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Plastics’ unavoidable and rampant usage causes their trash to be extensively

dispersed in the atmosphere and land due to its numerous characteristics.

Because of extensive plastic usage and increased manufacturing, there is

insufficient recycling and a large accumulation of microplastics (MPs) in the

environment. In addition to their wide availability in the soil and atmosphere,

micro- and nanoplastics are becoming contaminants worldwide. Agro-

ecosystem functioning and plant development are being negatively impacted

in several ways by the contamination of the environment and farmland soils with

MPs (<5 mm) and nanoplastics (<1 µm). The contributions of some recyclable

organic waste and plastic film mulching and plastic particle deposition in

agroecosystems may be substantial; therefore, it is crucial to understand any

potentially hazardous or undesirable impacts of these pollutants on

agroecosystems. The dissolution of bioplastics into micro- and nano-particles

(MBPs and NBPs) has not been considered in recent studies, which focus

primarily on agro-ecosystems. It is essential to properly understand the

distribution, concentration, fate, and main source of MPs, NPS, MBPs, and

NBPs in agroecosystems. Based on the limited findings, understanding the

knowledge gap of environmental impact from micro and nanoplastic in

farming systems does not equate to the absence of such evidence. It reveals

the considerations for addressing the gaps to effectively protect global food

safety and security in the near future.

KEYWORDS

degradation of plastic, response of plants, envirotoxicology, soil contamination, micro
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1 Introduction

Microplastics (MPs) have recently encouraged researchers to explore an emerging field

of research. Plastics in the environment are degraded by photochemical, thermal, and

biological processes (Fok et al., 2020). Plastics can be utilized for various applications,

including electronic components, noise reduction, sealing, and insulation (Awasthi et al.,

2017). Because of their wide range of applications, durability, hydrophobicity, low thermal
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and electrical conductivity, availability, and relatively low costs of

manufacture, plastics are considered to be indispensable materials

on a global scale, which has led to a continual increase in human

demand for such materials (Adelodun, 2021; Iqbal et al., 2023).

Smaller than 5 mm in size of plastic are generally referred to MPs.

The majority of MPs are produced through large plastic break-offs.

Additionally, MPs with a polymer composition similar to the plastic

used for water transportation can be released into drinking water

due to aging (Maddela et al., 2023) by adsorbing infectious agents,

hazardous metals, and persistent organic pollutants (POPs) from

the environment. Significant amounts of plastics are improperly

disposed of on bare land, oceans, waterways, and drainage systems

due to flagrant abuse of plastics and inadequate waste management.

Flooding occurs when drainage systems become blocked and sewers

overflow (Alabi et al., 2019).

MPs provide more ecological risks than their bulkier

counterparts due to their small size, high specific surface area,

and strong adsorption capability. MPs contamination increasing in

the water and environmental protection research. However, the

environmental factors controlling the emergence of MPs are poorly

understood and explored. Sources of pollution, human activities,

and hydrodynamic variables impact MPs accumulation and

movement in ecological systems and food webs (Ng et al., 2018;

Jia et al., 2023). If plastic pollution is not reduced, it will surpass and

outweigh the Pisces on or before 2050, according to the World

Economic Forum 2019 (Schwab, 2019). Humans in the modern era

cannot live without plastics. Even if all future plastic production is

prohibited, the ongoing problem will continue for an extended

period because plastics have already contaminated each component

of the environment (Godfrey, 2019; Jia et al., 2023).

The health of human beings, the environment, and aquatic life

are susceptible to damage from microplastics (MPs; <5 mm) and

nanoplastics (NPs; <1 µm), which are pervasive and can pose severe

hazards (Kumar and Seth, 2021; Kumar et al., 2023; Okeke et al.,

2023). Due to their small size, expected accessibility, direct and

indirect intake of plastic particles, bioavailability, and increased

concentrations of sorbed toxic chemicals, micro (nano) plastics

(MNPs) are generally thought to pose more environmental and

health risks (Yu and Chan, 2020; Roy et al., 2022; Mariyam et al.,

2023). Microplastics exist in a variety of sizes and have been

classified as primary or secondary microplastics based on whether

they are micron-sized commercially produced plastics or smaller

plastics that have been physically or chemically dispersed from

larger plastics (macroplastics) (Jaikumar et al., 2019).

Primarily, MPs made for commercial uses include plastic

pellets, microbeads, personal care items, and microfibers. Primary

microplastics have also been used as pharmaceutical delivery

systems in the healthcare sector. On the other hand, secondary

microplastics (SMPs) are produced when plastics break down into

smaller fragments after they have been released into the

environment (Shafea et al., 2023) (Figure 1). Plastics are widely

used in a variety of applications across the world as pervasive

components of modern life. Almost 4.9 billion metric tonnes of

plastic are produced annually, with around 60% of all plastics being

thrown and accumulating in landfills and the environment.

However, assuming current waste management patterns continue,
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12 billion tonnes of plastic rubbish will enter landfills or the natural

environment by 2050 (Geyer et al., 2017). Due to the purposeful use

of plastic (such as plastic mulch, greenhouses, and products coated

in plastic) as well as the use of sewage sludge, compost, and

irrigation water that is contaminated with plastic, plastic pollution

in agricultural soils has drawn increasing attention (Iqbal et al.,

2023). This review discusses the possible environmental effects of

micro (nano)plastics and how they might interact with

biological contaminants.
2 Micro(nano)plastics: sources and
distribution

Plastic contamination has become pervasive in farming land,

posing a threat to food production systems, human health, and the

environment. The essential sources of MNPs in agricultural

ecosystems are the standard approaches, i.e., the application of

biosolids (Koutnik et al., 2021) and compost, the use of plastic

mulching films (Steinmetz et al., 2016; Corradini et al., 2019),

water-pipes, cover of plastic greenhouse, polymer-based fertilizers,

and pesticides (Weithmann et al., 2018; Corradini et al., 2019; Wang

et al., 2019) (Figure 1). Aerial deposition and translocation from

landfills are other considerable sources of MNPs in farmland soil

(Zhang et al., 2018). The plastic film mulching approach is more

advance among farming societies to protect soil moisture content,

modulate soil temperature, and protect weed growth. Light-density

polyethylene (LDPE) has been utilized to millions of hectares of

farming lands worldwide (Yan et al., 2015). As the plastic film,

Polyvinyl chloride (PVC) has enhanced the efficiency of water-use

(WUE) and plant development and productivity. The “White

Revolution” of plastic film mulch methodology is becoming

“White contamination” in the agro-production systems. The

dumping of municipal wastes in open lands, parks, or landfills

has been a major factor in spreading MPs to soils in arid and

semiarid regions (Kumar et al., 2020). About 40% of MNPs that

reach farming soil cannot be recovered. These toxic contaminants

break down into a continuum of smaller fragments (Wang

et al., 2020).

Plastic contaminants can enter the agricultural production

systems from damaged, degraded, or discarded agricultural plastic

products and the leakage from non-agricultural sources like

polluted water, air, and waste (Oliviero et al., 2019). Plastic trays

and food contact films used for consumer packs for the distribution

and retail to minimize the loss of food and conserve quality are also

discarded in farming land (Sintim and Flury, 2017). Most

agricultural plastics are single-use products; with short life spans,

it becomes waste within one-year. The plastic mulching films

decompose due to weathering, and the MPs that fall off from

them remain in the soil. Improper disposal and mismanaged

waste plastics will enhance soil contamination by SMPs. The

abundance of MNPs may vary depends on the sampling locations

and other related factors to usage of plastic and atmospheric

conditions. The main polymers applied for the agri-systems are

polyethylenes (PEs) of low- and high-density, polypropylene (PP),
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and PVC, followed by others, i.e., expanded polystyrene (PS),

ethylene-vinyl acetate copolymer, and polyethylene terephthalate

(PET) (Sarkar et al., 2018). The different kinds of polymers and the

additives applied in agricultural plastics present a high degree of

variability in the toxicological characteristics and the risks of MNPs

to flora and fauna. The plastic movement begins from soil to aquatic

environments via erosion and surface runoff at the end of each

crop-growing season.

Because of the widespread use of plastic on agricultural land and

pastures, secondary MPs are the primary source of plastic leftovers

in farmlands (Corradini et al., 2021; Roy et al., 2022). The spatial

modeling of farmland MPs demonstrated that agricultural

techniques like crop management, i.e., fertilizers, organic

amendments, irrigation, harvesting, and storage and cropping

systems such as greenhouse crops or specific crops under plastic

coverage play a significant role in MPs distribution into the

rhizospheric soil. Accordingly, plastic can influence how particles,

water, chemicals, and microorganisms interact in soil systems. The

formation of MPs on cultivated lands can negatively impact the

various responses of agroecosystems (Horton and Barnes, 2020;

Mariano et al., 2021).

Yearly, the agricultural value chains and food packaging use

nearly 12.5 Mt and 37.5 Mt of plastics (FAO, 2021). Plant and

livestock production accounts for over 80% of plastic use, followed

by fisheries and aquaculture (18%) and forestry (2%) in the

agricultural value chains. The plastic protective films such as
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fumigation, silage, and bale wrap films, the protective films for

mulching, nursery, wind tunnel, greenhouse, direct cover and non-

woven floating cover, nets (ant-hail, anti-bird, wind-breaking, and

shading), twine, and pipes for irrigation and drainage are broadly

applied in agri-horticultural crops and livestock production. The

breakdown process of plastics begins with the action of handling,

soil abrasion, water, wind, and UV light. The breakdown products

of varying sizes, including MNPs can last long in these production

systems (Maddela et al., 2023).
3 Effects of MPs on soil health

Soil structure becomes essential for edaphic conditions, soil

fertility, water dynamics, and air permeability. According to

research (Lian et al., 2021), the presence of MPs in soil may

influence soil variables such as soil organic matter (SOM), pH,

electrical conductivity (EC), and organic carbon storage. The degree

of exposure and the number, kind, and size of the MPs all influence

the outcome. According to Boots et al. (2019), soil pH decreased by

up to 0.6 pH units compared to the control following one month of

exposure to fibres added at 0.001% (w/w), high-density

polyethylene (HDPE), and biodegradable polylactic acid (PLA),

both added at 0.1% (w/w). After two months of exposure compared

to the control, the application of MPs (low-density polypropylene

and biodegradable materials, at 1% (w/w), caused an increase in soil
FIGURE 1

An overview of the sources of plastic wastes and transportation routes. WWTPs, wastewater treatment plants.
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pH; after four months of exposure, soil pH reduced again (Qi et al.,

2019), that the exposure time is a controlling factor on pH-changes

by MPs. Due to soil aeration and porosity, the pH of the soil can

improve, which might cause the chemical additives in the MPs to

leach into the ground and transform organic N into inorganic NH4
+

(Zhao et al., 2021). However, structure, type, different MPs

substances, enzymatic activities of the soil biota, and plant species

significantly influence the pH of soil addressed by MPs. The field

investigation on polymer-coated fertilizers’ impact on maize growth

improved soil EC (Lian et al., 2021) (Figure 2).

Additionally, MPs may affect the soil C:N ratio. Two and four

months after treatment, LDPE and biodegradable plastics

significantly boosted the soil C:N ratio compared to the control

(Qi et al., 2019). The size, type, and concentration of MPs have an

impact on SOM concentration as well. Applying plastic mulch film

in cotton cultivation areas in large diameters (0-200 cm2) and at

concentrations of 250 to 2000 kg m2 has decreased SOM (Seth and

Misra, 2014; Dong et al., 2015; Agnihotri and Seth, 2020).

According to Boots et al. (2019), clothing fibres enhanced SOM,

but biodegradable PLA and HDPE caused SOM to decrease relative

to the control. It was discovered that the different plastic forms

showed positive and negative priming effects on the SOM. The

beneficial effect is caused by some plastic types degrading more

rapidly with less persistence, which increases the C supply,

microbial activity and proliferation, and exoenzyme activity. It

may boost native SOM mineralization by metabolism (Zhou

et al., 2020). The combined impacts of MP shape, size, type, and

concentrations on soil organic carbon dynamics are currently

unexplored. MPs effects on dissolved organic matter, particularly

on soil organic carbon and nitrogen dynamics, investigations using
Frontiers in Plant Science 04
long-term field trials with various combinations of size and

concentration of MPs in agricultural soil at different latitudes and

climates are required (Seth, 2014).

Depending on the type of bonding agents, such as hydrophobic

vs. hydrophilic chemicals, MPs may have different effects on the

stability of soil aggregates. In contrast, MPs are known to have

hydrophobic surfaces, which reduces the strength of soil aggregates

(de Souza MaChado et al., 2019). In the rhizosphere of treated soils

with MPs and plants, concurrently, more water-stable aggregates

have been observed (de Souza MaChado et al., 2019). However,

Research is still needed to determine how different MPs types and

shapes influence aggregate stability. Due to reduced mobility, MPs

formation in aggregates can improve their adsorption in soil. In that

process, the plastic structure is also essential.

Additionally, there have been reports that MPs impact soil

water percolation. However, additional research is urgently

required to ascertain the depth to which MPs will ultimately

penetrate the soil. As much as 1 m of soil could contain MPs

(Weber and Opp, 2020). According to O’Connor et al. (2019),

leaching is essential in releasing MPs into groundwater. Plastic

waste dispersion via biopores has been recognized as a possible

route for groundwater pollution, although little is known about this

phenomenon. The upward migration of plastic in agricultural soils

towards aquifer systems, particularly for MPs, was established by

He et al. (2018) in a process similar to the well-known migration of

natural particles in colloids (such as insecticides). According to

various conditions, plastic mobility in agricultural soils may differ

(Yan et al., 2020). MPs have a resilient soil transport capability

influenced by soil texture and retention period. Additionally,

additional research into the upward migration of MPs, risk
FIGURE 2

An overview of the micro-nanoplastics (MNPs) effects on plants via altering the soil physicochemical, microbiological properties, plant growth and
development.
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assessments for plant uptake, and an enormous rise in the volume of

data on the geographical dependencies of plastic contamination can

help to develop a better understanding of MPs-contaminated soils

(Guo et al., 2020).

MPs have a variety of impacts on soil; these include changing

the soil microclimate, the microbial community, and diversity in the

ground. The severity of influence that various MP forms have on

soil microorganisms varies. Both PE-MPs and PVC-MPs

dramatically decrease the variety and complexity of microbial

communities, with PE having a greater impact than PVC (Fei

et al., 2020). The microbial populations are impacted differently

by different soil MPs concentrations. When MPs concentrations are

low, soil microbial activity declines; when concentrations are high, it

boosts (Kumar et al., 2020). MPs influence soil microorganism

change as exposure time increases. MPs boost the variety and

richness of bacterial communities at the start of incubation but

do the opposite later on (Ren et al., 2020). MPs do not significantly

influence the variety and activity of microbial communities (Yu

et al., 2022). PE-MPs did not considerably influence the diversity of

the microbial communities in the soil, and the diversity index of the

microbial communities on MPs was substantially lower than that of

the soil. Variations in MPs, soil characteristics, and exposure time

can be attributed to these unpredictable results.

According to Zhou et al. (2021a), MPs may act as novel

biological properties for microorganisms that reside at the soil-

plastic interface, such as microplastispheres. By developing

microbial regions on their surfaces, MPs can enhance particular

microbial communities and influence how plants and

microorganisms interact (Yu et al., 2022). Bacterial communities

were substantially more abundant in MPs than in the surroundings,

and they are essential for ecological processes involving the C or S

cycles (Xie et al., 2021). MPs enhance the number of microbes

associated with self-degradation. In contrast to fast-growing

vegetative microorganisms, oligotrophic microorganisms are more

prevalent when PHBV-MPs appear (Zhou et al., 2021a). MPs may

develop novel microbial niches that encourage the growth of

particular microbial groups, which could have unexpected

impacts on ecosystem processes.

MPs have two main effects on soil microbial populations.

Changing the physicochemical properties of the soil influences

the habitats of microorganisms, hence influencing the microbial

population. Conversely, MPs provide alternate ecological homes for

bacteria, whereas the release of synthetic plasticizers interferes with

their healthy development and growth.
4 Effects of micro(nano)plastic(s) on
plant growth and development

Increasingly prevalent toxic effects triggered by MPs on various

physiological and biochemical processes in plants. These effects

include inhibiting plant growth, altering root traits, reducing

biomass, delaying and reducing fruit yield, interfering with

photosynthesis, causing oxidative damage, and producing

genotoxicity (Hernández-Arenas et al., 2021; Jia et al., 2023)

(Figure 2). Due to their possible effects on the soil-plant system,
Frontiers in Plant Science 05
plastics in agricultural soils are currently the reason. Farms

employing plastic mulch (0.15 g kg1) demonstrated a yield

reduction with increased plastic residue (Gao et al., 2019).

However, it is impossible to distinguish between the effects of

MaPs, MPs, and NPs. Depending on the size, structure, and type

of polymer used to make the MPs, the impact of their waste on plant

growth may differ (Ebere et al., 2019). According to de Souza

MaChado et al. (2019), Allium fistulosum responded to several MPs,

indicating that PS and polyester fibres, but not HDPE particles,

significantly boosted the root biomass. However, in MPs

treatments, Triticum aestivumL. and Citrus aurantium L.

exhibited reduced plant height, shoot biomass, and leaf area

(Boots et al., 2019; Verla et al., 2020). Lepidium sativum L.

germination rate was considerably decreased after 8 hours of

exposure to 50, 500, and 4800 nm NPs, with the negative effects

of particle size expanding. After 24 hr of exposure, however, the

impact of NPs and MPs on seed germination disappeared, and

germination improved by nearly 100%, irrespective of the plastic

size or exposure concentration (Bosker et al., 2019).

According to reports, plastic waste influences soil’s physical,

chemical, and biological characteristics, indirectly impacting plant

growth. According to Qi et al. (2019), compared to LDPE debris,

biodegradable plastic debris exhibited a greater influence on the

number of microbes in the wheat rhizosphere and was associated

with decreased plant biomass. Biodegradable residues can reduce

plant biomass by releasing harmful chemicals into the soil solution

and disrupting the microbiome (Ng et al., 2018). NPs may penetrate

plants through the soil and build up in cells and tissues (Urbina

et al., 2020). Under 5 mm, PS-MPs found that the biomass and

catalase enzyme activity of V. faba roots decreased while the

peroxidase and superoxide dismutase enzyme activity significantly

increased (Jiang et al., 2019). At 100 mg L-1, significant growth

reduction was observed. According to the surface charge of the NPs,

Sun et al. (2020) demonstrated that positively and negatively

charged NPs might accumulate in Arabidopsis thaliana with

different results.

Positively charged NPs tended to concentrate due to the growth

medium and root exudates, reducing their absorption compared to

negatively charged NPs. However, compared to negatively charged

NPs, positively charged NPs caused a greater buildup of reactive

oxygen species (ROS) and hampered seedling and plant

development. In contrast, negatively charged NPs were generally

found in the apoplast and xylem. The negative effects of NPs on Zea

mays L. on molecular photosynthesis were observed by Sun et al.

(2022) through the reduction of photosystem II efficiency due to the

downregulation of the transporter D1 protein, which has more

pronounced inhibitory effect on plant growth and development

(Wang et al., 2021).

According to Azeem et al. (2021); Sun et al. (2021), and other

researchers, nanoparticles (NPs) significantly affect biochemical

enzymes, the antioxidant system, electrolyte leakage, block cell

wall pores, and trigger oxidative damage in plants. Although MPs

have impacted growth parameters, it is presently unknown how

MPs might change how plants function. The immobilization of

nutrients by organic molecules is released during degradation (Jia

et al., 2023). MPs can influence plant growth and performance
frontiersin.org
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through various approaches, including direct toxicity to plants and

indirect effects on plant development through changes in soil

characteristics and microbial populations (Rillig et al., 2019).
4.1 Direct responses of MPs on plants

The adsorption of MPs can influence plants’ performance. It

might bind to plant roots and affect their characteristics, making it

difficult for plants to absorb water and nutrients. According to Jiang

et al. (2019), MPs with small particle sizes are more detrimental to

plants. By modifying the state of cell membranes and intracellular

molecules and generating oxidative stress, micro(nano)plastics at

submicrometer or micron levels can penetrate and damage the plant

body (Yin et al., 2021; Liu et al., 2022). According to Li et al. (2021a)

and Liu et al. (2022), nano- and micro-sized particles may build up

in the interspace tissues of plant roots before migrating to the leaves,

stems, flowers, and fruits. The capacity of plants to absorb minerals

like Fe, Mn, Cu, and Zn can also be affected by MPs, and the

phytotoxicity of MPs varies unquestionably depending on different

plant species or cultivars (Gong et al., 2021).

MNPs could upregulate ROS production in various crops,

suggesting that MNPs could induce oxidative damage in the crops

(Zhou et al., 2021b; Chang et al., 2022; Colzi et al., 2022) (Figure 2).

Enhanced ROS could diminish the production of amino acids,

nucleic acids, lipids, and other secondary metabolites. The current

study showed that excessive ROS generation beyond the antioxidant

system’s scavenging capabilities weakened membrane functions

(Wu et al., 2020). Specifically, MNPs could interfere with

metabolic pathways of carbohydrate, amino acid, alanine,

aspartate, and glutamate in plants and change the regularity of

these pathways by promoting or inhibiting related gene expression,

thereby upgrading crop adaptation strategy to MNPs stressors and

influencing growth and development of plants (Wu et al., 2022; Zeb

et al., 2022; Zhang et al., 2022). MNPs-induced gene transcription in

plants could regulate the stimulation or inhibition of plant

hormones, cell proliferation, and uptake of nutrients (Wu et al.,

2022). However, MNPs could contribute to significant imbalances

in galactose, pentose phosphate, starch, and sucrose metabolisms in

specific crops. Plant metabolisms are modulated by plant

hormones, which can regulate enzymatic activities in response to

MNPs stresses (Li et al., 2021b). Therefore, variations in metabolic

processes may interact with the availability of nutrients,

antioxidative defense systems, energy production, and

biosynthetic pathways, thus potentially inhibiting growth,

development, and crop productivity (Figure 2).
4.2 Indirect effects of MPs on plants
through changes in rhizospheric soil

The biological community, variety, and soil qualities all have an

important role in plant growth. MPs impact the physicochemical

properties and microbial populations of the soil, which can modify

the rhizosphere, plant development, and nutrient availability, hence

harming plants (Figure 2). MPs dramatically increase the rate of soil
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water evaporation, which can cause soil dryness and plant

performance problems (Wan et al., 2019; Amobonye et al., 2021).

MPs may decrease soil fertility and result in nutrient loss for plants.

Additionally, MPs can reduce the diversity of soil microbes or the

quantity of rhizosphere fungal symbionts, which may reduce plant

diversity (Bandini et al., 2022).
5 Mitigation strategies

Efforts from various steps are being devoted to attenuating the

harmful effects of plastic fragments arising from the current large-

scale enhancement in the production of plastic and its use.

Assessing the impacts of MNPs in the agro-environment on an

economic scale is inherently difficult because of the knowledge gaps.

MPs/NPs remediation or solution to this challenge in cropping

land, the first concern is from where the problem is originating.

Sources of plastic mulch contribute considerable to MPs/NPs

pollution. Organic mulching materials instead of plastic ones, i.e.,

residue of crops, tree leaves, rice straws, husks, wood dust, and

water hyacinths are promoted in conservation agriculture because it

decompose easily (Mancinelli et al., 2015). These materials may be

difficult to manage at times and can be problematic for the coverage

of large area. As a result, moving from plastic mulches to organic

and biodegradable sources can be a beneficial strategy for

minimizing the threats of MPs/NPs contamination to maintain

environmental sustainability. For instance, a fully biodegradable

polymer and natural fiber based on starch could be a better way to

minimize the huge amount of plastic waste in agricultural fields

(Tan et al., 2016). Natural polymers can also be applied to substitute

plastic polymer-coated fertilizers. By 2026, 59% of plastic mulch will

be consumed worldwide in sustainable agriculture (starting in 2018)

(Sintim et al., 2020). Biodegradable films dissociate in the soil for

variable lengths of time depends on the atmospheric variables that

can be related to the degradation rate of compost is observed to be

faster than soil (Sintim et al., 2020). Similarly, depending on the

components and temperature of pyrolysis, biochar application in

MPs/NPs-contaminated soil can enhance soil nutritional profile

(Palansooriya et al., 2022; Roy et al., 2023).

The use of biosolids is another approach for MPs/NPs to get

into the soil. According to Peng and Pivato (2019), among the

organic solids include sewage sludge, cattle manure, kitchen/food

waste, and agricultural byproducts, all of which have significant

amount of MPs/NPs, heavy metals, and other organic

contaminants. Hence, before applied to farmland such materials

should be applied for two reasons. The main purpose is to

eliminate MPs/NPs, and the secondary objective is to minimize

the heavy metals toxicity or other dangerous substances. Currently,

researchers have focused on the development of modern

approaches to process sustainable biosolids. For instance,

hyperthermophilic composting (HTC) is more successful than

other conventional solid waste treatment applications regarding

MPs/NPs and heavy metal contamination reduction (Chen et al.,

2021),. The several bacteria have thermophilic characteristic that

facilitate biodegradation. Biodegradable plastics are regarded as

safer than synthetic plastics and more prone to microorganisms
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(Bhatt et al., 2021; Liao and Chen, 2021); thus, adopting

biodegradable plastics and microbial degradation of plastic waste

would be a potential remedy to MP/NP pollution. In addition, it is

also argued that biodegradable microbeads (chito-beads) used in

cosmetics exhibited greater cleansing efficiency than polyethylene

(PE) microbeads and completely degraded in soil into CO2, H2O

and biomass without any toxic effects on plants. Consequently, the

development of biodegradable plastics and engineered

microorganisms which can easily convert plastic particles either

from conventional plastics or biodegradable plastics and

mineralize them would be the key to MP/NP remediation; thus,

they could be environmentally benign (Ju et al., 2021; Roy

et al., 2022).

Encapsulated silica has been successfully used to eliminate

heavy metal and hydrocarbon pollution of water and soil.

Therefore, it is potential that encapsulated enzyme treatment

could be effective in reducing MPs and NPs from the soil. The

use of encapsulated enzymes, mainly near/around seeds during

sowing or even close to the plant root zone, can develop a modern

era of MPs/NPs restoration from the farmland soil. As a result, the

enzymes will be produced from the capsule near the germinating

seeds that can protect them from the adhering of MPs/NPs. It will

help to degrade MPs/NPs that have bound to the plant roots

(Camenzuli et al., 2017). Melatonin application may be an

alternative approach for controlling MPs/NPs contamination in

soil and plants. Melatonin enhanced plant tolerance efficiency to

MPs/NPs toxicity, and stimulates ROS scavenging to improve redox

homeostasis. The frequency of MPs/NPs contamination by air

deposition is high in metropolitan and suburban areas,

particularly along roads and in industrial locations. Therefore, it

is recommended to plantation a variety of trees at various heights

near to roadsides and industrial locations. It will act as windbreak

and air screening. An outcome, air deposition of MPs/NPs and

other contaminants to crop plants can be minimized. After a certain

time, the border trees may be utilized to make furniture and green

energy sources (Roy et al., 2023).
6 Conclusion and future perspectives

The harmful impacts of soil and ecosystem contamination on

plant growth and development are a serious issue that must be

addressed urgently. To limit pollutant discharge into

agroecosystems, it is critical to prioritize reducing plastic waste,

improving waste management systems, supporting sustainable

practices, and enacting legislation. Because of the growing use of

plastic-based items and incorrect disposal, farmland has become a

key pollution sink for various plastic wastes and MPs. Because of

their durability and resistance to degradation, MPs are abundant in

agricultural soils, which can be hazardous to the ecology. Specific

mitigation and management approaches to MP contamination in

agroecosystems are still lacking. However, it is widely accepted that

the development of biodegradable plastic products as alternatives,

the “Plastic Restriction Order” that restricts the use of first-

generation MPs and plastic products, the recycling and proper

disposal of plastic waste, as well as the removal of plastic waste
Frontiers in Plant Science 07
stocks, have positive effects on managing the source of MPs and on

severing their route to being transported and accumulating in

agricultural soils. The key preventative and control strategies are

implementing control regulations, developing and using

biodegradable plastics, and regulating plastic waste recycling and

disposal. To effectively restrict the movement of MPs into the

agroecosystems, the public, business, and government need

cooperation for future betterment.
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