSECV is the root mean square

error of the cross-validation.
2.9 Data analysis

Single factor analysis of variance (One-way ANOVA) was

conducted using SPSS software version 21.0 (AMOS IBM, USA),

and significance of the differences in means of the samples was

analyzed using Duncan test at p< 0.05 (Clarke and Green, 1988).

The CWT and SPA was performed using Matlab software version

2016a (MathWorks, Natick, MA, USA). The PLSR and SVM

models were constructed using Unscramber X software version

10.1 (CAMO ASA, Trondheim, Norway). Graphics were drawn
FIGURE 2

Construction of the estimation model of forage rape leaves CFPGE parameter under salinity stress.
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using Origin software version 2018 (Origin Lab, Massachusetts,

USA). Figure 2 shows the construction process of CFPGE

parameter estimation model for rapeseed leaves under salinity.
3 Results

3.1 Effects of salinity stress on chlorophyll
fluorescence and photosynthetic gas
exchange parameter of rapeseed leaves

3.1.1 Effects of salinity stress on photosynthetic
gas exchange parameters in rapeseed leaves

Salinity treatments (S1, S2, and S3) significantly impacted the

photosynthetic gas exchange parameters of rapeseed leaves

(Figure 3). The Pn, Tr, and gs of rapeseed leaves in the S1, S2,

and S3 groups gradually increased, and peaked on day 40. The Pn in

the S1, S2, and S3 groups were 23.39, 22.36, and 20.91 μmol·m-2·s-1,

respectively, which decreased by 5.87%, 11.18%, and 18.89%,

compared with that in the S0 group (24.86 μmol·m-2·s-1) (p<

0.05). The Tr in the S1, S2, and S3 groups were 8.40, 7.83, and

7.04 mmol·m-2·s-1, respectively, which decreased by 4.17%, 11.75%,

and 24.29% compared with that in the S0 group (8.75 mmol·m-2·s-1)

(p< 0.05). The gs in the S1, S2, and S3 groups were 1.27, 1.22, and

1.21 mmol·m-2·s-1, respectively, which decreased by 8.66%, 13.11%,

and 14.05% compared with that in the S0 group (1.38 mmol·m-2·s-1)

(p< 0.05). The Ci in the S1, S2, and S3 groups increased first and

then decreased, peaking on day 30. On day 30, the Ci in the S1, S2,

and S3 groups were 240.39, 257.69, and 259.63 μmol·mol-1,

respectively, which increased by 23.87%, 32.79%, and 33.81%

compared with that in the S0 group (194.06 μmol·mol-1) (p< 0.05).
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3.1.2 Effects of salinity stress on chlorophyll
fluorescence parameters of rapeseed leaves

Salinity treatments obviously impacted the chlorophyll

fluorescence parameters of rapeseed leaves (Figure 4). The Fv/F0, Fv/

Fm, qP,FPSII, and ETR of rapeseed leaves decreased with the increase

of soil salinity (p< 0.05), while the NPQ showed an opposite trend (p<

0.05). The chlorophyll fluorescence parameters of rapeseed leaves in the

S1, S2, and S3 groups increased first, peaked on day 30, and then

decreased. On day 30, the Fv/F0 in the S1, S2, and S3 groups were 4.27,

4.03, and 3.66, respectively, which decreased by 9.74%, 13.93%, and

17.46% compared with that in the S0 group (4.63) (p< 0.05). The Fv/

Fm in the S1, S2, and S3 groups were 0.86, 0.83, and 0.78, respectively,

which decreased by 3.91%, 8.12%, and 9.46% compared with that in the

S0 group (0.89) (p< 0.05). The qP in the S1, S2, and S3 groups were

0.96, 0.93, and 0.90, respectively, which decreased by 2.17%, 4.44%, and

6.82% compared with that in the S0 group (0.98) (p< 0.05). TheFPSII
in the S1, S2, and S3 groups were 0.69, 0.67, and 0.66, respectively,

which decreased by 2.52%, 3.75%, and 6.14% compared with that in the

S0 group (0.71) (p< 0.05). The ETR in the S1, S2, and S3 groups were

171.84, 160.83, and 152.80, respectively, which decreased by 4.45%,

11.12%, and 27.16% compared with that in the S0 group (180.17) (p<

0.05). The NPQ in the S1, S2, and S3 groups were 2.48, 2.89, and 3.36,

respectively, which increased by 37.09%, 60.26%, and 82.78%

compared with that in the S0 group (2.00) (p< 0.05).
3.2 Changes in spectral reflectance of
rapeseed leaves under salinity stress

The impacts of salinity treatments on rapeseed leaf spectral

reflectance were similar, but the spectral reflectance of different
FIGURE 3

Changes in rapeseed leaf photosynthetic gas exchange parameters at different soil salinity levels. Different lowercase letters in the same column
indicate significant difference between groups (p< 0.05).
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groups were different (Figure 5). In the visible region (400-700 nm),

the spectral reflectance decreased with the increase of soil salinity.

On day 40, the peak at 553 nm for the S1, S2, and S3 groups

decreased by 11.62%, 32.07%, and 44.19%, respectively compared

with that for the S0 group. The spectral reflectance rose sharply in

the range of 700 ~ 760 nm. In the near-infrared region, a high

spectral reflectance was detected in 760 nm ~ 1100 nm, and the

reflectance increased with the increase of soil salinity. The spectral

reflectance curve for the S1, S2, and S3 groups did not show an

obvious law in 1100 nm ~ 2400 nm with the increase of soil salinity,

but gradually increased over time.
3.3 Construction of PLSR model based on
the full band and different preprocessings

The SNV and CWT preprocessings improved the estimation

accuracy of the PLSR model. With the increase of salinity stress

time, the estimation accuracy first increased, peaked on day 30, and

then decreased. The accuracy of the PLSR model in estimating
Frontiers in Plant Science 08
CFPGE parameters were different under different spectral

preprocessings. The Ci and Fv/F0 estimation accuracy of the

PLSR model were the highest under CWT-3 preprocessing, with

R2 of 0.758 and 0.523 on day 30, respectively. The Pn, Tr, FPSII,

and ETR estimation accuracy of the PLSR model were the highest

under CWT-4 preprocessing, with R2 of 0.654, 0.746, 0.752, and

0.746 on day 30, respectively. The Fv/Fm, qP, and NPQ estimation

accuracy of the PLSR model were the highest under CWT-5

preprocessing, with R2 of 0.534, 0.519, and 0.633 on day 30,

respectively. The gs estimation accuracy of the PLSR model was

the highest under CWT-6 preprocessing, with R2 of 0.738 on day

30 (Table 1).
3.4 Distribution of spectral features of
photosynthetic gas exchange and
chlorophyll fluorescence parameters

The SPA was used for extracting spectral features to clarify

distribution of the spectral features of CFPGE parameters. Most
FIGURE 4

Changes in rapeseed leaf chlorophyll fluorescence parameters at different soil salinity levels. Different lowercase letters in the same column indicate
significant difference between groups (p< 0.05).
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FIGURE 5

Changes in spectral reflectance of rapeseed leaves at different soil salinity levels. a, b, c, and d represent the spectral reflectance of salinity-stressed
rapeseed leaves on day 10, 20, 30, and 40, respectively. S0, S1, S2, and S3 indicate that the content of NaCl in the soil is 0, 0.15, 0.3, and 0.45 g·kg-1,
respectively.
TABLE 1 Coefficient of determination (R2) of the PLSR models constructed based on different spectral preprocessing methods.

Stage preprocessing Pn Tr gs Ci FpsII Fv/Fm Fv/F0 qP NPQ ETR

10 d

R 0.248 0.275 0.299 0.422 0.288 0.289 0.249 0.254 0.267 0.274

SNV 0.369 0.365 0.373 0.521 0.283 0.413 0.325 0.322 0.355 0.378

CWT-1 0.274 0.321 0.324 0.513 0.315 0.363 0.275 0.306 0.362 0.486

CWT-2 0.362 0.467 0.475 0.532 0.405 0.391 0.377 0.391 0.443 0.526

CWT-3 0.377 0.511 0.477 0.649 0.424 0.484 0.426 0.437 0.503 0.537

CWT-4 0.456 0.613 0.508 0.613 0.508 0.504 0.392 0.501 0.607 0.608

CWT-5 0.448 0.463 0.545 0.517 0.405 0.534 0.302 0.519 0.633 0.435

CWT-6 0.397 0.436 0.594 0.506 0.381 0.474 0.248 0.477 0.611 0.433

CWT-7 0.331 0.338 0.322 0.406 0.314 0.234 0.233 0.438 0.547 0.334

CWT-8 0.301 0.284 0.295 0.317 0.303 0.225 0.214 0.282 0.435 0.314

CWT-9 0.207 0.225 0.294 0.276 0.256 0.215 0.206 0.277 0.292 0.277

CWT-10 0.188 0.219 0.267 0.219 0.213 0.209 0.198 0.229 0.258 0.204

20 d

R 0.351 0.491 0.413 0.334 0.492 0.426 0.317 0.369 0.379 0.445

SNV 0.489 0.538 0.627 0.555 0.568 0.556 0.423 0.407 0.459 0.582

CWT-1 0.381 0.499 0.432 0.494 0.532 0.457 0.329 0.494 0.484 0.521

CWT-2 0.446 0.553 0.498 0.553 0.607 0.462 0.485 0.508 0.485 0.548

CWT-3 0.552 0.656 0.557 0.691 0.699 0.477 0.504 0.521 0.574 0.629

CWT-4 0.601 0.683 0.662 0.682 0.707 0.567 0.499 0.589 0.671 0.684

(Continued)
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spectral features of the CFPGE parameters were in the red region

(600 - 800 nm). In addition, some spectral features were in the blue-

green region and the near-infrared region. The Fv/Fm and Fv/F0

had spectral features in 900 - 1000 nm, the Pn and gs had spectral

features near 2100 nm, the NPQ, ETR, and Ci had spectral features

in 1450 - 1650 nm, the qP had spectral features at 460 and 1019 nm,

and the Tr and FPSII had spectral features around 482, 1453, 1600,

and 2250 nm. The difference in the distribution of spectral features

were not obvious between different periods (Figure 6).
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3.5 Estimation accuracy of the PLSR and
SVM models

PLSR and SVM models were constructed based on the spectral

features extracted from the red region (RSF) and the spectral

features extracted from the red, blue-green, and near-infrared

regions (FSF) (Figures 7, 8). The accuracy of the PLSR and SVM

models constructed based on the RSF were generally lower than that

of the models based on the FSF. Taking the PLSR and SVM models
TABLE 1 Continued

Stage preprocessing Pn Tr gs Ci FpsII Fv/Fm Fv/F0 qP NPQ ETR

CWT-5 0.579 0.619 0.684 0.522 0.703 0.648 0.407 0.621 0.698 0.637

CWT-6 0.491 0.514 0.695 0.503 0.61 0.431 0.396 0.541 0.627 0.456

CWT-7 0.438 0.491 0.505 0.484 0.515 0.429 0.385 0.487 0.549 0.431

CWT-8 0.366 0.489 0.464 0.403 0.489 0.418 0.309 0.444 0.464 0.423

CWT-9 0.333 0.461 0.428 0.291 0.443 0.372 0.292 0.377 0.401 0.372

CWT-10 0.305 0.399 0.386 0.25 0.368 0.332 0.272 0.292 0.359 0.248

30 d

R 0.371 0.504 0.495 0.433 0.508 0.565 0.343 0.399 0.422 0.463

SNV 0.519 0.562 0.645 0.596 0.632 0.651 0.452 0.461 0.552 0.591

CWT-1 0.432 0.568 0.442 0.444 0.555 0.598 0.369 0.516 0.496 0.541

CWT-2 0.473 0.601 0.452 0.718 0.631 0.644 0.497 0.539 0.567 0.599

CWT-3 0.554 0.699 0.622 0.758 0.692 0.709 0.523 0.561 0.631 0.732

CWT-4 0.654 0.746 0.706 0.745 0.752 0.747 0.517 0.666 0.722 0.746

CWT-5 0.609 0.716 0.713 0.546 0.706 0.761 0.482 0.674 0.749 0.656

CWT-6 0.539 0.527 0.738 0.536 0.648 0.713 0.431 0.666 0.648 0.507

CWT-7 0.499 0.502 0.537 0.497 0.577 0.612 0.402 0.556 0.61 0.485

CWT-8 0.429 0.494 0.505 0.407 0.551 0.531 0.278 0.446 0.577 0.454

CWT-9 0.411 0.465 0.485 0.318 0.494 0.452 0.218 0.396 0.442 0.402

CWT-10 0.35 0.401 0.441 0.308 0.476 0.378 0.211 0.359 0.424 0.372

40 d

R 0.351 0.337 0.249 0.365 0.402 0.312 0.257 0.265 0.401 0.399

SNV 0.381 0.422 0.289 0.46 0.493 0.354 0.279 0.343 0.497 0.495

CWT-1 0.377 0.354 0.306 0.425 0.506 0.357 0.315 0.356 0.471 0.407

CWT-2 0.402 0.517 0.338 0.517 0.581 0.481 0.422 0.368 0.541 0.533

CWT-3 0.513 0.614 0.531 0.612 0.616 0.506 0.509 0.419 0.607 0.598

CWT-4 0.574 0.633 0.657 0.575 0.644 0.561 0.497 0.434 0.669 0.676

CWT-5 0.533 0.56 0.638 0.539 0.605 0.607 0.409 0.523 0.682 0.622

CWT-6 0.516 0.509 0.658 0.529 0.523 0.555 0.399 0.426 0.624 0.439

CWT-7 0.425 0.419 0.489 0.495 0.474 0.464 0.329 0.682 0.569 0.419

CWT-8 0.354 0.409 0.318 0.336 0.432 0.425 0.293 0.377 0.541 0.412

CWT-9 0.397 0.358 0.241 0.294 0.239 0.301 0.239 0.358 0.435 0.305

CWT-10 0.217 0.313 0.236 0.265 0.221 0.251 0.236 0.214 0.443 0.313
frontier
R, raw spectral data; SNV, standard normal variate (SNV) transformation; CWT, continuous wavelet transformation. The decomposition scale of CWT was set as 21 (CWT-1), 22 (CWT-2),…,
210 (CWT-10).
Bold values representing the optimal preprocessing corresponding R2 for different indicators.
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constructed based on the FSF as an example (Figure 8), with the

increase of salinity stress time, the accuracy of the estimation

models were different, and the accuracy first increased and then

decreased (peaked on day 30). However, the accuracy of the PLSR

model was higher than that of the SVM model. On day 10, the

CWT3- PLSR model had the highest Ci estimation accuracy, with

R2c of 0.752, R2p of 0.713, and RPD of 2.04. On day 20, the CWT4-

PLSR model had the highestFPSII estimation accuracy, with R2c of

0.817, R2p of 0.786, and RPD of 2.36. On day 30, the CWT5-PLSR

model had the highest Fv/Fm estimation accuracy, with R2c of

0.886, R2p of 0.815, and RPD of 2.58. On day 40, the CWT5-PLSR

model had the highest NPQ estimation accuracy, with R2c of 0.857,

R2p of 0.803, and RPD of 2.57.
3.6 Model validation

To verify the universality and stability of the models

constructed, the PLSR models constructed based on the RSF and

FSF were tested by the validation set. The PLSR models constructed

based on the RSF and FSF with the highest accuracy on day 30 were

analyzed as examples, and the validation results for other periods

are shown in Figures S2-S4. The validation results showed that the

model based on the RSF generally had a low accuracy in estimating

CFPGE parameters. Except for the R2 of the model in estimating

NPQ (R2: 0.621, RMSE: 2.568), the R2 of the model in estimating

other parameters were lower than 0.6 (Figure 9A). The accuracy of

the model based on the FSF was higher than that of the model based

on the RSF. The accuracy of the FSF-PLSR model was low in

estimating Fv/F0 (R2: 0.518, RMSE: 2.838) and qp (R2: 0.571 and

RMSE, RMSE: 0.378). The R2 of the FSF-PLSR model were higher

than 0.6 in estimating other parameters, among which the accuracy
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of the model was the highest in estimating NPQ, with R2 of 0.802

and RMSE of 2.131 (Figure 9B).

4 Discussion

4.1 Responses of chlorophyll
fluorescence and photosynthetic
gas exchange parameters of
rapeseed leaves to salinity stress

Salinity stress has multifaceted effects on crop growth and

metabolism, especially photosynthesis (Ben-asher et al., 2006).

Studies have shown that the effects of salinity stress on crop

photosynthesis mainly include stomatal and non-stomatal

limitations (Ouerghi et al., 2000). The gs of plants leaves

decreases under salinity stress, if Ci decreases, the main factor

leading to the decrease in photosynthetic rate is stomatal limitation;

If Ci increases or does not change, the main factor leading to the

decrease in photosynthetic rate is nonstomatal limitation (Farquhar

and Sharkey, 1982; Yeison et al., 2022). This study found that with

the increase of soil salinity, the gas exchange parameters Pn, gs, and

Tr of rapeseed leaves decreased, and Ci increased. This indicates

that non-stomatal limitation is the main factor leading to the

decrease in photosynthetic rate in this study (Farquhar and

Sharkey, 1982). This is consistent with the results of Zhang et al.

(2017). This is mainly due to that salinity stress leads to a large

accumulation of salt ions in cells, destroying chloroplast structure.

The reduction of CO2 in the mesophyll cell wall of chloroplasts is

blocked, and the activity of ribulose-bisphosphate carboxylase is

reduced, resulting in damage to leaf photosynthetic organs and

decreased photosynthetic activity of the mesophyll cells (Parida

et al., 2004; Ge et al., 2007; Sudhir and Murthy, 2004).
FIGURE 6

Distribution of spectral features of photosynthetic gas exchange and chlorophyll fluorescence parameters in rapeseed leaves at different growth
stages.
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The decrease in photosynthetic rate will inevitably affect the

absorption and transformation of light energy by crops, especially

the photochemical activity (Foyer and Noctor, 2000). Studies have

shown that the primary damaged photosynthesis organ is closely

related to the potential activity of PSII. The photosystem is easily

damaged by high salinity, resulting in decreases in Fv/Fm and Fv/Fo

(Sun et al., 2012). In this study, the NPQ of rapeseed leaves showed

an increasing trend, while other fluorescence parameters decreased

with the increase of soil salinity. This indicates that salinity stress

leads to photoinhibition in leaves (Xu et al., 1999), and the light
Frontiers in Plant Science 12
energy used for photochemical reactions decreases. The results are

consistent with those of Liu’s study on ryegrass (Lolium perenne)

(Liu et al., 2012). This is mainly due to that under salinity stress, the

proportion of light energy captured by rapeseed leaves for

photochemical reactions decreases, and the proportion of light

energy for heat dissipation increases. This inhibits the potential

activity of PSII reaction center, and affects the excitation energy

distribution of PSII of rapeseed leaves. The plants adapt to the

salinity stress environment by increasing the excitation energy

consumed by heat dissipation (Hendrickson et al., 2004).
FIGURE 7

PLSR and SVM models constructed based on the spectral features extracted from the red region (600-800 nm).
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4.2 Distribution of spectral features of
photosynthetic gas exchange and
chlorophyll fluorescence parameters of
rapeseed leaves

The CFPGE parameters are important for evaluating crop

photosynthesis under salinity stress. Due to these parameter

changes lead to the changes in spectral reflectance, the

mechanism by which spectral reflectance responding to leaf

photosynthesis can be determined (Liu et al., 2013; Dechant et al.,

2017). At present, there is still controversy over the distribution of
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spectral features of the CFPGE parameters. This is due to the fact

that except for the red region, the CFPGE signals in the blue-green

and near-infrared regions are weak and cannot be detected by

hyperspectral remote sensing (Wen et al., 2022). Therefore, most

scholars believed that the spectral features of crop leaf CFPGE

parameters were concentrated in the red region, and constructed

vegetation indices based on the red region to predict the CFPGE

parameters (Buschmann et al., 2000; Zarco-Tejada et al., 2000).

In this study, the SNV and CWT were used to preprocess the

raw spectra. It was found that the spectral preprocessing by CWT

was better. This may be due to that the CWT can effectively remove
FIGURE 8

PLSR and SVM models constructed based on the spectral features extracted from the red, blue-green, and near-infrared regions (350 - 2500 nm).
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noises in the spectrum, enhance the relationship between spectra

and CFPGE parameters, thereby improving the prediction accuracy

and stability (Zhang et al., 2020). Zhao et al. (2021) also

demonstrated the potential of CWT in fluorescence signal

extraction as a means to rapidly detect crop leaf CFPGE. In this

study, the spectral features of CFPGE parameters were extracted by

the SPA. The results showed that most of the spectral features of

CFPGE parameters were distributed in the red region. This is

consistent with previous findings. For example, Tan et al. (2012)

reported that the spectral features of Fv/Fm of maize were at 445,

680, and 800 nm. Zhang et al. (2012) reported that the spectral

features of Fv/Fm and qP of Suaeda glauca were near 680 and 935

nm. Magney et al. (2014) reported that spectral bands of 531 and

570 nm had the greatest correlation with the NPQ of winter wheat,

and changes in NPQ could be monitored using (R531-R570)/(R531

+ R570).However, in this study, it was also found that some spectral

features of CFPGE parameters were in the blue-green and near-
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infrared regions. For example, NPQ, ETR, and Ci had multiple

absorption peaks at 1450-1650 nm. This may be due to the fact that

-NH3+ in amino acid molecules has a strong symmetric band in this

region (Zhang, 2009). The Fv/Fm had a peak at 987 nm. This

reflects the C-H bond of rapeseed leaf fat. The qP had a peak at 1019

nm. This spectral feature is an N-H bond reflecting rapeseed leaf

protein (Zhao et al., 2021). The Tr and FPSII had spectral features

at 482, 578, 1453, 1600, and 2250 nm in the shortwave near-infrared

region, while the bands at 1453 and 1600 nm could indicate the high

water content of crop leaves (Wang et al., 2001). It can be seen that

CFPGE parameters are not only closely related to crop leaf

pigments, but also sensitive to changes in leaf biochemical

components (e.g., protein, amino acid, and water content) and

leaf internal structure (Meroni et al., 2009; Zarco-Tejada et al.,

2009). This study confirmed that CFPGE parameters had spectral

features not only in the red region, but also in the blue-green and

near-infrared regions. This findings can further improve the
A

B

FIGURE 9

Model validation (n = 80). (A) is the validation results of the accuracy of the model constructed based on the spectral features extracted from the red
region in estimating photosynthetic gas exchange and chlorophyll fluorescence parameters of rapeseed leaves under 30-day salinity stress. (B) is the
validation results of the accuracy of the model constructed based on the spectral features extracted from red, blue-green, and near-infrared regions
in estimating photosynthetic gas exchange and chlorophyll fluorescence parameters of rapeseed leaves under 30-day salinity stress.
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estimation accuracy based on the spectral features in 600-800 nm in

previous studies (Zheng et al., 2021).
4.3 Effect of different modeling strategies
on the estimation accuracy of chlorophyll
fluorescence and photosynthetic gas
exchange parameters

Spectral feature extraction and modeling strategy have a great

impact on the accuracy of spectral estimation of crop growth

parameters (Li et al., 2014). There have been many studies on the

estimation of crop CFPGE parameters using the spectral features in

the red region (600-800 nm), but whether the blue-green (350-600

nm) and near-infrared (800-2500 nm) regions have potential for

estimating crop CFPGE parameters needs to be further explored

(Buschmann et al., 2000). In this study, it was found that CFPGE

parameters had spectral features not only in the red region, but also

in the blue-green and near-infrared regions. To explore the influence

of spectral features of different regions on the spectral estimation of

crop CFPGE parameters, this study constructed CFPGE parameter

estimation models based on the full spectra, spectral features in the

red region, and spectral features in the red, blue-green, and near-

infrared regions, respectively. The results showed that the accuracy

of the PLSR and SVM models constructed based on the spectral

features was higher than that of the model based on full spectra. This

may be due to that the massive spectral data contain some redundant

and collinear data that may negatively impact the accuracy and

universality of the estimation model. Therefore, eliminating the

redundant information by extracting spectral features from the full

spectra is conducive to improving the accuracy and stability of the

estimation model (Araujo et al., 2001; Mario et al., 2019). In this

study, the accuracy of the PLSR models were higher than that of the

SVM models. This may be due to that PLSR could remove

redundant information and noises, and effectively solve the

problems of overfitting and multicollinearity (Li et al., 2014). It is

worth noting that the accuracy of the CFPGE parameter estimation

model constructed based on the spectral features in the red, blue-

green, and near-infrared regions was significantly higher than that of

red region. This may be due to the fact that the model constructed

based on the RSF is susceptible to the influence of leaf pigments,

biochemical components, and moisture, while most of the spectral

features of these factors are distributed in the blue-green and near-

infrared regions. Therefore, adding the spectral features of blue-

green and near-infrared regions on the basis of the RSF could

effectively reduce the interference of the above factors, and

improve the accuracy and stability of the model (Hansen et al.,

2003; Weber et al., 2012). In this study, the estimation models

constructed were further validated (Figure 9). It was found that the

accuracy of the estimation model based on the spectral features in

the red, blue-green, and near-infrared regions was higher than that

of the red region. This verifies that the fusion of spectral features of

blue-green and near-infrared regions can improve the stability and

universality of the CFPGE parameter estimation model. However, it
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still needs to be widely verified in different experimental

environments with different crops, and the reliability of this

method also needs to be further studied.
5 Conclusion

To quickly and non-destructively monitor the photosynthetic

performance of rapeseed leaves under salinity stress, in this study,

the effects of salinity stress on rapeseed leaf photosynthesis were

explored, and the spectral data of rapeseed leaves were acquired.

After preprocessing the spectral data using the CWT, the spectral

features of rapeseed leaf CFPGE parameters in the blue-green, red,

and near-infrared regions under salinity stress were extracted by

SPA. Finally, CFPGE parameter estimation models based on PLSR

and SVM were constructed.

Under salinity stress, the gas exchange parameters Pn, gs, and

Tr and the chlorophyll fluorescence parameters Fv/F0, Fv/Fm, qP,

FPSII, and ETR decreased, while the Ci and NPQ increased. After

CWT preprocessing and the extraction of spectral features of

rapeseed leaf CFPGE parameters using SPA, it was found that the

spectral features of rapeseed leaf CFPGE parameters were not only

distributed in the red region, but also in the blue-green and near-

infrared regions. The accuracy of the CFPGE parameter estimation

model constructed based on the spectral features in the red region

had the highest Fv/Fm estimation accuracy at 30 d, and the R2c,

R2p, and RPD were 0.723, 0.585, and 1.68, respectively. On this

basis, the spectral features in the red, blue-green, and near-infrared

regions were fused to construct an estimation model, and the R2c,

R2p, and RPD reached 0.886, 0.815, and 2.58, respectively.

Therefore, the fusion of spectral features in the red, blue-green,

and near-infrared regions significantly improved the model

accuracy. This study provides a technical reference for the

accurate spectral estimation of crop leaf CFPGE parameters, and

help us better understand the light absorption and protection of

photosynthetic system of crops under environmental stress.
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