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Stability in the leaf functional
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herbaceous species after
12-yr of nitrogen addition in
temperate larch plantations
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1State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral
Agriculture Science and Technology, Lanzhou University, Lanzhou, China, 2Qingyuan Forest CERN,
National Observation and Research Station, Shenyang, China
Leaf functional traits play critical roles in plant functioning. Although the

functional traits of overstory trees have been extensively studied, minimal

research has been conducted regarding understory species, despite the

understory layer is an important component of temperate forests. Such

insufficiency limit the broader understanding of processes and functions in

forest ecosystems, particularly when under the increasing atmospheric

nitrogen (N) deposition. Here, we investigated the responses of 18 leaf

functional traits in six understory herbaceous species within young and mature

stands (three species per stand) in larch (Larix principis-rupprechtii) plantations

that subjected to 12 years of anthropogenic N addition. We found that N addition

did not significantly impact the photosynthetic traits of understory herbaceous

species in either stand; it only led to increased chlorophyll content in Geum

aleppicum Jacq. Similarly, with the exception of decreases in the predawn leaf

water potential of Sanguisorba officinalis L., N addition did not significantly affect

leaf hydraulic traits. With the exception of changes to adaxial epidermis thickness

in Potentilla chinensis Ser. (decreased) and G. aleppicum (increased), N addition

had negligible effects on leaf anatomical traits and specific leaf area, however,

interspecific variations in the plasticity of leaf anatomical traits were observed.

Stable responses to N addition were also observed for nonstructural

carbohydrates (NSC) and their components (soluble sugars and starch), with

the exception of Polygonum divaricatum L., which exhibited increases in NSC.

Overall, our results suggest that the functional traits of understory herbaceous

species exhibit stability under conditions of long-term N enrichment in

temperate plantations.

KEYWORDS

nitrogen deposition, temperate forest, herbaceous layer, economic and hydraulic traits,
stand age
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1 Introduction

Atmospheric nitrogen (N) deposition has substantially

increased in the past century because of fossil fuel combustion

and the use of fertilizers in agriculture (Galloway et al., 2004).

Globally, the influence of N deposition on ecosystem structure and

function has been extensively studied (Bobbink et al., 2010; Lu et al.,

2010a; Marklein and Houlton, 2012; Midolo et al., 2019; Liang et al.,

2020). Indeed, N deposition could significantly affect many

ecological properties and processes. For example, atmospheric N

deposition can lead to soil acidification, imbalances between N and

phosphorus (P), the loss of exchangeable base cations, and declines

in biodiversity (Bobbink et al., 2010; Lu et al., 2010b; Peñuelas et al.,

2013; Lu et al., 2018; Midolo et al., 2019). However, N deposition

can also improve plant biomass accumulation and soil carbon

sequestration in N-limited ecosystems (Thomas et al., 2010;

Maaroufi et al., 2015; Zak et al., 2017; Schulte-Uebbing & de

Vries, 2018).

Leaf functional traits, including photosynthetic, hydraulic, and

anatomical traits, play critical roles in leaf function, which influence

the regulation of plant growth and survival (Wright et al., 2010; Liu

et al., 2016; Rowland et al., 2021; Sonawane et al., 2021; Xiong and

Flexas, 2022). Increased N availability may affect gas exchange, as well

as hydraulic and anatomical structures, with consequences for plant

performance (Cai et al., 2017; Báez and Homeier, 2018; Zhang et al.,

2021a). Most studies on the responses of functional traits to N

addition were focused on grassland species or woody tree species

(Liang et al., 2020; Zhang et al., 2021b). For example, Pivovaroff et al.

(2016) observed increased predawn water potential (Ypd), but no

changes in photosynthesis, leaf hydraulic conductivity (Kleaf), or

midday water potential (Ymd), in response to long-term N addition

in a Mediterranean-type ecosystem. In contrast, Zhang et al. (2021b)

reported that short-termN addition increased net photosynthetic rate

(An) and chlorophyll concentration (Chl), and reduced specific leaf

area (SLA) and stomatal conductance (gs). Additionally, leaf

anatomical traits (e.g., palisade mesophyll thickness [PMT], the

diameter of the midrib vascular bundle [VBD], and leaf thickness

[LT]) can influence leaf photosynthetic and hydraulic capacities;

these traits are responsive to environmental changes such as N

enrichment (Niinemets et al., 2007; Kröber et al., 2015; Cai et al.,

2017; He et al., 2018; Sonawane et al., 2021). The stratum of

understory vegetation preserves about 80% of plant biodiversity in

temperate forests (Gilliam, 2007). Considering that understory

vegetation is an important component of forest ecosystems,

functional changes in understory vegetation can substantially affect

forest structure and function, such as tree regeneration, carbon-

nutrient-water cycling, and stability (Gilliam, 2007; Gilliam et al.,

2016; Giuggiola et al., 2018; Landuyt et al., 2019; Blondeel et al., 2020;

Xing et al., 2022). For example, in a recent review, Balandier et al.

(2022) reported that understory vegetation contributed one-third of

ecosystem evapotranspiration in boreal and temperate forests, and

the removal of understory vegetation could reduce water

competition, with subsequent consequence of increasing soil water

content and stimulating sap flow and the growth of overstory tree

species (e.g., mean annual radial growth increased by 4.6-fold,

Giuggiola et al., 2018). Deng et al. (2016) demonstrated that, when
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subjected to exogenous N inputs, understory vegetation have

competitive advantages in terms of resource acquisition (e.g., P)

compared with the corresponding young overstory trees. However,

relative to overstory tree species, understory vegetation were largely

ignored during the functioning assessments of forest ecosystems,

particularly under climate change (Landuyt et al., 2019).

Although suitable levels of N addition can benefit plant

productivity, excessive N may weaken or constrain growth (Högberg

et al., 2006; Karst et al., 2021), presumably because of nutrient

imbalances and changes in functional traits induced by N addition

(Högberg et al., 2006; Báez and Homeier, 2018; Li et al., 2022). A

recent meta-analysis by Liang et al. (2020) revealed that N

addition significantly increases photosynthetic parameters such as

photosynthetic rate, gs, and transpiration rate (E). Moreover, Du

et al. (2020) reported that N addition substantially reduces soluble

sugars (SS) in woody plant leaves without influencing starch (ST),

whereas the opposite effects were observed in herbaceous plant leaves.

Notably, the responses of functional traits to climate change have been

extensively concentrated on overstory tree species; in contrast, minimal

research has been conducted regarding to understory vegetation,

particularly with respect to anatomical and hydraulic traits, and

moreover, the responses of understory and overstory species may

significantly differ (Mo et al., 2020; Jacob et al., 2022). The few studies

on understory vegetation showed that N enrichment had limited effects

on functional traits such as SLA of forest understory community

(Blondeel et al., 2020); and in most cases, long-term (~10-year) N

addition exerted little impacts on leaf functional traits of understory

vegetation in tropical forests (Mao et al., 2017; Mo et al., 2020). In

addition, experimental duration may affect the responses of functional

traits to N addition, but most studies have been conducted over

relatively short temporal scales (Mao et al., 2018; Yan et al., 2018a;

Tang et al., 2021; Zhang et al., 2021b); while studies of the effects of

long-term N addition are rare (Blondeel et al., 2020; Liang et al., 2020).

Furthermore, stand age may modulate the responses of plants to N

addition (Schulte-Uebbing & de Vries, 2018; Yan et al., 2018a),

presumably because of differences in environmental conditions.

Therefore, analyses of changes in leaf functional traits in response to

long-term N addition of understory vegetation under different aged

forests would facilitate the comprehensive and predictive changes in

forest ecological processes and functions under increasing atmospheric

N deposition (Landuyt et al., 2019).

The total area of plantations in the temperate zone has

considerably increased in recent decades, particularly in China,

which contains approximately one-third of the global plantation

area (Payn et al., 2015). Larch (Larix spp.) is the main timber tree

species in northern China and the Northern Hemisphere (Mason and

Zhu, 2014; Yan et al., 2017; Yan et al., 2018b). Here, we selected six

understory herbaceous species that occurs in young and mature larch

(L. principis-rupprechtii) plantations which were subjected to

anthropogenic N addition for 12 consecutive years, with the aim to

explore how long-term N addition affects the functional traits of

understory species. We measured 18 leaf functional traits, including

An, gs, E, Chl,Ypd,Ymd, Kleaf, adaxial and abaxial epidermis thickness

(ADET and ABET), PMT, spongy mesophyll thickness (SMT), VBD,

diameter of midrib (MD), LT, SLA, and nonstructural carbohydrates

(NSCs) and their components (SS and ST). We hypothesized that
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long-termN addition would affect leaf photosynthetic, hydraulic, and

anatomical traits of understory species because of the typical N-

limitation of the study region (Sun et al., 2016). Moreover, we

presumed that the magnitude of N-addition-induced changes in

functional traits would vary according to species and stand age

because of differences in environmental conditions.
2 Materials and methods

2.1 Study sites

The study was conducted at the Saihanba Ecological Station

(42° 25’ N, 117° 15’ E, 1505 m elevation) of Peking University,

located in the Saihanba National Forest Park in Hebei Province,

northern China. The climate is semi-humid, with long, cold winters

(November–March), and short springs and summers. The annual

mean temperature is –1.0°C, and the monthly mean ranges from –

21.8°C in January to 16.2°C in June. The annual mean precipitation

is 460 mm. Snowfall begins in mid-October, and snow melt occurs

in early April. Typically, < 30 cm of snow accumulates in winter.

Ambient N deposition is 13 kg ha−1 year−1 (Deng et al., 2016).
2.2 Experimental design and
sample collection

In 2009, an 11-year-old larch (Larix principis-rupprechtii)

plantation and a 45-year-old larch plantation were selected to

represent young and mature stands, respectively. Both of the

stands were fenced by 100 m × 100 m, and each was divided into

nine 20 m × 20 m plots, with a buffer zone of approximately 10 m

between adjacent plots. Nitrogen addition began in May 2010 and

included three treatments: control (no N addition), low N addition

(20 kg N ha−1 year−1; N20), and high N addition (50 kg N ha−1

year−1; N50). Each treatment was replicated three times. Between

May 2010 and the present, liquid urea was applied each month to

the N addition treatments during the growing season (May–

October) using backpack sprayers to ensure homogeneity within

each plot. An equal volume of water was added to the control plots.

Details of the experimental design can be seen in Yan et al. (2018c).

In mid-August 2021, we sampled leaves from three understory

species in each stand. Specifically, Vicia sepium L., Potentilla

chinensis Ser., and Polygonum divaricatum L. were sampled from

the young stand; Agrimonia pilosa Ldb., Geum aleppicum Jacq., and

Sanguisorba officinalis L. were sampled from the mature stand. For

trait measurements, we sampled only fully expanded, mature leaves

from healthy individuals with no visible signs of pests or diseases.
2.3 Photosynthetic measurements

We selected three individuals of each species with similar

growth status in each plot, then sampled fully mature leaves from

each individual. Photosynthetic parameters, including An, gs, and E,

were measured in situ between 09:00 and 11:30 on sunny days with
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a LI-6800 portable photosynthesis system (Li-Cor Inc., Lincoln, NE,

USA). The CO2 concentration in the chamber was maintained at

400 mmol mol−1, and the temperature of the leaf cuvette was

maintained at 25°C. The photosynthetic photon flux density was

set at 1500 mmol m−2 s−1. The relative humidity was maintained at

50–60%. After photosynthesis measurements, Chl was measured on

six replicates of each species in each plot using a chlorophyll content

meter (CCM-300, Opti-Sciences Inc., Hudson, NH, USA).

We also randomly selected ≥ 5 individuals of each species in

each plot for leaf sampling. The leaves were cut with scissors, placed

in envelopes inside a cooler, and immediately transported to the

laboratory. Leaves were scanned using a digital scanner and leaf area

was calculated using ImageJ software. Leaves were then oven-dried

at 65°C for ≥ 48 h to obtain leaf dry mass. Specific leaf area (cm2

g−1) was obtained through the division of leaf area by leaf dry mass.
2.4 Leaf hydraulic and
anatomical measurements

We collected healthy, intact leaves from five individuals of each

species in each plot. The leaf water potential metrics Ypd and Ymd

were measured before sunrise (06:00) and at midday (12:00–14:00),

respectively, using a pressure chamber (Model 1505D, PMS

Instrument Company, Albany, OR, USA). Immediately after E

measurement, the leaves of three individuals were used to

measure water potential. Neighboring leaves were covered with

aluminum foil for 30 min prior to water potential measurements.

Kleaf (mmol m−2 s−1 MPa−1) was calculated as:

Kleaf = E=DY

where E (mol m−2 s−1) represents the transpiration rate per unit

leaf area as measured with a LI-6800 portable photosynthesis

system (Li-Cor Inc.), and DY (MPa) is the difference in water

potential between covered and uncovered leaves.

We assessed leaf anatomy by observing paraffin sections of fresh

leaf samples under a light microscope. We sampled five healthy,

fully mature leaves from five individuals of each species in each plot.

We cut each leaf to extract the leaf blade tissue within 5 mm of

either side of the midrib, then sliced this sample into 5 mm

segments. Segments were fixed in FAA solution for ≥ 24 h;

dehydrated using varying concentrations of alcohol; cleared with

xylene; and embedded in paraffin blocks. The paraffin blocks were

cut into 5 µm sections using a sliding microtome, stained with

safranin-fast green, and sealed with gum. The prepared cross-

sections were observed under a light microscope. ImageJ software

was used to measure anatomical traits including adaxial epidermis

thickness, abaxial epidermis thickness, palisade mesophyll

thickness, spongy mesophyll thickness, diameter of midrib,

diameter of the midrib vascular bundle, and leaf thickness.
2.5 NSC measurements

NSCs were determined using themodified anthronemethod. Fresh

leaf samples were microwaved at 700 W for 90 s to stop enzymatic

activity, then oven-dried for ≥ 48 h at 65°C to achieve a constant weight
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and ground with a ball mill (MM400, RETSCH GmbH, Haan,

Germany). Powdered leaf samples (0.1 g) were placed into 10 ml

centrifuge tubes with 2 ml of 80% ethanol. The mixture was incubated

for 30 min in a water bath at 80°C, then centrifuged at 3500 rpm for 10

min. The supernatant was retained, and the residue was extracted two

additional times for SS measurement. After SS extraction, the residue

was subjected to ST extraction by adding 2 ml of distilled water and

boiling the solution in a ~100°C water bath for 15 min, then adding 2

ml of 9.2 mol L−1 HClO4 and shaking the mixture for 15 min. Then, 4

ml of distilled water was added and the solution was centrifuged at

3500 rpm for 10 min. Subsequently, 2 ml of 4.6 mol L−1 HClO4 and 5

ml of distilled water were added to the precipitate, the solution was

centrifuged at 3500 rpm for 5 min, and the supernatant was retained.

Twice, we added an 5 ml of distilled water to wash the residue, then

combined it into the supernatant. Concentrations of SS and ST were

measured using a UV-Vis spectrophotometer with an absorbance of

620 nm. Total NSC concentrations were calculated by summing SS

and ST.
2.6 Statistical analyses

Two-way analysis of variance was used to determine how functional

traits were affected by N addition, species, and the interaction between

those two factors. Least significant difference tests were used to assess

differences among treatments. When necessary, the data were

transformed to improve homogeneity of variance and/or normality.

When the transformed data did not satisfy these assumptions, non-

parametric Kruskal–Wallis tests were used. All analyses were conducted

using SPSS 16.0 for Windows (SPSS Inc., Chicago, IL, USA), and

differences were considered statistically significant at P-values< 0.05.
3 Results

3.1 Photosynthetic traits

Long-term N addition did not significantly impact An, gs, or E in

any of the six understory species in either stand (Figure 1); however,

Chl was increased in G. aleppicum. We observed minimal variation

in photosynthetic traits among species (Table 1).
3.2 Leaf hydraulic traits

With the exception of a reduction in Ypd in S. officinalis, N

addition did not significantly affect Ypd, Ymd, or Kleaf in any of the

six species (Figure 2). Ypd and Ymd significantly varied among

species in the mature and young stands, respectively, but Kleaf had

no variation among species in either stand (Table 1).
3.3 Leaf anatomical traits

After N addition, adaxial epidermis thickness decreased in P.

chinensis in the young stand, whereas it increased in G. aleppicum in
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the mature stand (Figure 3). Nitrogen addition had no other

significant impacts on leaf anatomical traits. However, with the

exception of SLA, leaf anatomical traits significantly differed among

species; spongy mesophyll thickness slightly differed among species

in the mature stand (P = 0.072).
3.4 NSC concentrations

With the exception of significant increases in total NSC

concentrations in P. divaricatum in the young stand (Figure 4),

neither NSC nor its components (SS and ST) exhibited significant

responses to N addition in any understory species. However, we

observed significant interspecific variation in all three variables.
4 Discussion

4.1 Effects of long-term N addition on
photosynthetic parameters

Numerous studies have revealed positive correlations between

leaf N concentrations and photosynthetic capacity (Evans, 1989;

Reich et al., 1997; Wright et al., 2004), largely because N is an

important component of photosynthetic proteins (Evans, 1989;

Güsewell, 2004; Evans and Clarke, 2019). Contrary to our

hypothesis, we did not observe improvements in the An of

understory species after long-term N addition (Figure 1).

However, N addition had significant positive effects on leaf N

concentrations of understory species in the mature stand (Yan

et al., 2018a). These findings indicate that N addition-induced

increases in leaf N concentrations do not necessarily lead to

increases in photosynthetic carbon assimilation capacity, probably

due to that larger fraction of leaf N was allocated to cell walls but not

photosynthetic proteins (Bauer et al., 2004; Talhelm et al., 2011;

Pivovaroff et al., 2016; Onoda et al., 2017). Our results differ from

the findings in other N-limited ecosystems, where higher N

availability typically improves leaf physiological traits (Cooke

et al., 2005; Zhang et al., 2021a,b).

The lack of changes inAn in response to long-termN enrichment

can be attributed to various mechanisms. Nitrogen is unlikely to be a

key limiting factor for understory species in the young stand; thus, N

addition may have induced few changes in leaf N and had minimal

effects on the allocation of N to photosynthetic processes (Yan et al.,

2018a). However, the availability of other resources, such as light,

may constrain the growth of understory species (Yan et al., 2018a; De

Pauw et al., 2022); in the mature stand, increased leaf N

concentrations were presumably insufficient to compensate for the

negative effects of increased overstory shading on photosynthesis

(Palmroth et al., 2014; Yan et al., 2018a). Additionally, the excess N in

leaves may have been allocated to soluble proteins and/or free amino

acids, rather than chlorophyll (Mao et al., 2018). Since NSCs are the

primary products of photosynthesis (Hartmann and Trumbore,

2016), and thus, NSCs did not vary (Figure 4) due to the relatively

stable photosynthetic rates. The exception of the statistically

significant increase in NSCs observed in P. divaricatum can
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A B
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FIGURE 1

Effects of N addition on An (A), gs (B), E (C), and Chl (D) of Vicia sepium (VS), Potentilla chinensis (PC), Polygonum divaricatum (PD) in the young
stand, and Agrimonia pilosa (AP), Geum aleppicum (GA), and Sanguisorba officinalis (SO) in the mature stand. Asterisk represents significant
differences among N addition treatments (P < 0.05). Values are means ± standard errors (n = 3).
TABLE 1 Results (P-values) of two-way analyses of variance.

Traits Young Mature

N Species N × Species N Species N × Species

An 0.619 0.176 0.108 0.700 0.498 0.713

gs 0.113 0.317 0.562 0.388 0.262 0.918

E 0.123 0.582 0.789 0.446 0.318 0.913

Chl 0.050 0.485 0.921 0.365 0.062 0.080

Ypd 0.114 0.509 0.199 0.528 0.010 0.338

Ymd 0.064 0.010 0.977 0.565 0.916 0.430

Kleaf 0.233 0.457 0.887 0.324 0.911 0.948

ADET 0.194 <0.001 0.817 0.462 <0.001 0.396

ABET 0.552 <0.001 0.897 0.730 <0.001 0.333

PMT 0.481 <0.001 0.774 0.024 <0.001 0.403

SMT 0.928 <0.001 0.951 0.706 0.072 0.458

MD 0.097 0.032 0.688 0.654 <0.001 0.953

VBD 0.208 <0.001 0.294 0.745 0.009 0.932

(Continued)
F
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TABLE 1 Continued

Traits Young Mature

N Species N × Species N Species N × Species

LT 0.946 <0.001 0.875 0.464 <0.001 0.215

SLA 0.679 0.340 0.428 0.045 0.210 0.286

NSC 0.045 <0.001 0.138 0.097 <0.001 0.704

SS 0.434 <0.001 0.190 0.814 <0.001 0.102

ST 0.051 <0.001 0.020 0.081 <0.001 0.466
F
rontiers in Plant Scien
ce 06
An, net photosynthetic rates; gs, stomatal conductance; E, transpiration rate; Chl, chlorophyll concentration; Ypd, predawn water potential; Ymd, midday water potential; Kleaf, leaf hydraulic
conductivity; ADET, adaxial epidermis thickness; ABET, abaxial epidermis thickness; PMT, palisade mesophyll thickness; SMT, spongy mesophyll thickness; MD, diameter of midrib; VBD,
diameter of the midrib vascular bundle; LT, leaf thickness; SLA, specific leaf area; NSC, nonstructural carbohydrate; SS, soluble sugars; and ST, starch. Bold text indicates significant differences
(P < 0.05).
A

B

C

FIGURE 2

Effects of N addition on Ypd (A), Ymd (B), and Kleaf (C) of Vicia sepium (VS), Potentilla chinensis (PC), Polygonum divaricatum (PD) in the young stand,
and Agrimonia pilosa (AP), Geum aleppicum (GA), and Sanguisorba officinalis (SO) in the mature stand. Asterisk represents significant differences
among N addition treatments (P < 0.05). Values are means ± standard errors (n = 3).
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presumably be attributed to corresponding improvements in leaf

photosynthesis albeit not significant (Figures 1, 4).

With the exception of G. aleppicum, N addition had no impact

on Chl among species in the mature stand (Figure 1) despite

increased leaf N concentrations (Yan et al., 2018a). This result

implies that the additional leaf N was probably incorporated into

soluble proteins and/or free amino acids, rather than chlorophyll;

however, further investigations into leaf N metabolism are needed

to confirm this hypothesis.
4.2 Effects of long-term N addition on leaf
hydraulic traits

Leaf water transport plays a critical role in regulating the growth

and survival of plants, particularly in the context of increasing

atmospheric N deposition (Sack and Holbrook, 2006; Wang et al.,
Frontiers in Plant Science 07
2016; Jin et al., 2020). The efficiency of water transport through the

leaf can be quantified using Kleaf (Sack and Holbrook, 2006). Given

that water transport resistance is generally higher in leaves than in

stems and shoots, Kleaf has a substantial impact on water transport

at the whole-plant scale (Sack et al., 2003; Sack et al., 2005; Wang

et al., 2016), particularly in understory herbaceous species. Analyses

of trees have shown that N addition significantly affects Kleaf,

thereby influencing whole-plant water use (Wang et al., 2016; Jin

et al., 2020; Zhang et al., 2021c). However, in contrast to our

hypotheses, N addition did not alter Kleaf values in understory

species in either stand (Figure 2). The most probable explanation

for this result arises from the lack of changes in leaf anatomical

structure, such as VBD (Figure 3). Leaf anatomical traits (e.g., VBD)

determine Kleaf, and plants with larger VBDs are generally

characterized by higher Kleaf values (Sack and Holbrook, 2006;

Sonawane et al., 2021; Xiong and Flexas, 2022). Accordingly, the

lack of changes in gs and E (Figure 1) is understandable.
A B

D

E F

G H

C

FIGURE 3

Effects of N addition on ADET (A), ABET (B), PMT (C), SMT (D), VBD (E), MD (F), LT (G), and SLA (H) of Vicia sepium (VS), Potentilla chinensis (PC),
Polygonum divaricatum (PD) in the young stand, and Agrimonia pilosa (AP), Geum aleppicum (GA), and Sanguisorba officinalis (SO) in the mature
stand. Asterisk represents significant differences among N addition treatments (P < 0.05). Values are means ± standard errors (n = 3).
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Leaf water potential may reflect the functional capacity of plants

to respond to water availability. Among leaf water metrics, Ypd is

considered the most useful and representative one for determining

whether plants suffer from drought stress (Trugman et al., 2021).

With the exception of a reduction in Ypd in S. officinalis (Figure 2),

Ypd and Ymd remained relatively constant in both stands despite

long-term N inputs. These results indicate that although S.

officinalis may experience drought stress, long-term N addition

had minor impacts on leaf water relations in the other

understory species.
4.3 Effects of long-term N addition on leaf
anatomical traits

Leaf anatomical traits are associated with leaf economics (e.g.,

photosynthetic rate) and leaf hydraulics (e.g., hydraulic
Frontiers in Plant Science 08
conductivity) (Niinemets et al., 2007; Liang et al., 2019; Sonawane

et al., 2021; Xiong and Flexas, 2022). For example, a thicker palisade

mesophyll layer may contain more chloroplasts, thereby optimizing

photosynthesis; in contrast, a thinner epidermis may promote gas

exchange and increase transpiration (Kröber et al., 2015; He et al.,

2018). Thus, in the context of environmental change (e.g., increased

N availability), we expect plants to exhibit adaptations in leaf

anatomy that would maximize overall plant function (Chen et al.,

2010; Cai et al., 2017; He et al., 2018). Previous studies have

demonstrated that even short-term N addition affects some leaf

anatomical traits, such as the diameters of the midrib and midrib

vascular bundle in Arabidopsis thaliana, without affecting other

traits (e.g., thicknesses of leaves, palisade and spongy mesophyll

layers, and adaxial and abaxial epidermis) (Cai et al., 2017).

Contrary to our hypotheses, however, few of the measured leaf

anatomical traits exhibited changes despite 12 years of N addition

(Figure 3). The apparent stability of leaf anatomical traits reflects
A

B

C

FIGURE 4

Effects of N addition on NSC (A), SS (B), and ST (C) of Vicia sepium (VS), Potentilla chinensis (PC), Polygonum divaricatum (PD) in the young stand,
and Agrimonia pilosa (AP), Geum aleppicum (GA), and Sanguisorba officinalis (SO) in the mature stand. Asterisk represents significant differences
among N addition treatments (P < 0.05). Values are means ± standard errors (n = 3).
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the acclimation of understory species to long-term N inputs in

temperate larch plantations. Our findings differ from the results of

Zhang et al. (2021c), which showed that two tree species

(Castanopsis chinensis and Schima superba) in a subtropical forest

exhibited decreased leaf thickness after 6-year canopy N addition,

and Guo et al. (2022), which reported increases in palisade

mesophyll thickness, leaf thickness, and palisade-spongy

mesophyll ratio for the herbaceous species of Stipa glareosa in a

desert steppe after 3-year N addition. Furthermore, we observed

substantial interspecific variations in leaf anatomical traits

(Figure 3; Table 1), indicating that these understory species

exhibited distinct adaptive strategies.

Nevertheless, we selected only 3–5 individuals per species within

each plot, which may, to some extent, limit the statistical power,

thereby, more replicates might be better to detect the differences.

Furthermore, trait correlations and other environmental factors such

as temperature, drought, and herbivore outbreaks, may have

constrained the responses of leaf functional traits to N addition,

which deserve further investigations.
5 Conclusion

Using a 12-year anthropogenic N addition experiment, we

investigated the responses of 18 leaf functional traits in six

understory herbaceous species to increased N availability in

young and mature larch plantations in northern China. Contrary

to our hypotheses, understory species exhibited few eco-

physiological changes in response to long-term N addition. This

lack of response highlights the capacity of understory species to

maintain the stability of functional traits. Confirmation of the

representativeness of our results requires further investigations

into the plasticity of other traits and species in these

larch plantations.
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