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Zero-exemplar deep continual
learning for crop disease
recognition: a study of total
variation attention
regularization in
vision transformers
Boyuan Wang*

School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau
University of Science and Technology, Macao, Macao SAR, China
With the increasing integration of AI technology in the food industry, deep

learning has demonstrated its immense potential in the domain of plant

disease image recognition. However, there remains a gap in research

between models capable of continual learning of new diseases and

addressing the inherent catastrophic forgetting issue in neural networks.

This study aims to comprehensively evaluate various learning strategies

based on advanced computer vision models for multi-disease continual

learning tasks in food disease recognition. To cater to the benchmark

dataset requirements, we collected the PlantDiseaseCL dataset, sourced

from the internet, encompassing diverse crop diseases from apples, corn,

andmore. Utilizing the Vision Transformer (ViT) model, we established a plant

disease image recognition classifier, which, in joint learning, outperformed

several comparative CNN architectures in accuracy (0.9538), precision

(0.9532), recall (0.9528), and F1 score (0.9560). To further harness the

potential of ViT in food disease defect recognition, we introduced a

mathematical paradigm for crop disease recognition continual learning. For

the first time, we proposed a novel ViT-TV architecture in the multi-disease

image recognition scenario, incorporating a Total Variation (TV) distance-

based loss (TV-Loss) to quantify the disparity between current and previous

attention distributions, fostering attention consistency and mitigating the

catastrophic forgetting inherent in ViT without prior task samples. In the

incremental learning of the PlantDiseaseCL dataset across 3-Steps and 5-

Steps, our strategy achieved average accuracies of 0.7077 and 0.5661,

respectively, surpassing all compared Zero-Exemplar Approaches like

LUCIR, SI, MAS, and even outperforming exemplar-based strategies like

EEIL and ICaRL. In conclusion, the ViT-TV approach offers robust support

for the long-term intelligent development of the agricultural and food

industry, especially showcasing significant applicability in continual learning

for crop disease image recognition.
KEYWORDS

smart agriculture, plant disease detection, deep learning, continual learning,
vision transformer
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1 Introduction

Plant diseases reduce the yield and quality of food, leading to

significant economic losses and reducing food safety at the national

and global levels (Savary et al., 2019). Plant disease surveillance is

critical for preventing disease spread (Jones, 2021; Ristaino et al.,

2021). However, current monitoring approaches rely on regular

field identification by agroforestry specialists or farmers’ knowledge

of plant diseases. This manual inspection-based technique is time-

consuming and costly, and it also necessitates specialists’ a high

level of field knowledge. Therefore, the development of smart

agriculture requires a detection system that can automatically

identify the type of plant disease and the exact location of the lesion.

With the advancement of AI technologies, researchers have

utilized machine learning and image processing techniques to

develop systems to automatically detect plant diseases such as

apple disease(Chakraborty et al., 2021), wheat disease (Nema and

Dixit, 2018), cotton disease (Bhimte and Thool, 2018), and corn

disease (Kusumo et al., 2018). Color, shape, and texture information

are used to construct feature vectors, which are then classified using

random forest (Mekha and Teeyasuksaet, 2021), support vector

machines (SVM) (Banerjee and Madhumathy, 2022), etc. However,

traditional machine learning and image processing methods rely

heavily on prior knowledge and require human design based on

disease characteristics, making it difficult to use big data to discover

feature patterns automatically (Liu andWang, 2021). The essence of

these techniques is by manually designing features and developing

classifiers (or rules) and using computer image processing methods

such as image segmentation methods (Prewitt, Sobel), feature

extraction methods (SIFT, HOG) and classification methods

(SVM). When the environment or the type of plant disease

changes, it is always required to change the threshold or redesign

the algorithm, which is inefficient for detection in real and complex

natural environments (Liu and Wang, 2021). Therefore, the

classification performance is low, the model lacks stability, and

the adaptability is poor.

After the emergence of deep learning technology, an important

branch of AI, models for end-to-end disease detection by learning

features from different fields, scenarios, and scales have become a

research hotspot in the field of smart agriculture and food industry.

Deep learning techniques can automatically learn features from

massive amounts of data and cope with specific complex changes in

the natural environment (Boulent et al., 2019; Liu and Wang, 2021).

Models for plant disease image recognition based on deep learning

techniques belong to deep neural networks (DNN), including the

classic convolutional neural network (CNN) (Albawi et al., 2017) and

the latest ViT (Dosovitskiy et al., 2020), etc. The CNN architectures

include VGG16 (Simonyan and Zisserman, 2015), ResNet (He et al.,

2016), NASNet (Zoph et al., 2018), Inception V3 (Szegedy et al., 2016),

MobileNet (Howard et al., 2017), EfficientNet (Tan and Le, 2019), etc.

All these models are very deep neural networks formed by stacking

multiple convolutional layers. All above models have been applied to

the study of plant disease identification.

In reference to Sultana et al. ‘s study (Habiba and Islam, 2021),

they utilized the VGG16 model for identifying diseased tomatoes

through transfer learning. The study focused on ten different
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categories of tomato leaf images from the Plant Village dataset,

namely: a) Target Spot, b) Yellow leaf, c) Mosaic Virus, d) Bacterial

Spot, e) Early Blight, f) Leaf Mold, g) Late Blight, h) Septoria Leaf

spot, i) Spider Mites, and j) Healthy Leaf. The dataset consists of a

varying number of photos per class, ranging between 1500 and

3000. To ensure proper training, validation, and testing, the dataset

was divided into 60% for training data, 20% for validation data, and

20% for test data. The results showed satisfactory classification

performance with an accuracy of about 95.5%. Brahmaji et al. (Godi

et al., 2022a) used the ResNet-152 V2 model for automatic disease

identification on a tomato leaf image dataset containing ten

different diseases. The processing flow designed mainly consisted

of Pre-processing of leaf structure, leaf feature extraction, leaf

analysis and segmentation, and leaf classification process. After

training, The ResNet-152 V2 model achieved 95% detection

accuracy. Yang et al. (Yang et al., 2020) developed a plant disease

image classification model based on NASNet’s extended neural

network and attention mechanism. Their study used a dataset

consisting of 58,200 crop leaf images, including 37 different

classes of healthy/diseased crops. The results show that the fine-

grained NASNet Large neural network model based on the

attention mechanism achieves excellent classification performance

with 95.62% accuracy, which is well suited for automatically

detecting crop diseases. Haque et al. (Haque et al., 2022) collected

5939 images of maize crops from experimental fields located in

three maize growing areas, including three types of diseases: Maydis

leaf blight, Turcicum leaf blight, and Banded leaf and sheath blight,

as well as healthy ones. They used the basic architecture of the

advanced CNN model “Inception-v3” network to build three

models on the maize dataset, viz. flatten layer with fully

connected layer (Inception-V3_flatten-FC), global average pooling

layer (Inception-v3_GAP) and global average pooling layer with

fully connected layer (Inception-V3_GAP-FC). Of these, Inception-

v3_GAP achieved the highest accuracy of 95.99% in a separate test

set and was efficient in learning relevant features of the disease and

predicting the correct category in unseen data. Rajbongshi et al.

(Rajbongshi et al., 2020) used the MobileNet model with a transfer

learning approach to detect rose plant diseases on an image dataset

of powdery mildew, black spot, rust, and dieback diseases. They

used 1600 data images to train the model and 400 data images to

test the model. As a result, the MobileNet model with the transfer

learning method obtained an accuracy of about 95.63%. Vijayalata

et al. (Vijayalata et al., 2022) focused their research on identifying

four diseases affecting cassava yield: Cassava Bacterial Blight,

Cassava Brown Streak Disease, Cassava Mosaic Disease, and

Cassava Green Mottle. They used the EfficientNet-B0 model for

the early detection of these diseases. A total of 21,367 cassava

images comprised the original image dataset, which was divided

into 20 test cases and 80% of the training data, and 20% of the

validation data. An accuracy of 92.6% was achieved after the model

was applied to the test cases.

Zhuang (Zhuang, 2021) suggested a ViT model-based method

for identifying viral diseases in cassava leaf images. The image

dataset of cassava leaves was provided by Makerere Artificial

Intelligence Lab in a Kaggle competition, including four subtypes

of diseases and healthy cassava leaves. After applying the K-Fold
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cross-validation method, their model achieved a classification

accuracy of 90.02% on the test set. Zhang et al. (Zhang et al.,

2021) proposed a new rice disease recognition method based on the

Swin Transformer architecture (a new variant of ViT), including

sliding window operation and hierarchical design. The proposed

model was trained with images of five rice diseases (bacterial blight,

rice blast, rice false smut, brown spot, and sheath blight) in the field

environment and achieved a classification accuracy of 93.4% on the

test set, which is about 4.1% higher than that of traditional machine

learning models. Li et al. (Li and Li, 2022) proposed a lightweight

ViT-based disease detection model, ConvViT, for apple disease

identification in complex environments. ConvViT includes a

convolutional structure and a Transformer structure, and the

detection accuracy result (96.85%) is comparable to the

performance of the current state-of-the-art Swin-Tiny. The

parameters and FLOPs are only 32.7% and 21.7% of Swin-Tiny,

significantly ahead of CNN models such as MobilenetV3 and

Efficientnet-b0.

Both CNN and Transformer architectures have demonstrated

exceptional capabilities in detecting plant diseases, surpassing the

expertise of agroforestry professionals in certain tasks. Nonetheless,

the majority of these models are anchored in static datasets and

unchanging settings, overlooking the fact that information often

unfolds progressively. As a result, they struggle to assimilate and

adapt to fresh insights. On occasion, they might completely break

down or exhibit pronounced deterioration in tasks they once

mastered, culminating in profound issues of catastrophic

forgetting (Hadsell et al., 2020). This phenomenon, where neural

networks lose prior knowledge, was first pinpointed by McCloskey

and Cohen in 1989 (McCloskey and Cohen, 1989). When

juxtaposed with these artificial models, the human aptitude for

learning is rooted in a diverse array of neurocognitive processes and

brain memory systems. Such complexities underpin our ability to

hone skills and embed memories for the long haul, as detailed by

German I. Parisi et al. in 2019 (Parisi et al., 2019).

Drawing from the principles of cognitive science, the realm of

continual learning, as articulated by Lesort et al. (Lesort et al., 2020)

endeavors to confront the aforementioned limitations in artificial

intelligence. To achieve a balance between preserving old

knowledge and learning new knowledge, continual learning

algorithms face a trade-off known as the stability-plasticity

dilemma (Abraham and Robins, 2005; Wu et al., 2021; Araujo

et al., 2022). In the traditional static learning, data follows

independent and identically distributed (IID) distributions, where

data is sampled according to the same probability distribution. In

typical IID data sets D, we have D ∼ P(x, y), where P(x, y) denotes

the joint probability distribution of the data generation. However, in

a continual learning environment, the data probability distribution

of the data set D is no longer a typical IID probability distribution

but is instead divided into several distinct subsets Dt . Let D =∪T
t=1

Dt , where each subset represents a single task and is sampled from T

different IID probability distributions Pt(x, y)
T
t=1. In a continual

learning environment, the dataset D can be represented as D =∪T
t=1

Dt with Dt ∼ Pt(x, y), where Dt represents the subset corresponding

to the t -th task and Pt(x, y) represents the probability distribution

of the t -th task. The characteristic of continual learning is that it
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learns from dynamic data distributions, allowing for more flexible

and adaptive machine learning systems.

At present, the food industry sees limited exploration and

utilization of Continual Learning techniques in AI-driven smart

solutions. To bridge this gap, we undertook this investigation,

outlining our primary findings below.

The potential of the ViT model in the food industry, particularly

in food disease defect recognition, necessitates its enhancement and

evaluation for continual learning capabilities. Establishing advanced

continual learning visual models in the domain of food and crop

disease prevention is imperative. Addressing these challenges, this

study was undertaken, and the following key contributions

were made:
1. To meet the benchmark dataset requirements for multi-

disease continual learning classification tasks, we curated

the PlantDiseaseCL dataset from the internet ,

encompassing diverse food diseases from apples, corn,

and more. Using the ViT-S/16 model, we developed a

food disease image recognition classifier. In joint learning

evaluations, the ViT-S/16 outperformed several other CNN

architectures in metrics such as accuracy, precision, recall,

and F1 score.

2. Beyond just model performance, we delved into the model’s

feature learning capability using the t-SNE method.

Visualization of feature vectors learned by different

models revealed that the ViT-S/16 demonstrated superior

classification outcomes in feature distribution, excelling in

inter-class separability in feature embeddings.

3. To maximize the potential of ViT in food disease defect

recognition, we introduced a mathematical paradigm for

continual learning of crop disease defects. We proposed the

novel ViT-TV architecture for multi-disease image

recognition, incorporating a Total Variation distance

(Rudin et al., 1992; Bhojanapalli et al., 2021) loss (TV-

Loss) to quantify disparities between current and previous

attention distributions.

4. By optimizing the overall loss function of ViT with TV-

Loss and Cross-Entropy Loss, we balanced model stability

and plasticity, maintaining attention consistency during the

learning process of new and old tasks, thereby mitigating

the catastrophic forgetting inherent in ViT without the

need for storing samples from previous tasks. This offers a

new attention alignment method for ViT in multi-disease

continual learning scenarios.

5. To validate our proposed ViT-TV, we designed 3-stage and

5-stage continual learning processes on the PlantDiseaseCL

dataset. We assessed various continual learning methods

from perspectives such as attention alignment, global

importance parameter regularization, and knowledge

transfer between teacher-student networks for new and

old tasks.

6. Further comparisons of different attention alignment

method variants were made, juxtaposing our ViT-TV

with the original ViT and other methods like Jensen–

Shannon divergence , He l l inge r d i s tance , and
frontiersin.org
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Fron
Bhattacharyya distance, thereby confirming the efficacy of

our approach.
These contributions establish a novel framework for continual

learning in image classification tasks for food disease recognition.

The proposed Zero-Exemplar approach ViT-TV method fosters

advancements in multi-disease recognition technology, enhancing

the model’s capability to continuously learn new diseases, and

underpinning the long-term intelligent evolution of the

food industry.

The remainder of this paper is organized as follows. The sources

and construction methods for training, verifying, and testing

datasets are described in Section II. Section III describes our

proposed approach, ViT-TV and performance evaluation metrics.

Model parameter settings for the experimental study are discussed

in Section IV. The experimental results and discussion are

presented in Section V. Section VI conclude the paper with

comments on future work.
2 Materials and methods

2.1 Datasets

To validate our proposed methodology, we collected the

PlantDiseaseCL dataset, specifically designed for continual

learning evaluations. This dataset comprises 30,863 disease

images of various foods, including apples, corn, pepper, and

potatoes, all of which were collected from the Internet. Each

image is standardized to a resolution of 256 × 256 pixels. For

structured evaluation, the dataset has been segmented into training,

validation, and testing subsets, detailed further in Table 1. For the

broader research community’s benefit, we have made the

PlantDiseaseCL dataset publicly available on the Kaggle platform.

It can be accessed at https://www.kaggle.com/datasets/

gabrielwang01/leaf-disease-must (last accessed on 18 August 2023).
2.2 Methods

2.2.1 Multi-disease continual learning paradigm
for crops and foods

Continual learning for multi-disease detection in crops plays a

significant role in improving agricultural productivity. The ability to

detect, differentiate, and act upon a growing variety of diseases over

time can significantly impact the crop yield and the overall food

supply chain. The mathematical paradigm outlined for multi-

disease medical image recognition can similarly be adapted to

design a theoretical framework for crops.

Let’s define our dataset for crop disease recognition as C =

(xj, zj)
� �m

j=1f g, where xj denotes the sample feature (e.g., an image of

a plant or crop’s leaf, hyperspectral data) within the feature space X

and zj is the corresponding label within the label space Z. Here, (X)

represents the input space detailing the features (or symptoms)

exhibited by crops due to diseases or other external factors. In
tiers in Plant Science 04
contrast, Z is the output space indicating the type of crop disease or

health status.

Incremental Learning over Time: In real-world scenarios, new

crop diseases may emerge, or previously studied diseases might

show new symptoms. Therefore, similar to the multi-disease

medical paradigm, our dataset C will be split into K stages, each

containing mk data points, where mk ∈ M and oK
k=1mk = m. The

parameter set or vector M serves as a means to control the

distribution of data points across stages, allowing for flexibility

and adaptation based on specific requirements.

The Learning Objective: For the crop multi-disease scenario, at

each stage, our goal is to generate a model that can recognize all the

diseases observed so far without forgetting the previously learned

diseases. Mathematically, the objective at the k + 1   stage is

expressed as shown in Equation 1.

qk+1 = argmin
q L(gk+1(·, qk),Ck+1) (1)

where gk+1 represents the model at the k + 1   stage, q is the

parameter set or vector of the model, and Ck+1 = C
0
k+1 ∪



(x, z) ∈ C : x ∈ Xkf g is the combined dataset of the prior k + 1

tasks and the specific crop disease at task k:

Dealing with Catastrophic Forgetting: To avoid catastrophic

forgetting, we need to integrate techniques such as Regularization-

based Approach, which adds a penalty to the loss function to ensure

the weight changes for a new task do not drastically deviate from the

learned weights for previous tasks.

Given: Original loss function: L, Weights of the neural network:

W, Previously learned weights: Wprev ,

The new loss function, incorporating the regularization term,

can be expressed as shown in Equation 2.

Lnew = L + lo
i

(Wi −Wprev,i)
2

(2)

where l is a regularization parameter. The summation is taken

over all weights in the network. The continual learning approach,

when correctly applied to crops, can lead to proactive disease

management, better yields, and a more resilient food system. The

mathematical paradigm above sets the foundation for building AI

systems that can evolve with changing disease landscapes

in agriculture.

2.2.2 ViT-TV: aligning ViT attention using total
variation distance

In our study, we enhanced the original ViT model (Dosovitskiy

et al., 2020) to address the challenges of continual learning across

multiple diseases. The core concept behind Vision Transformers

(ViT) revolves around processing based on image patches.

For the original ViT: Given an image I of dimensions (H �
W � C), where (H) and (W) represent the height and width of the

image, and C denotes the number of channels, we partition the

image into n   patches, each of size (P � P). Thus, n = H�W
P�P .

Each image patch   i can be linearly embedded into a vector vi  

of dimension D, as shown in Equation 3.

vi = MA½patchi� (3)
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where  MA is an embedding matrix with dimensions D� (P �
P � C). In this context, patchi serves as an index to select a specific row

from the embeddingmatrixMA. These embeddings are then processed

through L Transformer layers. Each Transformer layer consists of two

primary components: Multi-Head Self-Attention (MHSA) and a

Multi-Layer Perceptron (MLP). The design of MHSA aims to

capture information in parallel across different representational

subspaces. Briefly describing its operation, this structure first projects
Frontiers in Plant Science 05
the input data into multiple representational spaces, each having its

unique set of queries, keys, and values.

For h   heads, each head has its distinct set of projection

matrices: PQ
i , P

K
i , P

V
i

� �
, where i   denotes the ith head. These

matrices project the original input data into their respective

subspaces, as shown in Equation 4.

Qi = Input · PQ
i ,  Ki = Input · PK

i ,  Vi = Input · PV
i (4)
TABLE 1 Training, validation, and test sets for the PlantDiseaseCL dataset.

Class Images
Dataset

Training Validation & Testing Total

Apple healthy 1506

1004 2510

Apple Black Rot 1490

994 2484

Apple rust 1320

880 2200

Apple scab 1512

1008 2520

Corn healthy 1394

930 2324

Corn common rust 1430

954 2384

Corn gray leaf spot 1232

820 2052

Corn northern leaf blight 1431

954 2385

Pepper healthy 1491

994 2485

Pepper bacterial spot 1435

956 2391

Potato healthy 1368

912 2280

Potato early blight 1454

970 2424

Potato late blight 1454

970 2424

Total 18517 12346 30863
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In their respective subspaces, for each head i, a standard

attention operation is executed, as illustrated in Equation 5.

Ai = Softmax QiK
T
iffiffiffi
di

p
� �

Vi (5)

Where di represents the dimension of the ith head. Finally, the

outputs from all heads are concatenated and passed through a

shared output transformation, resulting in the final outcome, as

depicted in Equation 6.

Output = Concat(A1,…,Ah) · P
O (6)

Where (PO) is the weight matrix of the output transformation.

This multi-head structure enables the model to capture various

features and dependencies in parallel across multiple subspaces,

enhancing the model’s expressive capability.

Global Total Variation Distance Regularization: In

continuous recognition of crop diseases, as time progresses, new

diseases might emerge, or the manifestations of known diseases may

evolve. Thus, we can represent the continuous disease recognition

tasks as described in Equation 7.

½Tdisease1,Tdisease2,…,Tdiseasen� (7)

For each disease task (Tdisease(i)), there exists a unique data

distribution: [P(image, label Tdisease(i))], where image represents the

image data of crop leaves, and denotes the disease label. Prior to

Equation 9, the assumption is made that the covariance between

two diseases is zero, denoted as Sdisease(i),j = 0. This assumption

implies that the parameter distributions of different diseases are

statistically independent. Mathematically, it can be expressed as

represented in Equation 8.

Sdisease(i,j) = E (q − mdisease(i))(q − mdisease(j))
T� �

= 0 (8)

Here, Sdisease(i,j) represents the covariance matrix between

disease Tdisease(i) and Tdisease(j), where q denotes the model

parameters, and mdisease(i) and mdisease(j) represent the mean

parameters for diseases Tdisease(i) and Tdisease(j), respectively.

This assumption signifies that the learning of parameters for

one disease does not influence the parameters of other diseases. By

assuming independence between disease-specific parameter

distributions, we establish a foundation for further derivation and

utilization of Equation 9 in addressing continual learning tasks.

To learn on a specific disease, we typically aim to maximize the

following likelihood function:

L(qjTdisease(i)) = o
(image,label)∈Ddisease(i)

log P(labeljimage; q,Tdisease(i))

(9)

Where Ddisease(i) is the dataset for disease Tdisease(i) and q 
represents the model parameters.

Probability Distribution Shift: In the continuous recognition

tasks of crop diseases, as new diseases emerge or known disease

manifestations change, the model needs to be updated

continuously. Suppose the model parameter distribution after

disease (Tdisease(i)) is (P(qjTdisease(i))). When encountering a new
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disease (Tdisease(j)), we desire the model parameter distribution to be

(P(qjTdisease(j))).

We employ Bayesian updating to describe this process, as

expressed in Equation 10.

P(qjTdisease(j),Ddisease(j)) ∝ P(Ddisease(j)jq,Tdisease(j))

P(qjTdisease(i),Ddisease(i))
(10)

Where (P(qjTdisease(j),Ddisease(j))) is the posterior distribution,

representing the distribution of the model parameters (q) given the

new disease (Tdisease(j)) and its associated data (Ddisease(j)). (P(

Ddisease(j)jq,Tdisease(j))) is the likelihood function, indicating the

probability of observing the data (Ddisease(j)) given the model

parameters (q) and the disease (Tdisease(j)). (P(qjTdisease(i),Ddisease(i)))

is the prior distribution, which describes our belief about the

distribution of the model parameters (q) before considering the

disease (Tdisease(i)) and its data (Ddisease(i)).

In continuous recognition tasks of crop diseases, maintaining

knowledge from historical learning is crucial. Like other continual

learning tasks, when introducing new disease categories or

encountering new data distributions, we might face the risk of

“catastrophic forgetting”, where the process of acquiring new

knowledge might disrupt what has been previously learned.

To effectively address this issue, we introduced the TV distance

(Rudin et al., 1992; Bhojanapalli et al., 2021) as a regularization

technique for the first time in continuous recognition of crop

diseases. The TV distance provides us with a means to evaluate

the parameter changes in the model across continuous tasks.

The TV distance provides a measure to gauge the difference

between two probability distributions associated with the parameters

of neural networks. In the context of Bayesian, we treat the weights

and biases of the neural network as random variables, effectively

viewing the entire set of parameters as a probability distribution.

Given two such distributions, (p(qjDdisease)) and (q(qjDdisease)), which

represent the distributions of the whole neural network parameters

under two different disease conditions, the TV distance between them

is defined as shown in Equation 11.

TVðp;qÞ = 1
2

Z
p(qjDdisease) − q(qjDdisease)j jdq (11)

For discrete distributions, this formula can be written as

expressed in Equation 12.

TV(p, q) = 1
2o

q
p(qjDdisease) − q(qjDdisease)j j (12)

The core idea behind TV distance is to describe the maximum

deviation of two probability distributions for the same event in the

context of crop diseases. Considering the posterior distribution of

parameters for old tasks (q(qjDdisease(i))) and the posterior

distribution of parameters based on new disease data (p(qj
Ddisease(i)+1)), our optimization objective can be expressed as

represented in Equation 13.

LTdisease(i)+1
(q) = − o

(x,y)∈Ddisease(i)+1

log P(yx; q ,Tdisease(i)+1)

+ lTV p(qjDdisease1 : i+1), q(qjDdisease1 : i)ð Þ
(13)
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Where:
Fron
- Ddisease1 : i and Ddisease1 : i+1 represent the dataset up to disease i

and the dataset up to disease i + 1, respectively.

- p(qjDdisease1 : i+1) is the posterior distribution of the parameters

q based on the new disease data (up to disease i + 1).

-   q(qjDdisease1 : i) denotes the posterior distribution of the

parameters   q   based on the old disease data (up to

disease i).

- TV(p, q) stands for the Total Variation distance, which

assesses the difference between two probability

distributions   p   and   q   specific to crop diseases.

- q encapsulates the model’s parameter set, defining its

structure and behavior, and is typically adjusted during

training to minimize the loss function.

- (x, y) is a sample pair, with x being the input (e.g., a crop image)

and y   the corresponding label (e.g., disease category).

- l is a regularization coefficient, determining the weight of the

TV distance in the overall loss. Adjusting l allows for a

balance between the loss for task i + 1 and the change in

parameter distribution. Setting l too high might render the

model overly conservative, hindering adaptation to the new

task, while a value too low might cause an overemphasis on

the new task, risking the forgetting of old tasks.
ViT-TV Attention Alignment: In this study, we introduce an

enhanced model, termed ViT-TV, that aligns attention based on the

TV distance, as depicted in Figure 1. The ViT model aims to

integrate the continual learning recognition task of crop diseases by

leveraging attention mechanisms. Given an input feature matrix (X)

with dimensions B� N � C  , where  B denotes batch size, N

represents sequence length, and C signifies feature dimensions,
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the model initially undergoes a linear transformation to obtain a

combined representation for Query(Q), Key(K), and Value(V), as

shown in Equation 14:

QKV = XWqkv (14)

Here, Wqkv is a weight matrix. After this transformation, the

combined representation QKV is reshaped and permuted to

separate out the individual representations for Q, K , and V .

Specifically, QKV is reshaped to dimensions (B,N , 3,H, CH ), where

B denotes the batch size, N represents the sequence length, and H

stands for the number of attention heads. The tensor is then

permuted to rearrange these dimensions, resulting in individual

tensors for Q, K , and V . Subsequently, attention scores ATTN are

computed, as illustrated in Equation 15.

ATTN = (Q� KT)� 1ffiffi
d

p (15)

Where (d) is the dimension size of each attention head, utilized

to scale the dot product. For each score, the softmax function is

applied to ensure the sum equals 1 across the last dimension, as

demonstrated in Equation 16.

ATTN 0 = Softmax(ATTN) (16)

The computed attention weights are then dot-multiplied with

the Value matrix (V), as represented in Equation 17:

Z = ATTN 0 � V (17)

Finally, Z undergoes another linear transformation followed by

a dropout layer to produce the model’s output. When training the

model on a new crop disease recognition task, while ensuring it

retains knowledge from previous tasks, we employ attention

disparities to compute the regularization loss. Each attention

matrix is reshaped from (B� h� w) to ((B� w)� h), where h
FIGURE 1

Framework for crop disease continual learning with ViT-TV attention alignment.
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and w are the height and width of the attention matrix, respectively.

To ensure the sum of weights in each attention matrix equals 1,

normalization is applied, as represented in Equation 18.

P0 = Pj j
oh

j=1
Pij
,    Q

0
= Qj j
oh

j=1
Qij

(18)

Where P denotes the attention matrix associated with the

previous task, encapsulating the model’s attention distribution

during that phase. Conversely, Q signifies the attention matrix

pertinent to the current task, illustrating the model’s attention

distribution for the new task at hand. The matrices P0   and Q0

represent their normalized counterparts, ensuring a standardized

attention distribution across the matrix dimensions.

The absolute value operation ensures all values are positive, and

normalization ensures the sum of each row equals 1. The difference

between the two normalized attention matrices is then computed using

the Total Variation distance, as demonstrated in Equation 19.

TV(P0,Q0) = 1
2o

N

i=1
o
h

j=1

P
0
ij − Q

0
ij

			 			 (19)

For all attention matrices, the TV distances are accumulated to

compute the overall loss, as indicated in Equation 20.

Total_Loss = o
len(attention_list)

i=1
TV(P

0
i ,Q

0
i) (20)

To effectively balance the learning of the new crop disease

recognition task and the retention of knowledge from previous

tasks, we introduce a composite loss consisting of two components:

Cross-Entropy Loss: For the new crop disease recognition task,

we compute the cross-entropy loss between the model's predictions

and the actual labels, as expressed in Equation 21.

Lcross�entropy = −o
N

i=1
yi log (byi)� (21)

Where yi is the actual label, and ŷi is the model’s prediction.

Attention Regularization Loss: Based on the aforementioned

description, we have computed the TV distance between two

attention matrices, which serves as the regularization loss, as

expressed in Equation 22.

Lattention = TV_Loss (22)

This loss ensures that during training on a new crop disease

recognition task, the model doesn’t drastically alter its attention

weights from previous tasks. Ultimately, these two losses are

combined into a total loss, where l is a hyperparameter to

balance the two, as shown in Equation 23.

Ltotal = Lcross�entropy + l � Lattention (23)

Our objective is to adjust the model parameters to minimize the

TV distance, ensuring that predictions on new disease data closely

align with the true distribution while maintaining consistency with

old disease data. By optimizing this composite loss, the ViT-TV

model can retain knowledge of previous tasks while learning new

crop disease recognition tasks, even without sample replay.
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2.2.3 Evaluation metrics
Accuracy is the ratio of correctly predicted samples to the total

number of samples, as represented in Equation 24.

Accuracy = True Positives+True Negatives
True Positives+True Negatives+False Positives+False Negatives (24)

Precision is the ratio of true positives to the sum of true

positives and false positives, as expressed in Equation 25.

Precision = True Positives　
True Positives+False Positive (25) (25)

Sensitivity is the ratio of true positives to the sum of true

positives and false negatives, as shown in Equation 26.

Sensitivity = True Positives
True Positives+False Negative (26)

F1-score is a measure that combines precision and sensitivity

into a single metric, as illustrated in Equation 27.

F1 − score = 2�(Sensitivity�Precision)
Sensitivity+Precision (27)

These metrics are used to evaluate the performance of

classification models. Precision measures the proportion of true

positive predictions among all positive predictions. Sensitivity

measures the ability of the model to identify true positive

samples. The F1-score provides a balanced assessment of

precision and sensitivity. AUC provides a comprehensive

evaluation of model performance across different thresholds.

To evaluate the CL capability of a modelMt that has learned a set

of tasks up to time t, denoted as T1 : t = T1,T2,…,Ttf g, several
metrics have been introduced to assess the degree of

continual learning.

Average Accuracy (David Lopez-Paz, 2017), measures the

average test accuracy of the model Mt on task j after completion

of task Tt. It is calculated as shown in Equation 28.

Average  Accuracy(Mt) =
1
Tt o

Tt

j=1
acc(Mt , j) (28)

where Tt is the number of tasks completed by the model at time t

and acc(Mt , j) is the accuracy of the model on the test set after

completing task j. The Average Accuracy metric reflects the extent to

which the model has mastered the current task after learning task Tt.
2.3 Experimental setup

In this study, we compared the performance of several advanced

deep learning models as backbone networks for a multi-disease

continual learning image classifier. The models used for

comparison include:
1. Efficientnet-Lite0 (Tan and Le, 2019), A lightweight

convolutional neural network optimized for mobile and

edge devices.

2. Regnetx-02 (Radosavovic et al., 2020): A new network

design paradigm focusing on parametrizing populations

of networks, with the RegNet design space providing simple
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and fast networks that outperform EfficientNet models

while being faster on GPUs.

3. ConvNeXt-S (Liu et al., 2022): A pure ConvNet model

family that competes with Transformers in accuracy and

scalability for computer vision tasks, achieving high

per fo rmance on ImageNe t c l a s s ifica t ion and

outperforming Swin Transformers on various benchmarks.

4. ViT-S/16 (Dosovitskiy et al., 2020): The model we used,

which segments the image into fixed-size blocks and

processes them using the Transformer architecture.
In evaluating the classification capabilities of the ViT-S/16 model

and other models, we conducted joint learning experiments where all

image categories were trained simultaneously on the Training set.

During the training process, evaluations were carried out on the

Validation set, and tests were conducted on the Testing set. In this

setup, each model underwent a certain number of iterations, termed

“epochs.” In our joint learning experiments, the models were trained

for 20 epochs. The training process of the model involved updating its

parameters to minimize the discrepancy between the predicted and

actual outputs. This procedure employed an optimization algorithm.

For our joint learning, we utilized the Adaptive Moment Estimation

with Decoupled Weight Decay (AdamW) optimizer, while the

AdaMax optimizer was used for incremental learning. The Adam

optimizer is a commonly used optimization algorithm in deep

learning. Furthermore, we conducted a series of class incremental

learning experiments on PlantDiseaseCL using the ViT-S/16model. In

the incremental learning process, the entire dataset was divided into

training and testing sets, and segmented into 3-steps and 5-steps

learning processes, as shown in Figure 2. The model learned the

training data of each phase in sequences of 10 epochs and evaluated

the Average Accuracy of all learned categories on the testing set after

each training step. The experimental design of the 3-steps and 5-steps

learning processes assessed our proposed ViT-TV method against

other continual learning methods. The considered continual learning

methods include:

Baseline:
1. Finetuning: An approach where the model is retrained on

new data without using any continual learning methods,

which may lead to catastrophic forgetting.
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2. Freezing: A method that preserve prior task-related

knowledge by halting the weight updates of specific layers

after the completion of a designated task. In this context,

for instance, upon concluding the first task (identified as

task index 0), the principal component of the model—often

the backbone or lower-level feature extractor—will cease to

undergo weight updates. Subsequently, when initiating

training for the second task (indexed as task 1), the

frozen components will remain unaltered, without any

further updates. Nevertheless, the head portion of the

model—typically the classifier component—will continue

to undergo weight updates to accommodate the

requirements of the new task.
Exemplar Replay Approach:
1. Class implementing the End-to-end Incremental Learning

(EEIL) (Castro et al., 2018): An approach to learn deep

neural networks incrementally using new data and a small

exemplar set from old classes, integrating distillation

measures and cross-entropy loss.

2. Class implementing the Incremental Classifier and

Representation Learning (iCaRL) (Rebuffi et al., 2017): a

training strategy that enables learning an increasing

number of concepts over time from a stream of data in a

class-incremental manner. It learns robust classifiers and

data representations concurrently, allowing it to gradually

acquire knowledge of numerous classes over an extended

period, in contrast to alternative strategies that tend to

falter quickly.

3. Class implementing the Class Incremental Learning

With Dual Memory (IL2M) (Belouadah and Popescu,

2019): A class incremental learning method using fine-

tuning and a dual memory system to mitigate

catastrophic forgetting, introducing a second memory

to store past class statistics.
Zero-Exemplar Approach:
1. Learning a Unified Classifier Incrementally via Rebalancing

(Lucir) (Hou et al., 2019): A learning method that
A B C

FIGURE 2

Schematic representation of the experimental setups for Joint learning and 3-steps and 5-steps class-incremental learning. Each coloured block
represents a specific crop disease. In (A) Joint learning, all categories are trained simultaneously, whereas in the (B) 3-steps and (C) 5-steps setups,
the 13 diseases are divided into 3 and 5 phases for class-incremental learning, respectively.
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rebalances the loss function to balance the learning of new

and old tasks.

2. Memory Aware Synapses (MAS) (Aljundi et al., 2018): A

method that protects prior task knowledge by measuring

parameter importance.

3. Synaptic Intelligence (SI) (Zenke et al., 2017): A method

that protects prior task knowledge by measuring the

importance of each synapse (i.e., connection) in the

neural network.

4. Riemannian Walk (RWalk) (Chaudhry et al., 2018): A

random walk method used to explore the parameter

space and preserve important features.

5. Learning without Forgetting (LwF) (Li and Hoiem, 2017):

A method based on the idea of global model function

regular iza t ion , preserv ing knowledge through

knowledge distillation.

6. Elastic Weight Consolidation (EWC) (Kirkpatrick et al.,

2017): A method based on the idea of elastic weight sharing,

using the Fisher matrix to store importance parameters for

balancing learning between new and old tasks.

7. ViT-TV: Our proposed approach that preserves prior task

knowledge by minimizing the TV distance between the

attention matrices of new and old tasks, promoting

consistent attention regularization.
The algorithmic improvements and assessments are based on the

Towards Exemplar-Free Continual Learning in Vision Transformers

study (Pelosin et al., 2022), conducted on CIFAR-100 and ImageNet

datasets, and benchmarked using the FACIL continual learning

evaluation framework (Masana et al., 2023). Experiments were

carried out on an NVIDIA V100 GPU utilizing the PyTorch

framework, a renowned open-source deep learning platform

celebrated for its ease in training and deploying deep learningmodels.
3 Results

3.1 Joint training results

3.1.1 Accuracy results
After conducting an analysis of the joint training results for

various models, it is evident that there are significant differences in

their performance. Table 2 presents these findings, with each model

evaluated based on important metrics such as Precision, Recall, F1-

score, and Accuracy, all expressed in percentage terms.
tiers in Plant Science 10
The ViT-S/16 model emerges as a paragon of excellence,

demonstrating superior performance when juxtaposed with other

models. It achieves a precision of 95.60%, a recall of 95.32%, an F1-

score of 95.28%, and an accuracy of 95.38%. The foundational

model, Efficientnet b0 Lite, lags considerably across all metrics. ViT-

S/16 surpasses it by a remarkable margin: 19.37% in precision,

20.00% in recall, 20.19% in F1-score, and 19.94% in accuracy. While

Regnetx-02 manages to outdo Efficientnet b0 Lite, it remains in the

shadow of ViT-S/16’s prowess. ViT-S/16 outshines Regnetx-02 by

3.02% in precision, 3.11% in recall, 3.09% in F1-score, and 3.04% in

accuracy. ConvNeXt-S, despite performing closely to ViT-S/16, still

falls short. ViT-S/16 retains a lead with an advantage of 1.85% in

precision, 1.71% in recall, 1.66% in F1-score, and 1.73% in accuracy.

As further evidenced by the confusion matrix depicted in Figure 3,

ViT-S/16 exhibits the lowest error rate in recognizing each category.

3.1.2 Various diseases classification results
In the experiment of plant disease classification, the ViT-S/16

model’s prowess, as detailed in Table 3, is marked by its precision

across diverse leaf species and their respective diseases. For apple

leaves, the model excels in distinguishing healthy ones with a

precision of 98.22%, a sensitivity of 99.20%, and an F1-score of

98.71%. Black Rot’s detection closely mirrors this performance,

albeit slightly lower in precision at 98.01%. Rust and Scab categories

exhibit comparable efficacy, with F1-scores of 98.07% and 98.71%,

respectively. Corn leaves present an interesting spread: while

healthy leaves and Common rust achieved near-perfect scores

with F1-scores at 99.79% and 99.37%, the Gray Leaf Spot and

Northern Leaf Blight categories recorded 95.62% and 96.89%,

respectively. The model’s proficiency extends to pepper leaves,

where it identifies healthy leaves with an F1-score of 95.13% and

Bacterial Spot at 97.60%. Potato leaves classification emphasizes the

model’s capability, especially in the Early Blight category, which

stands out with a stellar F1-score of 99.38%.

Deep learning models inherently have the capability to

autonomously distill representative features from images. The

caliber of these extracted features fundamentally influences the

ensuing classification performance. To rigorously assess the feature

quality, we procured models from three predominant deep learning

image classification paradigms: CNN and ViT. We extracted the

penultimate feature vectors by tapping into the last layer of each

model’s feature extractor, producing multidimensional vectors. These

vectors were subsequently projected onto a two-dimensional plane

employing the t-SNE dimensionality reduction technique (Van Der

Maaten and Hinton, 2008).
TABLE 2 Comparison of the backbone models of joint training.

Backbone Model
Evaluation Metrics

Precision Recall F1-score Accuracy

Efficientnet b0 Lite 0.7623 0.7532 0.7509 0.7544

Regnetx-02 0.9258 0.9221 0.9219 0.9234

ConvNeXt-S 0.9375 0.9361 0.9362 0.9365

ViT-S/16 0.9560 0.9532 0.9528 0.9538
frontiersin.org

https://doi.org/10.3389/fpls.2023.1283055
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang 10.3389/fpls.2023.1283055
Figure 4 graphically represents the t-SNE outcomes for various

models, with distinct colorations symbolizing different disease

categories. Analyzing these t-SNE feature distribution plots

proffers enlightening conclusions. The scatter plots derived from

the Efficientnet b0 Lite, Regnetx-02, and ConvNeXt-S models

manifest an overlap, delineating an absence of discernible
Frontiers in Plant Science 11
boundaries between different classes. Such intertwined high-

dimensional features potentially complicate the task for

subsequent classifiers, leading to subpar classification accuracy.

In contrast, the feature distribution from ViT-S/16 stands out.

There’s a clearer distinction between different classes of features.

This striking separation highlights the ability of ViT-S/16 not only
TABLE 3 Results of ViT-S/16 classification for different diseases.

Leaf Species Disease Type
Evaluation Metrics

Precision Sensitivity F1-score

Apple

Healthy 0.9822 0.9920 0.9871

Black Rot 0.9801 0.9920 0.9860

Rust 0.9818 0.9795 0.9807

Scab 0.9842 0.9901 0.9871

Corn

Healthy 0.9957 1.0000 0.9979

Gray Leaf Spot 0.9287 0.9854 0.9562

Common rust 0.9979 0.9895 0.9937

Northern Leaf Blight 0.9934 0.9455 0.9689

Pepper
Healthy 0.9392 0.9638 0.9513

Bacterial Spot 0.9730 0.9791 0.9760

Potato

Healthy 0.9815 0.9320 0.9561

Early Bight 1.0000 0.9876 0.9938

Late Blight 0.9814 0.9814 0.9814
A B

DC

FIGURE 3

Confusion matrix illustrating the outcomes of joint training. (A) Confusion matrix for EfficientNet B0 Lite. (B) Confusion matrix for RegNetX-02. (C)
Confusion matrix for ConvNeXt-S. (D) Confusion matrix for ViT-S/16.
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to reduce intra-class variability, but also to effectively separate

feature embeddings.
3.2 Continual learning results

3.2.1 Average accuracy
In our continual learning research, we compared the average

accuracy of class-incremental learning based on the ViT-S/16

model on the PlantDiseaseCL dataset under various strategies, as

shown in Table 4. For baseline strategies, we explored two

primary methods:
Fron
1. Fine-tuning, which eschews any continual learning

techniques and solely relies on the original ViT model for

continual learning. This approach achieved average

accuracies of 0.4531 and 0.3799 for 3-Steps and 5-Steps

learning, respectively.

2. The freezing strategy, which exhibited slightly inferior

performance, with average accuracies of 0.3301 and

0.2000, respectively.
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When employing the Exemplar Replay Approach, the system

can retain a certain number of samples for subsequent learning. In

our experiments, the maximum number of stored samples for all

these methods was set at 20. Among them, ICaRL led the pack with

scores of 0.6488 and 0.5216, marking an improvement of 8.39% and

4.3% over its counterparts, EEIL and IL2M strategies, respectively.

However, the most salient results were observed under our

proposed Zero-Exemplar Approach utilizing the TV method.

Remarkably, despite not necessitating the storage of any exemplar

samples, this approach achieved average accuracies of 0.7077 and

0.5661 for 3-Steps and 5-Steps learning, respectively. Not only did

this significantly outperform other strategies that don’t employ

exemplar replay (compared to LUCIR, the TV strategy improved by

37.54% and 36.63% for 3-Steps and 5-Steps, respectively; and when

juxtaposed with SI, MAS, EWC, and LwF strategies, the gains were

25.20%, 24.19%, 23.66%, and 11.88% for 3-Steps, and 15.31%,

16.71%, 15.53%, and 25.18% for 5-Steps, respectively), but more

notably, the TV strategy, even without using exemplar samples,

outperformed some strategies that did. For instance, compared to

ICaRL, the TV strategy improved by 5.89% in 3-Steps learning. This
A B

DC

FIGURE 4

Feature space visualization of various models, depicting (A) t-SNE analysis for EfficientNet B0 Lite, (B) t-SNE analysis for RegNetX-02, (C) t-SNE
analysis for ConvNeXt-S, and (D) t-SNE analysis for ViT-S/16.
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is a significant finding as, conventionally, strategies employing

exemplar samples in class-incremental learning tend to exhibit

superior continual learning performance.

3.2.2 Incremental learning processes results
In the realm of continual learning, ensuring consistent

performance improvement during the incremental learning phase

stands as one of the foremost challenges, especially when evaluating

against diverse benchmarks. To delve deeper into this process, we

employ the ViT-S/16 model and present the evolution of class-

incremental learning performance on the PlantDiseaseCL dataset.

Figure 5 reveals subtle distinctions among various continual

learning strategies during the 3-Steps and 5-Steps learning phases.

The left panel represents the 3-Steps evaluation, unveiling

pronounced disparities in strategy effectiveness. Likewise, the
Frontiers in Plant Science 13
right panel encapsulates a broader 5-Steps progression,

reinforcing these observations.

Upon a more thorough analysis of these metrics, although most

strategies exhibit near-identical accuracy levels in the initial phase,

the trajectory diverges thereafter. Approaches such as Freezing and

LUCIR appear to respond inadequately to the challenges of

continual learning, with accuracy sharply declining as steps

progress. Conversely, strategies like IL2M and ICaRL manifest a

more gradual decline. However, even within these methods, the rate

of degradation varies.

Next, we turn to our proposed strategy, TV (ours). Notably, it

not only maintains its momentum but can be argued to exhibit the

slowest rate of average accuracy decline at each stage. As stages

progress, TV (ours) consistently excels in retaining knowledge and

adapting to new information. In the 3-Steps scenario, it achieves an
TABLE 4 Average accuracy results for class-incremental learning on PlantDiseaseCL (Based on ViT-S/16).

Strategy Methods Examples
Average Accuracy

3-Steps 5-Steps

Baseline
Freezing 0 0.3301 0.2000

Finetuning 0 0.4531 0.3799

Exemplar Replay Approach

EEIL 20 0.5649 0.3479

IL2M 20 0.6058 0.4990

ICaRL 20 0.6488 0.5216

Zero-Exemplar Approach

LUCIR 0 0.3323 0.1998

SI 0 0.4557 0.4130

MAS 0 0.4658 0.3990

EWC 0 0.4741 0.4108

RWalk 0 0.4819 0.3961

LwF 0 0.5889 0.3143

TV(ours) 0 0.7077 0.5661
FIGURE 5

Class-incremental learning performance evolution on PlantDiseaseCL: Reported Top-1 average accuracy after each stage learning. Left figure shows
evaluation with 3 steps, while the right figure shows evaluation with 5 steps (Based on ViT-S/16).
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admirable accuracy of 0.7077 in the third stage, surpassing its

closest competitor by a substantial margin. In the 5-Steps

evaluation, the TV approach similarly takes the lead, achieving

the highest final average accuracy score of 0.5661.

In summary, our TV strategy demonstrates exceptional

performance across stages. Its prowess is particularly evident in

the achieved final average accuracy scores, outperforming

competitors significantly in both 3-Steps and 5-Steps evaluations.

3.2.3 Comparative experiments on variants of
multiple attention alignment methods

In the Continual Learning segment, assessing the efficacies of

various attention alignment methods, especially under consistent

ViT conditions, is of paramount importance. The results shed light

on how different attention alignment techniques, when based on

diverse distance metrics, influence the overall learning performance

as shown in Table 5. Interestingly, all variants of attention

alignment methods commence their journey from a nearly similar

starting point, but the divergence becomes evident in subsequent

stages. A notable observation is the performance of the ‘ Original

ViT’. Despite being the foundational model, its average accuracy is

only 0.4531 and 0.3799 for 3-Steps and 5-Steps respectively, which

points towards the significance of integrating additional distance

metrics for enhanced performance.

Notably, methods employing ‘JS Divergence’ and ‘Bhattacharyya

Distance’ exhibited significant improvements. The principle behind the

‘JS Divergence’ method is rooted in the Jensen-Shannon divergence

metric. For two given probability distributions, P and Q, it first

calculates their relative entropy with respect to their average

distribution, yielding a measure of divergence for each distribution

from the average. The average of these two relative entropies is then

taken as the Jensen-Shannon divergence, serving as a measure of the

difference between P and Q.

The ‘Bhattacharyya Distance’, on the other hand, is a metric

designed to gauge the similarity between two probability

distributions. It involves taking the square root of each element of

the two distributions, multiplying them pairwise, and then

summing up all the products. The negative logarithm of this sum

is then taken. This value, which essentially represents the cross-

entropy between the two distributions, quantifies the amount of

information shared between them. A smaller Bhattacharyya
Frontiers in Plant Science 14
Distance indicates greater similarity between the distributions,

and vice versa. Our experimental results underscored the efficacy

of both the JS Divergence and Bhattacharyya Distance methods.

Particularly, the ‘Bhattacharyya Distance’ method manifested a

significant accuracy enhancement of 16.05% and 16.28%.

Furthermore, in the ‘ViT + Hellinger Distance’ method, we

utilized the Hellinger distance, which measures the similarity

between two probability distributions by calculating the Euclidean

distance of their square roots. During computation, we introduced a

normalization factor of 1ffiffi
2

p

 �

. Surprisingly, this method exhibited a

declining trend in performance across two distinct steps, registering

drops of 12.03% and 17.99% respectively when compared to the

Original ViT. This suggests that not all attention alignment

techniques universally yield positive outcomes in such contexts.

However, the true standout is our proposed ‘ViT+TV Distance’

method. Demonstrating consistent superiority over other

techniques, it achieved an average accuracy of 0.7077 for 3-Steps

and an impressive 0.5661 for 5-Steps. These figures not only

highlight the robustness and supremacy of the TV Distance in

attention alignment but also accentuate its potential in striking an

optimal balance between accuracy and adaptability in continual

learning environments.
4 Discussion

In this study, we introduce a novel mathematical paradigm for

continual learning in the domain of crop disease defect recognition.

By proposing the innovative ViT-TV framework, we further

amplify our contribution, addressing the challenges of multi-

disease image recognition in crops within the ViT architecture.

We employ the Total Variation distance loss (TV-Loss) to quantify

the disparity between current and prior attention distributions,

fostering attention consistency and mitigating the catastrophic

forgetting inherent to ViT in the absence of prior task samples.

With this new framework, we offer a solution for continual learning

in intricate scenarios like crop disease recognition.

Distinctively, the ViT-TV method bridges the gap between

stability and plasticity in model learning. By incorporating TV-

Loss into its internal architecture and co-optimizing TV-Loss with

cross-entropy loss, it ensures attention consistency when

assimilating new tasks, allowing the model to adapt and learn

without significantly compromising previously acquired

knowledge. Retaining historical knowledge is paramount for

accurate and reliable disease recognition in crops, marking a

significant stride forward.

Compared to established Zero-Exemplar Approach types of

continual learning techniques: SI focuses on safeguarding synaptic

weights to alleviate catastrophic forgetting, EWC protects vital

knowledge by regularizing the network’s global weights, and LwF

relies on knowledge transfer techniques from the theory of

knowledge distillation, ViT-TV stands out by addressing attention

consistency. Maintaining attention consistency becomes crucial in

the domain of food and crop disease image recognition, especially

when confronted with subtle variations in different disease

manifestations. The ViT-TV framework, grounded on TV
TABLE 5 Comparative results on variants of multiple attention
alignment methods.

Methods
3-Steps
Average
Accuracy

5-Steps
Average
Accuracy

Original ViT 0.4531 0.3799

ViT + JS Divergence 0.6106 0.5280

ViT +
Hellinger Distance

0.3328
0.2000

ViT +
Bhattacharyya Distance

0.6136
0.5427

ViT+TV Distance 0.7077 0.5661
frontiersin.org

https://doi.org/10.3389/fpls.2023.1283055
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang 10.3389/fpls.2023.1283055
distance and attention alignment, offers superior average accuracy

metrics in 3-step and 5-step class incremental learning experiments

on PlantDiseaseCL by holistically considering attention

consistency, stability, and knowledge preservation, presenting a

theoretically robust and practically effective approach to

maintaining model stability when recognizing multiple diseases.

Further juxtaposing the ViT-TV framework with exemplar

replay methods (e.g., ICaRL) accentuates the superiority of our

approach. While ICaRL adeptly uses exemplar samples to combat

forgetting, the ViT-TV framework obviates the need for sample

storage. The philosophy underpinning our method posits that

attention consistency based on Total Variation distance plays a

pivotal role in memory retention and transfer across tasks. Unlike

methods predominantly reliant on archiving exemplar samples to

counteract forgetting, ViT-TV captures the attention distribution of

prior tasks, amalgamating it with the attention from new learning,

effectively mitigating the risk of catastrophic forgetting.

In this research, we also delve deeper into how different distance

metrics can be employed to regularize attention maps, optimizing

model performance. The intrinsic value of attention mechanisms

lies in enabling the model to focus on pivotal parts of the input,

thereby capturing salient information. However, these focal points

may vary with task or model iterations. Thus, selecting an apt

distance metric to accentuate or diminish these differences is

crucial. Integrating the TV distance into the ViT’s attention

mechanism offers a potent strategy for addressing the continual

learning recognition challenges of multiple diseases in food

and crops.
5 Conclusions

In summary, our ViT-TV framework establishes a pioneering

approach to address the continual learning challenges in the

domain of crop disease defect recognition. By adeptly leveraging

attention consistency and the Total Variation distance loss, our

method contributes to the intelligent evolution of the agricultural

industry, ensuring that AI models possess sustainable growth and

augmented disease recognition capabilities.
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