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breaking strains of tomato
spotted wilt orthotospovirus
in tomatoes
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Senthilraja Chinnaiah3, Axell Rodriguez1, Kiran R. Gadhave2,3*

and Dmitry Kurouski1*

1Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas,
TX, United States, 2Department of Entomology, Texas A&M University, College Station, Texas,
TX, United States, 3Texas A&M AgriLife Research, Amarillo, Texas, TX, United States
Tomato spotted wilt (TSW) disease caused by tomato spotted wilt

orthotospovirus (TSWV, Orthotospovirus tomatomaculae) poses a

significant threat to specialty and staple crops worldwide by causing over a

billion dollars in crop losses annually. Current strategies for TSWV diagnosis

heavily rely on nucleic acid or protein-based techniques which require

significant technical expertise, and are invasive, time-consuming, and

expensive, thereby catalyzing the search for better alternatives. In this

study, we explored the potential of Raman spectroscopy (RS) in early

detection of TSW in a non-invasive and non-destructive manner.

Specifically, we investigated whether RS could be used to detect strain

specific TSW symptoms associated with four TSWV strains infecting three

differentially resistant tomato cultivars. In the acquired spectra, we observed

notable reductions in the intensity of vibrational peaks associated with

carotenoids. Using high-performance liquid chromatography (HPLC), we

confirmed that TSWV caused a substantial decrease in the concentration of

lutein that was detected by RS. Finally, we demonstrated that Partial Least

Squares-Discriminant Analysis (PLS-DA) could be used to differentiate strain-

specific TSW symptoms across all tested cultivars. These results demonstrate

that RS can be a promising solution for early diagnosis of TSW, enabling

timely disease intervention and thereby mitigating crop losses inflicted

by TSWV.
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1 Introduction

In 2020, over 180 million tons of tomatoes were produced

globally, making this botanical fruit the most economically

important vegetable worldwide (Food and Agriculture

Organization of the United Nations, 1998). Although Mexico

holds the title of the world’s largest exporter of tomatoes, with

exports worth $2.57 billion, in 2021, the United States exported

tomatoes valued at $224 million (OEC, 2021). These and other

economic factors make tomatoes central to food security in

the Americas.

Plant viruses cause massive crop losses valued at several billion

dollars annually (Mumford et al., 2016). Among them, tomato

spotted wilt orthotospovirus (TSWV, Orthotospovirus

tomatomaculae) is one of the most devastating, infecting over

1000 plant species from 90 plant families, including potatoes,

tomatoes, peppers, and tobacco (Riley et al., 2012). TSWV virions

are spherical (80-110 nm diameter) with an outer membrane

composed of lipoproteins and glycoproteins (Adkins et al., 1995;

Kikkert et al., 1999). TSWV is efficiently transmitted by several

species of thrips, predominantly by western flower thrips (WFT),

Frankliniella occidentalis in a persistent propagative manner (Wan

et al., 2020). Early larval instars of thrips acquire TSWV while

feeding on infected plant cells. Upon acquisition, TSWV moves

from the midgut to the primary salivary glands of the larva and

replicates at both sites in the thrips vector. Subsequently, thrips

remain infectious for the rest of their life cycle and transmit the

virus as they feed on new plants (Rotenberg et al., 2015).

Management strategies for TSWV rely on using single gene

resistant cultivars and applying toxic pesticides for thrips control.

However, because of the concealed nature of the feeding of thrips,

most pesticides are either ineffective or partially effective against

thrips (Gao et al., 2012). Furthermore, their intensive applications

lead to pesticide resistance development in thrips (Wan et al., 2021).

For crop resistance, Sw-5b- and Tsw-mediated single gene resistance

was deployed in commercial cultivars of tomato and pepper,

respectively (Boiteux and de Ávila, 1994; Boiteux, 1995; Dianese

et al., 2011; de Oliveira et al., 2018). However, such a resistance has

exerted tremendous selection pressure on TSWV, which led to the

emergence of resistance breaking (RB) strains worldwide

(Aramburu and Martı,́ 2003; Margaria et al., 2004; Ciuffo et al.,

2005; Sharman and Persley, 2006; Margaria et al., 2007; Zaccardelli

et al., 2008; Fidan and Sari, 2019; Yoon et al., 2021; Almási et al.,

2023). In the US, tomato-infecting RB strains capable of infecting

an array of commercial tomato cultivars have been reported in

California, North Carolina, and most recently in Texas by the

Gadhave lab (Batuman et al., 2016; Chinnaiah et al., 2023b; Lahre

et al., 2023). These strains are genetically distinct as they possess

unique mutations in the TSWVmovement protein (NSm). We used

two sympatric strains: Tom-BL1 and Tom-BL2 originating from

Bushland, TX and two allopatric strains: Tom-CA originating from

California, and Tom-MX originating from Mexico. NSm sequences

of all RB strains shared 94-99% nucleotide and 97-99% amino acid

homology in pairwise comparisons with other TSWV isolates

reported earlier. Interestingly, RB strains have been reported to

selectively offer fitness benefits to WFT and facilitate their
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transmission better than a non-RB strain (Chinnaiah et al.,

2023a). Generic symptoms of TSW include necrotic rings and

spots on leaf, petiole, and stem; chlorosis and bronzing of leaves

followed by stunting and partial wilting of plants.

The most widely used diagnostic methods for TSWV are

polymerase chain reaction (PCR) or protein-based analyses

(Roberts et al., 2000; Chinnaiah et al., 2022; Gao and Wu, 2022;

Iturralde Martinez and Rosa, 2023). Although accurate, both

analyses are laborious, time-consuming, invasive and require

significant technical expertise. Furthermore, both methods require

sample shipment to testing facilities, which increases direct costs of

diagnostics. Raman spectroscopy (RS) is a valuable tool that can be

used to detect and identify changes in plant biochemistry. RS is

based-on measuring Raman scattering, a phenomenon dependent

on a sample’s molecular composition and structure. Observed

biochemical changes within a crop can then be used to diagnose

infection caused by plant pathogens. Previous studies have shown

RS’s ability to detect fungal pathogens within wheat, sorghum, and

corn using handheld-spectrophotometers (Egging et al., 2018;

Higgins et al., 2023). Additionally, Mandrile et al. showed that RS

could be used to detect both tomato yellow leaf curl Sardinia virus

(TYLCSV) and TSWV in tomato crops (Mandrile et al., 2019).

Expanding upon this, we examined the extent to which RS could be

used for the early detection of RB-TSWV in tomato crops. In our

study, we inoculated three different tomato cultivars of varying

resistance to TSWV with four RB-TSWV strains. Our results

indicated that RS could be used to detect early TSWV infection

and even predict strain specific differences in TSW symptoms in

tomato leaves.
2 Materials and Methods

2.1 Tomato cultivation and
virus inoculation

In this study, TSWV-resistant (cv. Celebrity), moderately

resistant (cv. Supremo), and susceptible (cv. Hot-Ty) cultivars of

tomato were grown in pots containing peat moss under greenhouse

conditions. Four RB strains: Tom-CA, Tom-MX, Tom-BL1 and

Tom-BL2 were mechanically inoculated onto five three-week-old

tomato plants from each cultivar per strain using 0.1M sodium

phosphate buffer. Further details on the source of RB-TSWV strains

and methods are provided in Chinnaiah et al., 2023b. Inoculated

plants with different RB-TSWV strains were maintained in insect-

proof cages separately till symptom expression in the greenhouse at

25°C with a 12-hr photoperiod. TSW symptomatic plants were

tested to confirm the presence of TSWV using PCR analysis

previously published by our group (Gautam et al., 2022;

Chinnaiah et al., 2023b). Briefly, a TaqMan probe-based qPCR

assay targeting a 200-bp region in nucleoprotein (N) of the TSWV

us ing TSWV-F : 5 ′ -AGAGCATAATGAAGGTTATTA

AGCAAAGTGA-3′ and TSWV-R: 5′-GCCTGACCCTGATCAA
GCTATC-3′ primers and TaqMan probe: 5′-CAGTGGC

TCCAATCCT-3′ was used for the TSWV detection. Results of

qPCR analysis are shown in Supplementary Figure S1. Furthermore,
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symptomatic leaves from all three cultivars were collected on 25th

day post inoculation and subjected to Raman spectroscopy and

HPLC analyses. Non-infected tomato plants were used as a control

in all experiments.
2.2 Raman spectroscopy

Using a Resolve Agilent handheld spectrophotometer, we

collected 30 surface scan spectra from TSW symptomatic

systemic leaves (including non-symptomatic non-infected

control) for each strain and cultivar combination, except for the

Hot-Ty non-infected control, which were unsuitable to scan due to

external factors. The laser emitted light at a wavelength of 830 nm.

Acquisition time was 1 s and the laser power was 495 mW. The

spectrophotometer automatically baselined the spectra. The spectra

were then normalized at the 1440 cm-1 peak using MATLAB. This

vibrational band originates from CH2 vibrations that are present in

nearly all biological molecules. Therefore, spectral normalization on

1440 cm-1 becomes the least biased to compare changes in the

intensities of other vibrational bands that can be used to access

disease-induced changes in plant biochemistry.

M A T L A B e q u i p p e d w i t h P L S _ T o o l b o x

(EigenvectorResearchInc.) was used to analyze the acquired

spectra. The spectra utilized for training the PLS-DA model were

preprocessed through area normalization and mean centering. The

PLS-DA models were built using all spectra collected, and true

prediction rates (accuracy) were determined by cross-validation.

ANOVA with a significance level (a) of 0.05 was used for statistical

comparison of peak height.
2.3 High-performance
liquid chromatography

Carotenoids were extracted by homogenizing 150 milligrams of

tomato leaves with a mortar and pestle. Next, 1.5 mL of chloroform:

dichloromethane (2:1, v/v) was added to the mashed plant tissue;

the mixture was agitated on a thermomixer at 4°C and at 500 rpm

for 30 min. After that, 0.5 mL of 1 M sodium chloride was added to

induce phase separation. The resultant solution was centrifuged at

7,000 rpm for 10 min and then phase separated. The organic phase

was collected, and the aqueous phase underwent another round of

phase separation after the addition of 0.75 mL chloroform:

dichloromethane. The second round of organic phase was

combined with the first organic phase collected and then dried

using a Multivapor™ vacuum evaporator. Finally, the dried pellet

was resuspended in 1mL 95% methanol prior to HPLC injection.

Plant extracts were analyzed using reverse-phase high-

performance liquid chromatography (RP-HPLC). The HPLC

instrument comprised a Waters 1525 pump in conjunction with

the Waters 2707 autosampler and the 2489 Waters photodiode

array detector. A C30 stationary phase, 3 mm particle size column

with the dimensions 250 × 4.6 mm (Thermo Fisher Scientific Inc,

part number 075723) was used for RP-HPLC. The mobile phases

consisted of (A) a mixture of methanol and water (95:5, v/v) and (B)
Frontiers in Plant Science 03
methyl tert-butyl ether (MTBE). The elution gradient was 97% A

(0-6 min), followed by a linear decrease of A from 97% to 0% to 20

min. Lastly, the concentration of A was restored to 97% by 23 min.

The detection of elution peaks was done at 450 nm. ANOVA with a

significance level (a) of 0.05 was used for statistical comparison of

area under the curve.
3 Results and discussion

TSW symptoms appeared on infected cultivars in a strain-

specific manner, while their severity varied across cultivars

(Figure 1). Across all strains, TSW symptoms were pronounced

in susceptible cultivars, followed by both resistant cultivars

(Figure 1). Across all cultivars, plants infected with sympatric

strains (Tom-BL1 and Tom-BL2), produced characteristic

symptoms such as chlorotic patches, concentric rings, and

necrotic spots on leaves (Figure 1). However, in allopatric (Tom-

MX and Tom-CA) strain-infected plants, puckering, small-sized

leaves, and a mild mosaic of leaves were the most common

symptoms. Furthermore, Tom-CA strain induced a shoestring-

like leaf symptom which was rarely associated with TSW

before (Figure 1).

Raman spectra obtained from tomato leaves display distinct

vibrational bands, corresponding to various biomolecular

components. Carbohydrates exhibit bands at 747 and 915 cm-1,

carotenoids show multiple bands at 1000, 1048, 1155, 1186, 1215,

and 1525 cm-1, while polyphenols exhibit a band at 1608 cm-1

(Figure 2, Table 1). Additionally, we observed a vibrational band at

1678 cm-1, which can be assigned to proteins. Furthermore, CH and

CH2 vibrations are evident at 1288, 1326, 1382, and 1440 cm-1

(Figure 2). It is important to highlight that these chemical moieties

are widespread across diverse classes of biological molecules.

Therefore, 1288, 1326, 1382, and 1440 cm-1 vibrations cannot be

exclusively attributed to any specific class of biomolecules (Table 1).

By comparing average spectral intensities among TSVW strains,

we can monitor biological changes resulting from TSWV.

Specifically, a decrease in the peak intensity was observed at 1000,

1048, 1155, 1186, 1215, and 1525 cm-1 (Figure 2). However, only

changes in the intensities of 1000, 1155, and 1525 cm-1 bands were

statistically significant (Figure 3). The Tom-MX and Tom-BL2

strains exerted the most stress to the plants, causing the

mentioned decreases in peak intensity. These peaks are all

associated with carotenoids, indicating that TSWV infection

results in a decreased concentrations of carotenoids in tomato

leaves. These findings align well with previously reported results

on biotic stress within crops (Higgins et al., 2022). It is worth noting

that there was relatively no change in polyphenol content. Earlier

research has shown that biotic stress can induce alterations in

polyphenol concentration. For instance, in maize, Colletotrichum

graminicola infection leads to an increase in polyphenols, whereas

in wheat, Diuraphis noxia infestation results in a decrease (Higgins

et al., 2022; Higgins et al., 2023). Viral infections have their own

pathogenic mechanisms, distinct from the mechanisms utilized by

living pathogens, so this difference could potentially explain why the

crops did not experience alterations in polyphenol content.
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When comparing average spectral intensities by cultivar, we found

differences in peak intensity at all carotenoid peaks mentioned above

(Figure 4). Among the three cultivars, Hot-Ty exhibited the lowest

average spectral intensity, both visually and statistically, especially in

comparison to Celebrity (Figure 3). Supremo consistently displayed

peak intensities between the values of Celebrity and Hot-Ty. Notably,

at all the carotenoid peaks mentioned (1000, 1048, 1155, 1186, 1215,

and 1525 cm-1), Hot-Ty showed statistically significantly lower

intensity values compared to Celebrity. Even though all strains

managed to overcome TSWV resistance, these variations in spectral

intensities align well with differences in cultivar resistance. Hot-Ty, as
Frontiers in Plant Science 04
a susceptible cultivar, was expected to experience greater stress from

the virus, whereas Celebrity and Supremo, as resistant cultivars, were

anticipated to fare better.

In addition to examining spectral intensities, we conducted

Partial Least Squares-Discriminant Analysis (PLS-DA). This

supervised statistical method identifies patterns in data to reveal

crucial differences between groups (Supplementary Figures 2, 3).

Trained on a labeled dataset, the model classifies individual spectra

into specific groups, providing an accuracy percentage that allows

us to gauge its predictive capabilities. The model exhibited a high

degree of accuracy in predicting both strain and cultivar (Tables 2,
FIGURE 1

TSW symptoms observed in differentially resistant cultivars infected with sympatric and allopatric strains of TSWV.
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3). Notably, the Control and Tom-MX achieved the most robust

prediction rates, whereas some difficulty was encountered in

accurately classifying Tom-BL2. The model’s ability to classify

cultivars had similar accuracy. While ANOVA and Tukey’s post-
Frontiers in Plant Science 05
hoc test results indicated that some groups were not statistically

significant from each other, PLS-DA revealed the significance of

these variations and their capacity to distinguish different isolates.

This predictive power indicates that RS can be used to not only
FIGURE 2

Average Raman spectra collected from each viral strain. Spectra were all normalized at the 1440 peak indicated by an asterisk (*).
TABLE 1 Assignments of vibrational bands in the Raman spectra acquired from tomato leaves.

Band (cm-1) Vibrational Mode Assignment

747 g(C-O-H) of COOH Carbohydrates (Synytsya et al., 2003)

915 v(C-O-C) in plane, symmetric Carbohydrates (Edwards et al., 1997)

1000 in-plane CH3 rocking of polyene Carotenoids (Adar, 2017)

1048 -C=C- Carotenoids (Edwards et al., 1997)

1155 -C=C- Carotenoids (Adar, 2017)

1186 -C=C- Carotenoids (Adar, 2017)

1215 -C=C- Carotenoids (Adar, 2017)

1288 d(C-C-H) Aliphatics (Yu et al., 2007)

1326 dCH2 bending Aliphatics (Edwards et al., 1997)

1382 dCH2 bending Aliphatics (Yu et al., 2007)

1440 d(CH2) + d(CH3) Aliphatics (Yu et al., 2007)

1525 -C=C- Carotenoids (Adar, 2017)

1608 v(C-C) aromatic ring + s(CH) Polyphenols (Agarwal, 2006)

1678 C=O stretching, amide I Protein (Devitt et al., 2018)
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identify viral infection, but to differentiate the infection by cultivar

and strain.

To validate the outcomes of RS, we performed (RP-HPLC) and

analyzed the relative concentrations of lutein (RT = 12.11 min) and

chlorophyll (RT = 13.86 min) in the tomato leaves, Supplementary

Figure 4. Prior research has identified lutein as the predominant

carotenoid detected by RS, while alterations in chlorophyll content

serve as valuable indicators of plant stress and physiological

imbalances (Dou et al., 2021). TSWV suppresses photosynthesis

and chloroplast genes, which are essential for lutein and
Frontiers in Plant Science 06
chlorophyll, therefore changes in lutein and chlorophyll content

should reflect plant health and align with variations in the Raman

spectra (Nachappa et al., 2020).

When grouped by strain, the Tom-MX and Tom-BL2 strains

exhibited the lowest concentrations, while the Control had the

highest concentration of these molecules (Figure 5). These results

were consistent with RS data, except for the Tom-CA strain, which

showed markedly lower concentration of both lutein and

chlorophyll. However, when comparing the HPLC results by

cultivar, there was no statistically significant difference between
FIGURE 3

Tukey Test after one-way ANOVA comparing peak intensity by strain (left, p = 5.00 x 10-4) and cultivar (right, p = 8.21 x 10-9).
FIGURE 4

Average Raman spectra collected from each tomato cultivar. Spectra were all normalized at the 1440 peak indicated by an asterisk (*).
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any of the groups. Compared to RS, HPLC inherently contains

greater potential error during the analyte extraction, emphasizing

the improved dependability of RS in detecting subtle alteration in

analyte concentration.

In general, the changes in carotenoid and chlorophyll levels,

coupled with the reductions in spectral intensity, align closely with

prior findings (Jabeen et al., 2017). The viral defense response of

plants has long been associated with the accumulation of reactive

oxygen species, with carotenoids playing an important role as

antioxidants (Han et al., 2014; Hernández et al., 2016). Carotenoids

act as quenchers for singlet oxygen and free radicals in a process that

leads to their degradation (Mordi et al., 2020). Furthermore,

chlorophyll concentration is well known to decrease during viral

infection (González et al., 1997; Kapinga et al., 2009; Mandrile et al.,

2022). This provides strong evidence that RS is capable of detecting

minute biomolecular changes in content early in TSWV infection.

Nevertheless, future work should investigate the limits of TSWV

detection and quantify carotenoids changes through gene expression.
Frontiers in Plant Science 07
4 Conclusion

Our findings show that RS can be used for the early TSWV

detection in tomato leaves. Significant decreases in carotenoid

concentration were noted in several peaks, especially as the Tom-

MX and Tom-BL2 isolates produced most severe symptoms on

leaves. These results were confirmed by HPLC analysis of lutein and

chlorophyll content. Furthermore, we found RS can be coupled with

PLSDA to predict the viral strain with around 80% accuracy. These

results demonstrate the potential RS has for proactive mitigation of

TSWV and for safeguarding food security.
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TABLE 3 Accuracy of PLS-DA prediction by tomato cultivar.

`Cultivar Accuracy Celebrity Hot-Ty Supremo

`Celebrity 81% 96 16 22

Hot-Ty 76% 11 113 16

Supremo 75% 11 20 112
TABLE 2 Accuracy of PLS-DA prediction by viral strain.

Strain Accuracy Control Tom-CA Tom-MX Tom-BL1 Tom-BL2

Control 90% 81 7 1 1 7

Tom-CA 75% 1 67 0 10 8

Tom-MX 90% 2 0 54 0 3

Tom-BL1 79% 4 11 2 71 10

Tom-BL2 68% 2 4 3 8 60
FIGURE 5

HPLC results by viral strain (left) and tomato cultivar (right). Significance indicate T-test results for the comparison of each strain versus the control:
NS is no significance, * is P ≤ 0.05, ** is P ≤ 0.01, and *** is P ≤ 0.001. There was no significance between tomato cultivars.
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