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Genotype-environment interaction (GEI) presents challenges when aiming to

select optimal cassava genotypes, often due to biased genetic estimates. Various

strategies have been proposed to address the need for simultaneous

improvements in multiple traits, while accounting for performance and yield

stability. Among these methods are mean performance and stability (MPS) and

the multi-trait mean performance and stability index (MTMPS), both utilizing

linear mixed models. This study’s objective was to assess genetic variation and

GEI effects on fresh root yield (FRY), along with three primary and three

secondary traits. A comprehensive evaluation of 22 genotypes was conducted

using a randomized complete block design with three replicates across 47

distinct environments (year x location) in Brazil. The broad-sense heritability

(H2) averaged 0.37 for primary traits and 0.44 for secondary traits, with plot-

based heritability (h2
mɡ) consistently exceeding 0.90 for all traits. The high extent

of GEI variance (s2
ɡxe) demonstrates the GEI effect on the expression of these

traits. The dominant analytic factor (FA3) accounted for over 85% of the total

variance, and the communality (ɧ) surpassed 87% for all traits. These values

collectively suggest a substantial capacity for genetic variance explanation. In

Cluster 1, composed of remarkably productive and stable genotypes for primary

traits, genotypes BRS Novo Horizonte and BR11-34-69 emerged as prime

candidates for FRY enhancement, while BRS Novo Horizonte and BR12-107-

002 were indicated for optimizing dry matter content. Moreover, MTMPS,

employing a selection intensity of 30%, identified seven genotypes

distinguished by heightened stability. This selection encompassed innovative

genotypes chosen based on regression variance index (S2di, R2, and RMSE)

considerations for multiple traits. In essence, incorporating methodologies that

account for stability and productive performance can significantly bolster the

credibility of recommendations for novel cassava cultivars.

KEYWORDS

Manihot esculenta Crantz, genotype vs. environment interaction, mixed model,
breeding, stability
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1 Introduction

Cassava (Manihot esculenta Crantz), a member of the

Euphorbiaceae family, displays high genetic variability. It is one

of the primary agricultural species and holds significant industrial

potential, particularly in the starch extraction from its roots, which

is considered the species’ primary product. However, all parts of the

plant can be commercially utilized or explored as genetic plant

resources (Ceballos et al., 2012).

With a global production of 302.6 million tons cultivated across

28.2 million hectares and an average yield of 10.7 t ha-1, cassava is

grown in over 90 countries. It ranks as the fourth largest caloric

source and the second most important source of starch globally,

playing a crucial role in ensuring food security (Stapleton, 2012;

FAO, 2020; Ceballos et al., 2021). Given its pervasive cultivation

across continents, and in the face of global climate change, coupled

with various environmental factors, existem significant influences

and associations affect cassava’s yield, profitability and stability.

Additionally, genetic factors such as asynchronous flowering,

heterozygosity, inbreeding, and low seed set pose potential

challenges to cassava improvement progress (Ceballos et al.,

2020). Hence, overcoming these challenges and attaining

successful production hinges on effectively employing modern

breeding strategies across diverse and specific agronomically

relevant environments.

In breeding programs, the selection process involves conducting

numerous trials in the target production centers to recommend new

varieties across multiple crop years. In general, it takes 8 to 10 years

to develop a new cassava cultivar, considering the following stages

in the breeding program: i) crossing to obtain progenies; ii) seedling

production and field transplantation; iii) clonal evaluation trials

(CET), the initial stage of agronomic evaluation characterized by a

few environments and a high number of clones; iv) preliminary

yield trials (PYT), represented by 2-3 field replications, fewer plants

per plot (1 row with 6-8 plants), and 1-2 locations; v) advanced yield

trials (AYT), with 3 replications, larger plots (4 rows with 16-24

plants), and 3-5 locations; vi) uniform yield trials (UYT), featuring

3-4 field replications, larger plots (4-6 rows with 40-60 plants), and

8-12 evaluation locations; and vii) cultivar value and use trials

(VCU). Therefore, generally, starting from the AYT trials, cassava

clones are already evaluated in multi-environment tests (METs)

over several years to assess genotype-environment interaction (GEI)

(Oliveira et al., 2012; Wolfe et al., 2016; Ceballos et al., 2020). These

trials aim to enhance our understanding of variables, influencing

phenotypic expression and identify genotypes with superior

performance and stability in order to mitigate the risk of crop

failure and low adoption rates for new varieties.

METs are conducted annually to examine the genotype ×

environment interaction (GEI), a natural phenomenon that

incorporates the effects of genotypes and environments as well as

the non-consistency in genotype ranking for specific traits.

Assessing the importance of genetic and environmental factors is

particularly important in the selection process, especially for traits

with low heritability, as they may potentially exhibit more

pronounced GEI effects (Malosetti et al., 2013; Olivoto et al., 2019a).
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In recent decades, a range of statistical methods have been

developed to model GEI, identify genotypes that are stable and well-

adapted, and select target environments, including mega-

environments that share similar climatic patterns. These methods

vary from simple nonparametric analysis-of-variance techniques

with fixed and/or linear-bilinear effects to more robust univariate

and multivariate parametric methods. These advancements aim to

achieve more advanced results and a more systematic

characterization of GEI (Yates and Cochran, 1938; Finlay and

Wilkinson, 1963; Eberhart and Russell, 1966; Gauch and Zobel,

1988; Yan et al., 2000). More recently, linear mixed-effects models

(LMM) have gained popularity, allowed estimation of best linear

unbiased predictions (BLUPs), and provided reliable estimates of

variance components and genetic values. LMMs also enable

modeling heterogeneity of genetic variances and correlations

between environments with contrasting conditions and

unbalanced data. This capability generates robust predictions of

genotypic values and reduces noise, which is especially valuable

given the nature of MET (Smith et al., 2005; Hu, 2015; Van Eeuwijk

et al., 2016).

In the final phases of breeding programs, a significant challenge

emerges due to the inherent imbalance in trials caused by replacing

underperforming clones with new ones for testing in subsequent

years. This results in varying numbers of genotypes being evaluated

annually and across different locations, leading to a pronounced

imbalance in the phenotypic data. Conventional approaches to

studying the GEI face difficulties when dealing with such

imbalanced data, resulting in disparate variances and covariances

of fitted mean phenotypic values. These variances and covariances

play a crucial role for breeders in selecting genotypes for further

assessment or recommending them as new varieties. Furthermore,

innovative mixed model-based approaches, like analytical factor

analysis, facilitate the integration of kinship information by

employing covariance matrices of random genetic effects

(Bernardo, 2020).

Beyond exhibiting high agronomic potential in specific target

environments, novel cassava varieties must also demonstrate

phenotypic stability to gain recommendation and adaption across

wider geographical regions, whether for industrial use or direct

consumption. Nevertheless, selecting genotypes with strong

performance across multiple traits simultaneously presents a

complex challenge due to undesirable correlations stemming from

intricate trait relationships and genetic architectures (Egesi et al.,

2007; Van Eeuwijk et al., 2016; Olivoto et al., 2019a). Most practical

breeding efforts have historically focused on approaches that solely

focus on individual traits in isolation, like truncated selection, can

prove inadequate when populations lack the necessary variation for

all traits of interest, necessitate larger population sizes, or encounter

unfavorable correlations between pivotal traits. Given the need for

simultaneous genetic gains in multiple traits, with rapid progress

and enhanced reliability in recommendations, various methods

have been proposed, including: FAI BLUP (a multi-trait index

based on factor analysis and genotype-ideotype distance – Rocha

et al., 2018), MTSI (a multi-trait stability index – Olivoto et al.,

2019a), GYT (genotype by yield × traits – Yan and Frégeau-Reid,
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2018), and MGIDI (a multi-trait genotype-ideotype distance index -

Olivoto and Nardino, 2021). However, there are limited reports that

associate the study of GEI, performance, adaptability, and genotypic

stability for multi-trait evaluations with unbalanced data in

cassava trials.

To ensure the delivery of varieties that meet consumer

expectations and gain high adoption in the agricultural sector,

the selection process should consider not only yield-related

attributes but also characteristics associated with plant

architecture, reproductive capacity, soil coverage to minimize

weed interference, and root quality for improved commercial

acceptance, particularly when the roots are intended for fresh

consumption or processing in agroindustries that demand high-

quality starch. As a result, multi-trait and multi-environment

selection in cassava breeding programs is already being

practiced (Aina et al., 2009; Adjebeng-Danquah et al., 2017;

Nduwumuremyi et al., 2017; Okeke et al., 2017; León et al.,

2021). However, there is still a need for alternative and robust

approaches for simultaneous selection for both agronomic

performance and yield stability.

Olivoto et al. (2019b); Olivoto et al. (2021) have developed two

methods to incorporate the weighting between mean performance

and genotypic stability, which can be applied to various parametric

and nonparametric approaches. The first method, mean

performance and stability (MPS), calculates the weighted average

of the absolute scores derived from the singular value

decomposition (SVD) of the BLUPs matrix for the GEI effect. On

the other hand, the second method, multi-trait mean performance

and stability index (MTMPS), builds upon the concept of the multi-

trait stability index (MTSI) and is based on the genotype-ideotype

(Euclidean) distance using scores obtained from an exploratory

factor analysis. In the MTMPS approach, the genotype with the

lowest MTMPS value is considered closest to the ideotype,

indicating high mean performance and stability across all

evaluated traits. Therefore, the objectives of the present study

were as follows: i) to assess the GEI in cassava genotypes for

multiple traits, ii) to estimate the genetic parameters for seven

economically important agronomic traits, iii) to identify groups of

genotypes with superior productive performance, adaptability, and

genotypic stability using the MPS index, iv) to select genotypes that

exhibit high performance and genotypic stability across multiple

traits using the MTMPS index.
2 Materials and methods

2.1 Yield trials

The METs conducted by the cassava breeding program at

Embrapa Mandioca e Fruticultura in Cruz das Almas, Bahia,

Brazil (12°40 ’19” S, 39°06 ’22” W, altitude of 226 m),

encompassed a total of 11 AYT and 36 UYT trials across diverse

agricultural potential environments (Table S1). These trials were

carried out over sixteen locations with every combination of year

and location being regarded as an individual environment. In sum,

the trials spanned 47 distinct environments. The field trials adhered
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to the local production system, commencing at the onset of the

rainy season and continued under dryland conditions from 2016 to

2021 (Figure 1). The majority of these environments exhibited a

tropical hot and humid climate, varying between Tropical Humid

Savanna (Aw) and Tropical Monsoon (Am). The annual average

precipitation was 1000 mm between April and August, coupled with

an average annual temperature of 25.5°C ± 4.5°C.

A total of 22 genotypes underwent evaluation, including six

clones in the final stage gate form the Embraoa breeding program

(BR11-24-156, BR11-34-41, BR11-34-45, BR11-34-64, BR11-34-69,

and BR12-107-002), along with 10 improved varieties released for

the target area (BRS Caipira, BRS Dourada, BRS Formosa, BRS

Gema de ovo, BRS Kiriris, BRS Mulatinha, BRS Novo Horizonte,

BRS Poti Branca, BRS Tapioqueira, and BRS Verdinha), and six

landraces used by the local farmers (Cigana Preta, Correntão,

Corrente, Eucalipto, IAC-90, and Vassoura Preta).

The soil preparation for cultivation followed conventional

practices, including desiccation of spontaneous plants, plowing, and

harrowing to incorporate crop residues. Planting furrows were then

created using a cassava planter, and fertilization was performed based

on soil analysis. Manual planting was carried out horizontally in the

furrows using standard cassava stems obtained from 12-month-old

plants that were free of pests and diseases.

For experimental design, the trials were organized following a

randomized complete block design with three replications. Each

plot comprised four rows, accommodating 25 plants per row,

spaced at 0.90 m between rows and 0.80 m between individual

plants. Fertilization and post-planting treatments adhered to the

recommended practices for cassava cultivation (as outlined by

Souza et al., 2006).
2.2 Traits assessed

At 12 months after planting, seven agronomic traits were

measured: 1) fresh root yield (FRY) represents the total weight of

all the roots in the plot and is measured in tons per hectare (t ha-1),

2) shoot yield (ShY) represents the weight of the aboveground parts

of all the plants in the plot, including stems, leaves, and petioles, also

converted in tons per hectare (t ha-1), 3) dry matter content of the

roots (DMC), determined in % using the specific gravimetric

method (Kawano et al., 1987), 4) dry root yield (DRY), assessed

by multiplying the FRY by the DMC and represents the weight of

dry roots (t ha-1), 5) harvest index (HI), the ratio between the fresh

weight of roots and the total biomass, including both aboveground

and belowground parts of the plants, expressed as a percentage (%),

6) plant archictetucture (PIA), evaluated using a 1-5 rating scale,

where: 1 excellent architecture (no branching or erect stems), 2

good architecture (branching above 1.60 m or low branching with at

least 1.6 m of erect stems), 3 means moderate architecture

(branching above 1.20 m or low branching with at least 1.2 m of

erect stems), 4 poor architecture (branching above 0.80 m or low

branching with at least 0.80 m of erect stems), and 5 very poor

architecture (highly branched clones with less than 0.80 m of erect

stems), 7) plant height (PH), measured using a graduated scale from

the soil level to the plant meristem and is expressed in meters (m).
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2.3 Individual and joint statistical analysis

After conducting the individual analysis of variance and

ensuring the homogeneity of residual variances using the Shapiro-

Wilk test, the joint analysis of variance was performed. A deviance

analysis was performed considering the following mixed-effect

model: Yij = μ +  ai + tj + (a   t)ij + yjk + ϵijk, where Yij is the

response variable, μ is the general mean, ai is the main effect of

the i-th genotype (random, ai ∼  N(0,  s 2
ɡ), tj   is the main effect of

the j-th environment (random, tj ∼  N(0,  s 2
e ), (a   t)ij  is the effect

of the interaction between the i-th genotype and the j-th

environment (random, (a   t)ij ∼  N(0,  s 2
ɡxe), yjk is the fixed effect

of the k-th block within the j-th environment (i = 1, 2,…, g; j = 1, 2,

…, e; k = 1, 2,…, b), and ϵijk is the random error associated with the

model with ϵijk ∼  N(0,  s 2
e ).

The variance components were obtained using the restricted

maximum likelihood (REML) using the expectation-maximization

algorithm (Dempster et al., 1977), and the significance of the

random effects was evaluated using the likelihood ratio test

(LRT), which compares the − 2(RES)loɡ of two models: one with

all the random terms and another with one of the random terms

omitted. This comparison is performed using a chi-square (c²) test.
Four heritability estimates were obtained: (i) Broad-sense

heritability (H2), calculated as H2 =
s 2
ɡ

s 2
ɡ+s 2

ɡxe+s 2
e
, where s 2

g is the

genotypic variance, s 2
gxe   is the variance of the GEI interaction,

and s 2
e is the residual variance. (ii) plot-based heritability (h2ɡm),
Frontiers in Plant Science 04
calculated as h2ɡm = s 2
ɡ=  ½s2

ɡ + s 2
ɡxe=e + s2

e =(eb)�, where e and b are
the numbers of environments and blocks, respectively. (iii)

Heritability of Cullis et al. (2006) (H2
cullis), calculated as H2

cullis =

1 − DBLUP
2s 2

ɡ
, where DBLUP is the mean standard error of the

genotypic BLUPs. (iv) Heritability of Piepho and Möhring

(2007) (H2
Piepho), calculated as H2

Piepho =
s 2
ɡ

s 2
ɡ+�ʋ=2

, where �ʋ is the

mean variance of a difference of two best linear unbiased

estimators (BLUE). Additionally, the obtained the: i) phenotypic

variance (s 2
p ) given by the formula s 2

p = (s 2
ɡ) + (

s2
ɡxe

e ) + ( s
2
e;
eb ),

where e is the number of environments; b is the number of

replications; ii) genotypic coefficient of variation estimated as C

Vɡ = (
ffiffiffiffi
s2
ɡ

p
X )*100%, where X is the overall mean; iii) coefficient of

determination of GEI effects r2i = s 2
ɡxe   =   (s 2

ɡ +  s 2
ɡxe +  s2

e ); iv)

residual coefficient of variation estimated as CVr =  (
ffiffiffiffi
s2
e

p
X )*100%;

v) genotype-environment correlation calculated as rɡe =  s 2
ɡ=

(s 2
ɡ + s 2

ɡxe); vi) CVratio given by CVɡ=CVr.
2.4 Adaptability and stability analyses

The genotypes were ranked using the MPS method, which has

the potential to accommodate a linear mixed-effects model

structure, providing new graphical insights for simultaneous

selection. Additionally, it quantifies GEI through various

parametric and non-parametric stability indices, including the

classic method developed by Eberhart and Russell (1966), which
FIGURE 1

Biplot of the first two principal components of seven climate variables and the field trials. Maximum, minimum and average temperature (Tmax, °c, Tmin,
°c and Tav, °c, respectively), rainfall (Rain, mm day-1), relative humidity (Rh, %), Wind speed (W/speed, ms-1) and solar radiation (Sol/rad, MJ/m-2 day-1).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1282221
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sampaio Filho et al. 10.3389/fpls.2023.1282221
popularized stability analyses worldwide. However, in this study, we

adapted the concept of the WAASBY index (a superiority index that

allows weighting between mean performance and stability –Olivoto

et al., 2019a) to account for data imbalance. WAASBY utilizes the

mean of the response variable and the weighted mean of absolute

scores derived from the singular value decomposition of the BLUP

matrix to quantify GEI effects generated by a linear mixed-effects

model (LMM). Therefore, in this study, performance and stability

were quantified using the WAASB method originally proposed.

Still, due to data imbalance, stability was adjusted to consider

genotypic stability of the variance of nonlinear regression

deviations (S2di), the coefficient of determination (R2) and the root

mean square error of the regression (RMSE), according to Yue

et al. (2022).

In accordance with the aforementioned indices, genotypes

exhibiting zero values for both the S2di and RMSE were conveniently

assigned a rank of 1. This rank indicated that they were the most stable

genotypes up to the g-th genotype. Conversely, genotypes with slop (R2)

close to 1 were considered the most responsive and well-adapted up to

the g-th genotype. These highly responsive genotypes are represented

by yellow bars in the MPS biplots, while the least-ranked genotypes are

depicted in dark blue. In order to determine the adaptability and

stability parameters, as well as to rank the genotypes, the following

model was utilized: yij = boi  + b1i Ij  + d 2
di + ϵij , where yij represents

the mean of genotype i in environment j, boi  is the constant regression
term, representing the overall mean of genotype i, b1i  is the coefficient
of the linear regression, indicating the response of the i-th genotype to

variations in the j-th environment, Ij represents the coded

environmental index, d 2
di   corresponds to the variance of the

regression deviations, ϵij   represents the mean experimental error.

The first step involved rescaling the agronomic performance

and the stability matrix, so that they can be directly compared, using

the following model: rYi =
nmax  −   nmin
 Ymax  − Ymin

  x  (Yi−Ymax)  + nmax, as well as

rEi =   nmin−nmax  
Emax  −   Emin

  x  (Ei  −   Emax) + nmin respectively, where rYi and rEi
are the rescaled values for genotypic performance and stability of

the i-th genotype, respectively; nmax and nmin are the new

maximum and minimum values of the variables and the MPS

index (S2di,  R
2 and RMSE) after the rescaling process; Yi and Ei

represent the original values of the variable response and MPS index

of the i-th genotype, respectively.

For the  R2 and the variables FRY, ShY, DMC, and DRY, higher

values are considered desirable. This is reflected in the assigned

values: Ymax = 100 and Ymin = 0, and Emax = 100 and Emin = 0.

Consequently, a genotype with the highest mean and the highest  

R2 would achieve rYi and rEi = 100. An exception to this pattern is

applied to plant architecture trait, where smaller values are preferred

to ensure suitability for mechanized planting. Hence, Ymax = 0 and

Ymin = 100 for this particular trait. Conversely, for the S2di and RMSE

indices, lower values are sought after, as they indicate greater stability.

Therefore, the environmental index was adjusted with Emax = 0 and

Emin = 100. These specific value selections were made in accordance

with the characteristics of the response variable. Notably, in six of

these variables, larger values are preferred, catering to both consumer

preferences and selection criteria.

After rescaling, the best-performing genotype received a score of

100, while the worst-performing genotype obtained a score of 0.
Frontiers in Plant Science 05
Similarly, the genotype with the best stability was assigned a value of

100, while the genotype with the poorest stability received a value of 0.

Thus, a two-waymatrixwas createdwith a range spanning from0 to 100

along its columns, aligning with the direction of the selection process.

In the second stage, the MPS index was computed using the

following equation: MPS =   (rYi   x  qg ) +  (rEi   x  qS)qg +qS
, where MPS

represents the index that weighs performance and stability for the

i-th genotype, qg e qS are the weights assigned to the response

variable (performance) and stability, respectively. In this study, the

weights were set at 65% for performance and 35% for stability at the

MTMPS index. This weighting prioritized average performance

over stability, as the goal was not to select varieties for release

that are highly stable but lack good agronomic performance.

We also analyzed the variation in weights between performance

and stability, getting 21 scenarios represented by qg − qS   ranging
from 0/100 to 100/0, in order to understand their impact. The

rankings were found to change depending on the weight assigned to

the response variable and stability. The rankings on the far-left side

were obtained by considering only stability, while the rankings on

the far-right side were based solely on performance. The rankings in

between varied according to the assigned weights for performance.

This flexibility allows for selection at different stages of the breeding

process. To facilitate an intuitive interpretation of these scenarios, a

heatmap was generated.

Next, the MTMPS was used to compute the mean performance

and stability of multiple traits (Yue et al., 2022). For this stage, the

concept of genotype-ideotype (Euclidean) distance using

exploratory factor analysis was employed to group correlated

variables into factors and compute the factorial scores for each

genotype. The MTMPS index was determined using the following

model: MTMPSi = ½of
j=1(Fij − Fj)

2�0:5, where MTMPSi represents

the multi-trait stability index for the i-th genotype, Fij denotes the j-

th score of the i-th genotype with (i = 1,   2,…,ɡ   ) e (j = 1, 2,…, f ) ,

where g is the number of genotypes and f is the number of factors,

respectively, and Fj represents the j-th score of the ideotype. The

genotype with the lowest MTMPS score is considered to be the

closest to the ideotype and therefore exhibits high MPS for all n

performance and stability variables analyzed.

Furthermore, the study calculated the selection differential for

the selected genotypes, assuming a selection intensity of 30%, in

order to determine the selection gain for stability and performance.

This calculation was done based on the genotypes selected by the

MTMPS index , us ing the fo l lowing formula : DS% =

(XS − X0)=  X0   x   100, where XS and X0 represents the values of

the selected genotypes and population mean, respectively.

The analyses were conducted using the metan package v1.18.0,

in R software version 4.2.0 (R Core Team, 2022), employing the

functions gamem_met(), mps(), and mtmps() (Olivoto and Lúcio,

2020). The heritability was determined using the H2cal() function

from the inti package.
2.5 Exploratory factor analysis

Exploratory factor analysis was employed to group correlated

traits and calculate genotypic factor scores. The model used for
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analysis was X = m + Lf + ϵ, where X = px1 vector of rescaled

observations, m = px1 vector of standardized means, L = pxf

matrix of factor loadings, f = px1 vector of common factors, and

ϵ = px1 the vector of residuals. p and f is the number of traits and

common factors retained, respectively. Eigenvalues and

eigenvectors were derived from the genetic correlation matrix,

which were then subjected to varimax rotation (Kaiser, 1958) to

obtain the final loadings used in calculating genotypic scores. This

calculation is represented as: F = Z   (ATR−1)T , where F = qxf is

matrix with factor scores; Z = qxp is a matrix with rescaled means;

A = pxf is a matrix of canonical loadings; R = pxp is a matrix

representing the correlation of MPS values; q,   f   and   p represent

genotypes, traits, and retained factors, respectively.

Subsequently, a network analysis was performed to assess the

correlations between the traits. Pearson’s test was utilized to

estimate these correlations, employing the correlate function from

the corrr package v 0.4.4 (Kuhn et al., 2020) in R software version

4.2.0 (R Core Team, 2022). This analysis aimed to provide insights

into the interrelationships among the traits under investigation.
3 Results

3.1 Analysis of variance of the
agronomic data

The LRT test revealed significant effects (p<0.001) for

genotypes, environments, and genotype-environment interaction

(GEI). These findings highlight the presence of genetic variability,

leading to changes in genotype classification across various

agronomic attributes analyzed. Furthermore, it underscores the

importance of evaluating genotype performance while considering

environmental variations (Table 1). Notably, the GEI of the

crossover type was identified for the evaluated traits, introducing

bias in predicting genetic advancements and reducing selection

gains (Figure S1).

For the FRY trait, genotypes BR11-34-69 and BR11-34-41

demonstrated the highest FRY (>31.05 t ha-1), representing a

30% superiority compared to the average of evaluated genotypes
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(23.80 t ha-1). In contrast, genotypes BR11-34-69, BRS Formosa,

and Vassoura Preta exhibited the highest HI (>60.0%) in relation to

the overall average of 54.33% (Table S2). It’s important to note that

each analyzed variable responded differently across environments.

For instance, the most favorable environments for FRY and HI were

2020.ERU.UFV (with an average of 38.78 t ha-1) and 2019.ERU.GA

(with an average of 72.01%), respectively (Figure S2).

Genotypes BRS Novo Horizonte, BR11.34.64, BR11.34.45, BRS

Mulatinha, and Correntão exhibited ShY above 23.0 t ha-1 (>21%

higher than the overall average of evaluated clones).

Environmental influence was also significant, ranging from 10.39

t ha-1 in the 2016.ERU.SA environment to 50.28 t ha-1 in

2020.ERU.UFV. High DMC contents were observed in

genotypes BRS Novo Horizonte, BRS Mulatinha, and BR12-107-

002 (>37%). Although there was relatively smaller environmental

variation for this trait (ranging from 30.79% in the 2021.ERU.AL

environment to 38.26% in the 2019.ERU.NR environment). The

ranking of genotypes based on the DRY trait highlighted BRS

Novo Horizonte and BR11-34-69 as the most productive (>9.0 t

ha-1), with only BRS Novo Horizonte exhibiting high DMC. The

DRY trait varied from 2.55 t ha-1 in the 2021.ERU.UFGD

environment to 12.56 t ha-1 in the 2021.ERU.NH4 environment,

with an average range of genotypes for this trait across

environments being 4.39 to 9.36 t ha-1.

For the PIA trait, genotypes IAC-90, BR11-34-64, BR11-34-69,

and BR12-107-002 exhibited scores below 2, indicating good plant

architecture suitable for mechanized planting and harvesting. There

was significant variation in this characteristic, ranging from 4.70

(genotype BRS Verdinha) to 1.29 (genotype BR12-107-002).

Regarding the PH trait, genotypes BRS Tapioqueira, BR11-34-64,

BR11-34-69, and BRS Poti Branca displayed the tallest plants

(>2.4m), representing an 11% superiority compared to the

average of tested genotypes. The average plant height across

environments ranged from 1.57m (in the 2021.ERU.UFRB

environment) to 3.03m (in the 2020.ERU.UFV environment).

Despite cassava being primarily propagated vegetatively, the GEI

strongly influences phenotype expression. This can be observed in the

distribution of means for the evaluated traits, which show high

variation both between and within environments. Notably,
TABLE 1 Summary of the joint maximum likelihood ratio test for fresh root yield (FRY), shoot yield (ShY), dry root yield (DRY), dry matter content
(DMC), plant architecture (PIA), harvest index (HI) and plant height (PH) of 22 cassava genotypes evaluated in 47 environments.

Source of variation1
Characteristics

FRY ShY DRY DMC PIA HI PH

Genotypes (G) 193.90*** 255.51*** 192.40*** 483.48*** 200.11*** 332.18*** 362.77***

Environments (E) 176.85*** 209.64*** 195.92*** 190.93*** 79.70*** 259.0*** 245.60***

Rep : Env 53.46*** 57.97*** 44.08*** 47.43*** 9.19** 7.62** 22.46***

GEI 444.27*** 384.56*** 412.43*** 306.93*** 240.94*** 444.70*** 291.96***

r̂ = cɡɡ 0.99 0.99 0.99 0.99 0.99 0.98 0.99

Overall average 24.22 20.94 7.64 35.58 2.44 54.04 2.24
fron
1Variance due to genotype, environment and GEI interaction, ** and *** significant at p<0.01% and p<0.001% probability, respectively by F test; r̂
bɡɡ
: selective accuracy.
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variables like FRY and ShY exhibited significant variation, while

DMC showed greater consistency across different environments. The

PH trait also demonstrated consistent variation across environments.
3.2 Variance components and genetic
parameters

During the breeding process, it is essential to gather genetic

parameters to guide genotype selection and enhance the reliability

of our breeding program. In our study, we observed substantial

genetic ad GEI variance contributions to the total phenotypic

variation across all traits. This highlights the varying behavior of

genotypes in response to different environmental conditions.

Consequently, it becomes important to take into account stability

parameters and productive adaptability when making genotype

selections. The GEI component exhibited a range from 20.67%

for DMC to 38.54% for FRY, with an overall s 2
ɡxe effect exceeding

30% for traits such as FRY, ShY, DRY, and HI. Except for DMC, a

significant proportion of the phenotypic variance was attributed to

residual variance (s 2
e )) for the other traits, spanning from 26.43%

for HI to 31.44% for DRY (Table 2). Genetic variability also played a

substantial role in the total phenotypic variance, notably for DMC

and PH, where s2
ɡ   accounted for 55.87% and 48.75%, respectively.

H2   values ranged from low for FRY, ShY, HI, and DRY (between

0.30 and 0.40) to moderate for PIA, PH, and DMC (ranging from

0.41 to 0.57) (Table 2). Conversely, estimates such as H2
cullis, h

2
mɡ,

andH2
Piepho were high for all traits, ranging from 0.83 for ShY to 0.93

for DMC. The genotypic coefficient of variation (CVɡ) exhibited a

wide range, from 4.28% for DMC to 31.40% for PIA, showcasing

substantial genetic diversity among the genotypes. On the other

hand, the residual coefficient of variation (CVr) ranged from 2.77%

for DMC to 28.20% for PIA. Furthermore, the ratio between the
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genotypic and residual coefficient of variation (CVratio) showed

values greater than 1 for all traits except ShY and DRY. Lastly, the

magnitude of the correlation of GEI interaction effects (rɡe) was
moderate, ranging from 0.42 to 0.56.
3.3 Exploratory factor analysis

In the factor analysis, we retained three principal components

(PC) to explain genetic variations in the dataset. These components

explained a cumulative variance of 92.20% for S2di (stability), 86.60%

for R2, and 85.50% for RMSE (Table 3). After varimax rotation, we

calculated the average communality (ɧ), representing the

proportion of variance shared among factors. The average ɧ
values were 0.92 for S2di, 0.86 for R2, and 0.85 for RMSE. For the

parameter S2di the range of communality was 0.76 ≤ ɧ ≥ 0.98, while

for R2 it ranged from 0.75 ≤ ɧ ≥ 0.97, and RMSE was 0.68 ≤ ɧ ≥ 0.95

for the traits DMC and DRY.

Agronomic traits were categorized based on stability

parameters: S2di, R
2, and RMSE. For S2di, the first factor strongly

associated with ShY (-0.96) and PH (-0.90) – associated with

planting density –, and moderately with DRY (-0.78), DMC

(-0.64), and FRY (-0.70) – related to root yield. The second factor

was strongly associated to HI (-0.97) and moderately to FRY (-0.65)

and DRY (-0.59). The third factor encompassed PIA (0.95) and

DMC (-0.57) with opposite loadings.

Regarding R2 and RMSE parameters, the first factor grouped

FRY (-0.96 and -0.95) and DRY (-0.94 and -0.96) with high and

consistent loadings. HI (-0.45 and -0.61) exhibited loadings of

moderate magnitude. The second factor grouped PH with

opposing high loadings (0.84 and -0.86), along with ShY (0.81

and -0.72) and HI (-0.77 and 0.68) showing opposing loadings of

moderate magnitude. Finally, the third factor included PIA with
TABLE 2 Estimates of variance components and heritability for seven agronomic traits of 22 cassava genotypes evaluated in 47 environments.

Parameters FRY ShY DMC DRY PH HI PIA

s 2
p 54.8 49.20 4.15 5.50 0.09 73.10 1.41

H2 0.32 0.30 0.57 0.31 0.50 0.40 0.42

h2mɡ 0.94 0.94 0.98 0.94 0.97 0.96 0.97

H2
Cullis 0.87 0.83 0.93 0.86 0.90 0.91 0.88

H2
Piepho 0.92 0.91 0.97 0.90 0.95 0.94 0.90

r2 0.38 0.37 0.20 0.37 0.23 0.32 0.24

rɡe 0.56 0.53 0.46 0.54 0.46 0.55 0.42

s 2
ɡxe 20.55 17.91 0.86 2.08 0.02 23.36 0.35

CVɡ 17.20 18.60 4.28 17.10 9.37 10.10 31.40

CVr 16.70 19.0 2.77 17.20 7.02 8.13 28.20

CV   ratio 1.03 0.97 1.54 0.99 1.34 1.24 1.11
frontier
s 2
p , phenotypic variance;H

2, broad sense heritability; h2mɡ , plot-based heritability; H
2
Cullis and H2

Piepho , Cullis and Piepho heritability, respectively; r2, coefficient of determination of the GEI interaction;

rɡe, correlation of GEI interaction; s 2
ɡxe, GEI variance; CVɡ, genotypic coefficient of variation (%); CVr, residual coefficient of variation (%) and CV   ratio, ratio between the coefficient of genotypic

and residual variation (%); FRY, fresh root yield; ShY, shoot yield; DMC, root dry matter content; DRY, dry root yield; PH, plant height; HI, harvest index; PIA, plant architecture.
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high loadings in the same direction (0.83 and 0.81), while DMC

showed loadings in different directions (-0.83 and 0.74).
3.4 Performance and stability of the
primary selection traits (FRY, ShY, DMC and
DRY) via MPS for the parameters S2

di, R
2

and RMSE

We selected the parameters S2di , R
2 and RMSE for their capacity

to distinguish the effects of heterogeneity between genotypes/

environments. These parameters were employed to assess how

genotype rankings for each agronomic trait varied based on both

their performance and stability. The plots on the left represent

genotype ranking solely based on stability, while the plots on the

right represent ranking based solely on agronomic performance.

The weighting between stability and agronomic performance was

varied in 5% increments. Four main groups of genotypes were

formed based on the similarity of stability and agronomic

performance, as described below: Group 1: Highly productive and

stable genotypes (indicated in red); Group 2: Stable but low

productive genotypes (indicated in green); Group 3: Productive

but unstable genotypes (indicated in black); and Group 4: Low

productive and unstable genotypes (indicated in blue) (Figure 2).

Among the genotypes, BRS Poti Branca and BRS Novo

Horizonte were assigned to Group 1 due to their high stability for

FRY and ShY, as indicated by the S2di   parameter. However, when

considering the R2 and RMSE parameters, only the genotype BR11-

34-69 was identified as more stable for FRY. For ShY, genotypes

such as BRS Poti Branca, BRS Novo Horizonte, BRS Mulatinha,

BRS Dourada, BRS Caipira, BR11-34-45, BR11-34-64, and BR11-

24-156 were classified as stable and high-performing, showing

consistent performance across different environments (Figure 2).
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Group 2 included a larger number of genotypes (approximately

13 genotypes) based on the S2di   parameter, and around 8 genotypes

based on the R2 parameter. This indicates the challenge in selecting

genotypes that are both stable and high performing, with a

noticeable variability within the group. A smaller subset of

genotypes (approximately 5) was grouped based on the RMSE

parameter. Among these, the genotype BR12-107-002 was

common for all three parameters, while BR11-24-156 was

common for S2di, Corrente for R2, and BRS Caipira for RMSE, in

both ShY and FRY traits. In Group 3, only the genotype BR11-34-41

was grouped based on all three parameters for both FRY and ShY.

The RMSE parameter included the largest number of genotypes

within Group 3, with 11 clones being grouped. Lastly, in Group 4,

the genotype IAC-90 was grouped based on all three parameters,

except for S2di   for FRY, which identified Vassoura Preta as an

unproductive and unstable genotype in these evaluation regions.

For the DRY and DMC traits, Group 1 consisted of genotypes

that had both high performance and stability, and it grouped the

smallest number of genotypes. For DRY and DMC, the genotype

BRS Novo Horizonte was allocated to Group 1 based on the S2di  

parameter, while BRS Caipira was classified as Group 1 based on R2.

BR12-107-002 and BRS Verdinha were grouped in Group 1 for the

RMSE parameter.

For DRY, the largest number of genotypes was allocated to Group

2, particularly based on the S2di   parameter. The RMSE parameter

only grouped the BR11-24-156 genotype, which was already grouped

based on the previous parameter. In contrast, for the DMC trait, a

greater number of genotypes were grouped in Group 2. The

genotypes BRS Poti Branca, Cigana Preta, BR11-34-41, BR11-34-

45, BR11-34-64, and BR11-34-69 were common for both the R2 and

RMSE parameters. Additionally, the S2di   parameter included three

genotypes (Corrente, Cigana Preta, and BRS Poti Branca) that were

common to both the DRY and DMC traits within Group 2.
TABLE 3 Factor loadings, commonality, eigenvalues and explained variance after varimax rotation, obtained in the factor analysis for the parameters

S2
di, (regression deviations), R2 (regression determination coefficient) and RMSE (square root mean square error) of the regression with a weight of

65% for performance and 35% for stability, respectively.

Trait

Parameters

S2
di R2 RMSE

FA1 FA2 FA3 Com FA1 FA2 FA3 Com FA1 FA2 FA3 Com

Fresh root yield -0.70 -0.65 0.03 0.92 -0.96 0.12 0.15 0.96 -0.95 -0.10 0.01 0.93

Shoot yield -0.96 0.01 -0.20 0.95 -0.37 0.81 -0.24 0.86 -0.21 -0.72 -0.5 0.83

Harvest index 0.10 -0.97 0.11 0.96 -0.45 -0.77 0.29 0.89 -0.61 0.68 0.15 0.87

Plant height -0.90 0.12 0.34 0.96 -0.32 0.84 0.12 0.84 -0.23 -0.86 0.36 0.94

Dry matter content -0.64 -0.15 -0.57 0.76 -0.14 0.24 -0.83 0.75 -0.33 -0.15 -0.74 0.68

Dry root yield -0.78 -0.59 -0.17 0.98 -0.94 0.18 -0.05 0.97 -0.96 -0.12 -0.09 0.95

Plant architecture -0.05 -0.12 0.95 0.92 -0.23 0.04 0.83 0.76 -0.29 -0.16 0.81 0.78

Eigenvalues 3.64 1.55 1.27 – 2.85 2.13 1.08 – 2.62 1.84 1.55 –

Variance 52.0 22.10 18.10 – 40.70 30.40 15.50 – 37.40 26.30 22.10 –

Accumulated % 52.0 74.10 92.20 – 40.70 71.10 86.60 – 37.40 63.70 85.80 –
frontie
FA, retained factor, values in bold indicate variables grouped within each factor, *Com-Communality.
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Group 3 comprised nine genotypes grouped based on the S2di  

parameter, with BR11-34-45 and BR11-24-156 being common for

both the DRY and DMC traits. Different genotypes were grouped

based on the R2 and RMSE parameters for these two traits. In Group

4, the genotypes IAC-90 and Eucalipto were grouped based on all

three parameters, while BRS Dourada was grouped based on only

two parameters (S2di   and RMSE) for the DRY. For the DMC trait,

the genotypes IAC-90, Vassoura Preta, and Correntão were

commonly grouped based on the S2di   and R2 parameters, whereas

Eucalipto and BRS Dourada were grouped based on the S2di   and

RMSE parameters.
3.5 Performance and stability of the
secondary traits (HI, PH and PIA) via MPS
for S2

di, R
2 and RMSE parameters

Using the S2di, R
2 and RMSE parameters, four distinct and

uncorrelated groups were identified for secondary traits

(Figure 3). BRS Formosa stood out in Group 1 for the HI trait,

showing high stability and consistent agronomic performance
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across all three stability parameters. Vassoura Preta and IAC-90

were also grouped in Group 1 based on the R2 and RMSE

parameters. Group 2 comprised stable but low-performing HI

genotypes, including checks such as Corrente, Cigana Preta, BRS

Poti Branca, and BRS Novo Horizonte based on the S2di parameter.

The R2 and RMSE parameters grouped genotypes such as BR11-34-

45, BR11-24-156, BRS Verdinha, and BRS Tapioqueira in Group 2.

Group 3 featured productive but unstable HI genotypes, with BRS

Kiriris grouped by the S2di   and RMSE parameters, and genotypes

BR12-107-002, BR11-34-69, BR11-34-64, and BR11-34-41 grouped

by the R2 parameter. Group 4 included a larger number of

genotypes with high variability within the group, as indicated by

the S2di parameter (12 genotypes) and the RMSE parameter (9

genotypes), while the R2 parameter only grouped BRS Caipira.

For the PH trait, Group 1 consisted of 12 clones grouped based

on the RMSE parameter, including genotypes BR11-34-64, BR11-

34-69, BR11-34-45, BR11-24-156, and BR12-107-002, as well as

BRS Novo Horizonte, which was also grouped by the S2di and R2

parameters. Group 3 encompassed a significant number of

genotypes (13 for S2di and 12 for R2), with common genotypes

such as BR11-34-64, BR11-34-69, BR11-34-41, BR11-24-156, and
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FIGURE 2

Rank of cassava genotypes considering the mean performance and stability (MPS) index with variation of economic weights from 0 to 100% for

parameters S2di (regression deviations), R2 (coefficient of determination) and RMSE (root square of the mean squared error of the regression) of the
stability model of Eberhart and Russell (1966). The color gradient (from 0 to 100), ranging from dark blue to yellow, represents the variation from
unproductive to highly productive, respectively, for the following primary traits: (A–C) for fresh root yield (FRY, t ha-1); (D–F) for shoot yield (ShY,
t ha-1); (G–I) for dry root yield (DRY, t ha-1) (J, K), and (J–L) for dry matter content (DMC, %). The most-left ranks were obtained considering the
stability only, while the right-ranks represents genotypes with the highest agronomic performance. The scenarios between the extremes exhibit a 5%
variation in the classification.
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BR12-107-002. In contrast, Group 4 consisted of the smallest

number of genotypes, with IAC-90 being grouped in all

three parameters.

For the PIA trait, BR12-107-002 was placed in Group 1,

primarily based on the parameters S2di   and RMSE. Additionally,

the genotype BR11-34-64 was grouped with BR12-107-002 based

on S2di and R2 parameters. These genotypes demonstrated high

performance and consistent stability for PIA, regardless of the

stability-to-performance ratio (0/100). The rank order of these

genotypes remained unchanged regardless of the variation in

ranking criteria. Interestingly, the S2di  parameter played a

significant role in grouping 45% of the genotypes in Group 1,

which included four newly identified genotypes (BR12-107-022,

BR11-34-69, BR11-34-64, and BR11-34-41). In Group 4, the

genotype BRS Verdinha was categorized as having low

performance and instability for PIA, based on the S2di   and R2

parameters. No other clones met the stability criteria for PIA in

Group 4. Notably, the classification of genotypes in Group 4 did not

exhibit significant variations with respect to different weight ratios

between stability and agronomic performance, particularly for the

S2di   parameter.
3.6 Truncated selection of cassava
genotypes based on the MPS index

The MPS index selection differential for the S2di   parameter

varied from -4.06% (DMC) to 29.8% (FRY). Most traits showed
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similar differentials, ranging from 21.3% to 29.8%, except for ShY

and PH, which had different values of 15.6% and 18.1%respectively

(Table 4). The gains of the MPS index for the R2 parameter

exhibited greater variability, ranging from -3.08% (DMC) to

33.0% (FRY). Gains exceeding 25% were observed only for the

DRY and FRY traits. Similar variability was observed for the MPS

gains in the RMSE parameter, which ranged from 12.3% (DMC) to

29.1% (DRY). Consequently, the selection differential for the MPS

index, considering the S2di, R
2, and RMSE parameters, resulted in

positive gains across all variables, demonstrating the model’s

efficacy in capturing improvements in both performance and

stability. The only exception was the DMC trait, where a

reduction of 4.0% and 3.0% was observed in the MPS index for

the S2di   and R2 parameters, respectively.
3.7 Correlations between agronomic traits

A network diagram (Figures 4, S3) was used to visualize the

relationship between the MPS indices based on the stability

parameters S2di, R2 and RMSE along with the calculation of

Pearson’s correlation coefficient to assess these relationships. The

analysis revealed considerable variability in both direction and

magnitude of the estimates of the relationship between agronomic

traits. Moreover, the three stability parameters differed in terms of

the number of identified correlations. S2di, R
2 and RMSE detected

47.61%, 33.30%, and 28.57% of the correlations as significant and of

high magnitude, respectively.
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FIGURE 3

Rank of cassava genotypes considering the mean performance and stability (MPS) index with variation of economic weights from 0 to 100% for

parameters S2di (regression deviations), R2 (coefficient of determination) and RMSE (root square of the mean squared error of the regression) of the
stability model of Eberhart and Russell (1966). The color gradient (from 0 to 100), ranging from dark blue to yellow, represents the variation from
unproductive to highly productive, respectively, for the following primary traits: (A–C) for harvest index (HI, %); (D–F) for plant height (PH, m);
(G–I) for plant architecture (PIA, scale 1 to 5). The most-left ranks were obtained considering the stability only, while the right-ranks represents
genotypes with the highest agronomic performance. The scenarios between the extremes exhibit a 5% variation in the classification.
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Despite the variability, certain pairs of traits showed consistent

correlations across the S2di, R
2 and RMSE parameters. Notably, FRY

× DRY displayed a highly positive correlation (>0.95), indicating a

strong relationship between these traits. Similarly, ShY × PH

exhibited a relatively strong correlation (>0.46). However, the

negative correlations observed between ShY × HI were only

significant for the R2 parameter (-0.50), albeit with moderate

magnitude. Additionally, modest negative correlations were found

between DMC × PIA for all three parameters, ranging from -0.26 to

-0.43. Among these correlations, only the R2 parameter yielded

significant results.

The network analysis revealed distinct groupings of primary

agronomic traits (FRY, ShY, and DRY) and secondary traits (PH

and PIA). These groupings often exhibited negative correlations,

such as DMC × PIA and HI × ShY, which pose challenges in

simultaneous selection of genotypes based on multi-trait indices.

However, trail analysis demonstrated that a significant portion of

the variation in FRY could be explained by the direct effects of two

primary traits: DRY (0.97) and ShY (0.50). These traits exhibited

R2values exceeding 0.98 and showed a low residual correlation

(0.16). Furthermore, they had variance inflation factor values below
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10, indicating low multicollinearity. Consequently, these traits hold

value for indirect selection and the utilization of multi-trait indices

(e.g., MTMPS) that contribute significantly to the main trait, fresh

root yield (Table S3).
3.8 Multi-trait selection for performance
and stability based on the MTMPS index

The MTMPS index provides insights into the selection

differential, selection gains, and heritability of selected across

various agronomic traits (Table 5). Overall, the MTMPS index

gains for the R2 and RMSE parameters showed a similar pattern. In

terms of R2 parameter, most traits exhibited gains ranging from

2.62% (HI) to 18.90% (FRY), except for PIA, which showed a

reduction of 14.60% (which is desired in this case). For the RMSE

parameter, the selection direction was desirable for all traits, with

gains ranging from 0.19% (PIA) to 11.20% (FRY), while PIA

showed a reduction of 4.39%. On the other hand, the MTMPS

index showed potential to increase selection gains for the S2di
parameter in six traits, ranging from 3.44% (PH) to 19.40%
TABLE 4 Selection differential for the Mean Performance and Stability (MPS) stability index of cassava variables using the parameters S2
di (regression

deviations) R2 (regression determination coefficient) and RMSE (root mean square error) regression of the Eberhart and Russell, 1966 model, with an
economic weight of 65% for performance and 35% for stability, respectively.

Traits Factor
S2
di /FA

Factor
R2 FA

Factor
RMSE /FA

Xo Xs SD SD% Xo Xs SD SD% Xo Xs SD SD%

Fresh root yield FA1 54.3 70.4 16.2 29.8 FA1 57.3 76.2 18.9 33.0 FA1 52.7 67.5 14.8 28.2

Shoot yield FA1 52.3 60.5 8.17 15.6 FA2 61.6 73.6 11.9 19.3 FA2 54.0 61.7 7.65 14.2

Plant height FA1 55.4 65.4 10.0 18.1 FA2 59.3 69.3 10.0 16.9 FA2 65.4 77.0 11.6 17.7

Dry matter content FA1 44.3 42.3 -2.02 -4.6 FA3 52.9 51.3 -1.62 -3.6 FA3 58.9 66.1 7.22 12.3

Dry root yield FA1 55.6 69.7 14,1 25.4 FA1 61.3 78.2 16.9 27.6 FA1 52.1 67.2 15.2 29.1

Harvest index FA2 44.9 57.5 12.5 27.9 FA2 54.1 61.4 7.30 13.5 FA2 50.2 58.6 8.47 16.9

Plant architecture FA3 66.7 81.0 14.2 21.3 FA3 61.9 70.9 9.05 14.6 FA3 59.9 69.1 9.12 15.2
front
Xo, original mean; Xs, mean of selected genotypes; SD, selection differential; SD%, selection differential in percentage.
B CA

FIGURE 4

Pearson’s correlation network between the agronomic variables for the Mean Performance and Stability (MPS) index for the parameters: (A) S2di
(regression deviations), (B) R2 (regression determination coefficient) and (C) RMSE (root mean square regression error) of the model by Eberhart and
Russell, 1966, with an economic weight of 65% for agronomic performance and 35% for stability, respectively. The thickness of the lines represents
the magnitude of the correlations, while the blue and red colors represent positive and negative correlations, respectively.
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(FRY). However, in the case of DMC, the MTMPS index did not

result in an increase (-1.98%), indicating that the selection of

genotypes did not yield desired gains for all traits. However, there

was a reduction of -17.60% for PIA, which is desirable for

mechanized planting.

With a selection intensity of 30%, the MTMPS index enabled

the selection of seven genotypes based on the S2di, R
2, and RMSE

parameters (Figure 5). The contribution of each factor determines

its influence on the distance from the ideotype. Based on the S2di  

parameter, the selected genotypes with the lowest MTMPS values

are BRS Novo Horizonte (2.29), BRS Kiriris (3.14), BRS Formosa

(3.14), BRS Poti Branca (3.25), BR11-34-69 (3.52), BR11-34-41

(3.61), and BR11-34-64 (3.67). FA2, which is more related to HI,

contributes significantly to the distance of the BRS Novo Horizonte

genotype from the ideotype (55.46%), while FA3, associated with

PIA, contributes 40.78%. In contrast, genotypes BRS Formosa, BRS

Kiriris, BR11-34-41, and BR11-34-69 have a higher contribution of

ideotype distance in FA1 (associated with FRY, DRY, ShY, PH, and
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DMC), with FA1 contributions ranging from 54.97% to 76.28%.

BRS Poti Branca has FA2 as the primary contributor (73.06%),

while BR11-34-64 has a balanced contribution between FA1 and

FA2 (46.76% and 45.31%, respectively).

For the R2 parameter, the selected genotypes were BR11-34-69

(1.83), BRS Novo Horizonte (1.85), BRS Kiriris (2.15), BR11-34-45

(2.19), BR11-34-64 (2.45), BR11-34-41 (2.66), and BRS Mulatinha

(2.85). The R2 parameter highlights the selection of four genotypes

in the final validation phase, with a significant contribution from

FA1 (54.93%), primarily associated with FRY and DRY traits. Only

BRS Novo Horizonte exhibits a balanced importance between FA1

and FA3, which is more related to DMC and PIA.

Regarding the RMSE parameter, the genotypes with lower

MTMPS values were BR12-107-002 (2.88), BR11-24-156 (3.15),

BR11-34-45 (2.71), BR11-34-69 (2.73), BRS Tapioqueira (3.26),

BRS Caipira (3.09), and BR11-34-64 (3.10). In this case, there was

a greater contribution of FA1 (54.52%) for the selected genotypes,

which is associated with the productive attributes FRY and DRY.
TABLE 5 Selection differential of the selected genotypes for parameters S2
di (regression deviations) R2 (regression determination coefficient) and RMS

E (square root of the regression mean squared error) of the Eberhart and Russell model, 1966, with an economic weight of 65% for performance and
35% for stability, respectively.

Traits S2
di /FA Xo Xs GS SG% Direction Target

Fresh root yield FA1 23.80 28.60 4.62 19.40 increase Yes

Dry root yield FA1 7.49 8.71 1.18 15.80 increase Yes

Shoot yield FA1 20.20 22.10 1.82 8.99 increase Yes

Harvest index FA2 54.30 57.00 2.65 4.87 increase Yes

Plant height FA1 2.24 2.32 0.07 3.44 increase Yes

Dry matter content FA1 35.50 34.80 -0.70 -1.98 increase No

Plant architecture FA3 2.55 2.10 -0.45 -17.60 To decrease Yes

R2 FA Xo Xs GS SG% Direction Target

Fresh root yield FA1 23.80 28.40 4.51 18.90 increase Yes

Dry root yield FA1 7.49 8.75 1.22 16.20 increase Yes

Shoot yield FA2 20.20 23.10 2.78 13.80 increase Yes

Harvest index FA2 54.30 55.80 1.42 2.62 increase Yes

Plant height FA2 2.24 2.36 0.12 5.19 increase Yes

Dry matter content FA3 35.50 35.30 -0.22 -0.62 increase No

Plant architecture FA3 2.55 2.17 -0.37 -14.60 to decrease Yes

RMSE /FA Xo Xs GS SG% Direction Target

Fresh root yield FA1 23.80 26.50 2.66 11.20 increase Yes

Dry root yield FA1 7.49 8.30 0.78 10.40 increase Yes

Shoot yield FA2 20.20 20.30 0.04 0.19 increase Yes

Harvest index FA2 54.30 56.90 2.51 4.62 increase Yes

Plant height FA2 2.24 2.36 0.11 5.15 increase Yes

Dry matter content FA3 35.50 35.70 0.16 0.46 increase Yes

Plant architecture FA3 2.55 2.44 -0.11 -4.39 to decrease Yes
fron
Xo, overall mean; Xs, mean of selected; GS, selection gain; SG%, selection gain in percentage considering multi-trait selection.
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The contribution of FA1 ranged from 34.61% for BR11-34-69 to

72.37% for BRS Tapioqueira. FA2, which is associated with the

traits ShY, HI, and PH, made an even contribution (25.48%) to all

the genotypes selected by the RMSE parameter. Therefore, the

MTMPS index proved to be highly useful for selecting and

accurately classifying cassava genotypes based on stability and

performance across multiple agronomic traits. It also identified

the strengths and weaknesses of the selected genotypes through the

contribution of each factor.
4 Discussion

4.1 GEI interaction and genetic parameters
for agronomic traits in cassava

Significant progress has been made in cassava breeding

programs, aiming to develop new varieties with improved genetic

gains, performance, stability, and adaptability compared to

traditional cultivars (Ceballos et al., 2012). GEI challenges

efficient selection due to variable genotype rankings in different

environments, especially for complex traits. This introduces bias

and diminishes selection gains, necessitating multi-environment

trials (Farshadfar et al., 2013).

The study underscores the challenge of selecting cassava

genotypes that balance stability and high performance due to

significant GEI effects. However, innovative approaches and

understanding genetic parameters can help identify genotypes less

influenced by environmental variations. The genotypic coefficient of

variation (CVɡ) exceeded the residual coefficient of variation (CVr)

for secondary traits and agronomic attributes like FRY and DMC,

indicating favorable conditions for genotype selection in different
Frontiers in Plant Science 13
breeding program phases. These findings align with previous

research on FRY and DMC in various conditions (Adjebeng-

Danquah et al., 2017).

Approximately 50% of the phenotypic variance in the studied

traits is attributed to environmental effects and GEI interactions,

reducing heritability. Secondary traits and DMC exhibit higher H2  

values (>0.40). While DMC is primarily influenced by additive

effects (Wolfe et al., 2016), ShY and DRY are affected by non-

additive genetic effects. Nonetheless, genetic gains can still be

achieved through indirect selection, recurrent selection strategies,

and exploiting heterotic effects.

The rɡe is relatively similar for FRY, ShY, DRY, and HI (≈0.54),

while DMC, PH, and PIA show lower correlations (≈0.44).

Heritability varies across traits, with most traits having relatively

low estimates ranging from 0.30 (ShY) to 0.42 (PIA). DMC (0.57)

and PH (0.50) exhibit higher heritability values. Secondary traits

generally have higher heritability compared to primary traits,

suggesting their potential for indirect selection of traits with

greater agronomic importance.
4.2 Selection of genotypes via MPS

In the final validation phase, relying solely on production

performance or stability information is not sufficient for efficient

genotype recommendation, as it is possible to identify genotypes

with low agronomic performance but high stability between

environments, and vice versa (Yan and Tinker, 2006; Jiwuba

et al., 2020). For example, some genotypes like BR11-24-156 and

BRS Dourada showed yields below 20.0 t ha-1 of FRY and 6.79 t ha-1

of ShY but displayed high stability based on S2di   and R
2 parameters.

Conversely, selecting genotypes with high performance does not
B

C

A

FIGURE 5

Cassava genotypes selected by the multi-trait index (MTMPS), based on the parameters: (A) S2di (regression deviations), (B) R2 (regression
determination coefficient) and (C) for RMSE (square root of the mean squared error of the regression) of the model by Eberhart and Russell, 1966,
with an economic weight of 65% for performance and 35% for stability respectively, considering a selection intensity of 30%, as well as the strengths
and weaknesses of the genotypes taking into account the contribution proportion of each factor.
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necessarily guarantee high stability. Over 50% of evaluated

genotypes fell into Group 3 (productive but unstable genotypes)

for primary traits, including clones like BR11-34-41 (>31.0 t ha-1

FRY) and BR11-34-45 (>35.0% DMC), suggesting suitability for

predictable environments.

The challenge of simultaneous selection for agronomic

performance and yield stability has been reported by other

authors in various crops using the WAASB model (weighted

average of absolute scores) (Olivoto et al., 2019b; Nataraj et al.,

2021; Sharifi et al., 2021). Specifically in cassava, Koundinya et al.

(2021) encountered a high proportion of genotypes in both Group2

and Group3, highlighting the difficulty of simultaneous selection for

performance and stability when using a multi-character index on 25

cassava genotypes across four growing conditions in India.

Furthermore, a significant GEI effect was observed in the new

genotypes for the four primary traits compared to the check

varieties, as indicated by the S2di   parameter, where a higher

proportion of checks were classified in Group1. Conversely, the

stability parameters R2 and RMSE grouped the new genotypes in

Group1, indicating higher performance and stability. Weighting

these parameters appropriately in VCU (variety value for

cultivation and use) trials is essential for better genotype

recommendations. Regarding secondary traits, except for HI,

there was a greater grouping of new genotypes in Group 1 for

traits like PH and PIA.

While yield stability index (YSI) and genotype stability index

(GSI) have been proposed for selecting genotypes based on yield

performance and stability, relying solely on the average stability

value (ASV) parameter can lead to biased results. Additionally,

these methods lack flexibility in economic weights or ranking

scenarios. Additionally, these methods do not allow for varying

economic weights or evaluating different ranking scenarios. The

MPS selection index, on the other hand, leverages relationships

between agronomic performance and production stability using

conventional stability analysis methods. It aims to group genotypes

with similar phenotypic behavior for both performance and

stability. By utilizing the regression model proposed by Eberhart

and Russell (1966) and applying economic weights ranging from 0

to 100, the MPS index identifies four clusters, representing

genotypes with similar GEI patterns across evaluated

environments for both primary and secondary selection traits.

The S2di   parameter corresponds to the regression variance,

where S2di   = 0 indicates genotypes with high predictability

(stability) and no GEI. The R2 parameter represents the

regression coefficient, with R2 = 1 indicating genotypes with

higher adaptability. The RMSE parameter is the root mean square

of the regression error, where more stable genotypes have lower R

MSE. These regression parameters effectively discriminate

classification differences and facilitate the selection of genotypes

with lower S2di   and RMSE and/or higher R2, thereby achieving high

productivity and stability. Conversely, genotypes that are more

unstable and have low productivity can be identified based on

their distance from the ideal values in the regression parameters.

Analyzing the S2di   and R2 parameters jointly can enhance

interpretative efficiency, provide biological significance, explore

GEI, and identify the optimal genotypes.
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For primary traits, regardless of economic weight, BRS Novo

Horizonte in Group 1 stood out due to its high agronomic

performance and stability. Despite facing edaphoclimatic

variations, it exhibited an average yield of 27.69 t ha-1, which is

80% higher than the average root yield in the state of Bahia (15.0 t

ha-1 according to CONAB, 2020). It also showed DMC > 38% and

PH > 2m, indicating high stability in production. Other genotypes

in Group1, such as BR11-34-69 and BR11-34-41, demonstrated

high stability based on the R2 and RMSE parameters, along with

FRY > 30 t ha-1 and DRY > 9 t ha-1, indicating consistent and

productive performance. While BR11-24-156 displayed high

predictability based on all three stability parameters, its

agronomic performance values were moderate.

In Group1, the reference variety BRS Formosa exhibited high

stability for CI (>62%), while the genotype BR12-107-002 showed

stability for PIA (<2) based on all three stability parameters. On the

other hand, genotypes in Group4 were characterized by

unpredictability and low agronomic performance, suggesting the

influence of GEI. For example, the genotype IAC-90 showed low

yields (<16.0 t ha-1), ShY (9.0 t ha-1), and DMC (33%). BRS

Verdinha exhibited a more branched growth (>4), which hinders

mechanized planting, and a harvest index (HI) below 51%, along

with average yield values. Overall, the MPS index represents a

significant advancement over existing selection methods, as it

identifies useful genetic relationships for breeders. It provides a

robust methodological basis that is easy to manipulate and interpret

for multi-character selection, with reduced sensitivity to outliers

(Olivoto et al., 2017).
4.3 Selection of genotypes via multi-trait
index - MTMPS

The use of truncated selection, which relies on information

from a limited number of environments, has been commonly

employed in cassava breeding programs (Ceballos et al., 2012).

However, this approach has drawbacks, including potential loss of

valuable alleles for other desirable traits (Cairns et al., 2013;

Mohammadi et al., 2017). In recent years, as breeding programs

have advanced and the production system has become more

modernized, there has been an increasing demand for

simultaneous improvement of multiple traits through multivariate

approaches, driven by the evolving requirements of the

cassava industry.

Recommendations based on multi-trait analysis are considered

more reliable than single-trait analysis, particularly when the

evaluated traits are highly correlated. For instance, a strong

correlation was observed between FRY and DRY (>0.90) across

all three stability parameters, consistent with existing literature

(correlation of 0.97 - Diniz and Oliveira, 2019). There was also a

significant correlation between FRY and ShY for the stability

parameters S2di   and R2, with correlation coefficients of r=0.70 and

r=0.52, respectively. This corroborates reports by Ntawuruhunga

and Dixon (2010) who found a correlation of 0.75 between FRY and

ShY. Oliveira et al. (2017) reported positive and significant

correlations of 0.70 between PH and YSI, and 0.71 between HI
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and YSI. They also noted negative correlations between FRY and

YSI (-0.07) and between ShY and YSI (-0.23).

The yield components (FRY, ShY, DRY, and DMC) exhibit high

genetic correlation and are strongly influenced by environmental

variation (Ntawuruhunga and Dixon, 2010). Therefore, direct

selection for these traits may not be advantageous due to their

low heritability (average of 0.36 for the primary variables), which

limits overall genetic gain. However, in cases where there are high

magnitudes of correlation and heritability (average of 0.43 for

secondary variables), it is possible that indirect measurement and

selection based on initial characteristics of plant growth and

development may be efficient in identifying desirable genotypes,

thereby reducing the selection cycle.

Addressing multicollinearity issues is crucial to avoid bias in

genetic parameter estimates during selection, especially when using

conventional indices like Smith (1936). Therefore, it is crucial to

extend conventional selection methods to encompass multiple traits

in order to maximize genetic gains, taking into account the

correlated genetic relationships among traits, as well as the

presence of pleiotropy and genetic linkage (Malosetti et al., 2008).

Additionally, assigning appropriate economic weights to

agronomically important traits remains a challenge, often leading

to suboptimal gains per generation (Cerón-Rojas et al., 2006;

Olivoto et al., 2017). Establishing correlations between stability

and agronomic performance for primary traits poses a significant

challenge in cassava breeding.

The use of base and multiplicative selection indexes for multiple

traits has been limited. The former does not incorporate genotypic

and phenotypic variance-covariance matrices, thus ignoring GEI

interactions, while the latter neglects economic weights.

Furthermore, both base and multiplicative selection indexes fail to

incorporate information on yield stability (Ntivuguruzwa et al.,

2020). In contrast, the MTMPS index offers a multivariate approach

using exploratory factor analysis to select genotypes based on the

clustering of correlated traits, overcoming classic multicollinearity

issues. It employs a more efficient linear mixed model (LMM) to

predict genotypic responses, such as genetic parameters, thereby

enhancing the reliability of clone grouping based on the index (Van

Eeuwijk et al., 2016).

The MTMPS index allows genotype-ideotype selection (based

on Euclidean distance) by considering multiple traits. The

procedure involves the following steps: (i) using the correlation

matrix between traits to identify eigenvalues (variance of principal

components) and eigenvectors of genotypes (weights of traits

explaining the variance determined by associated eigenvalues),

(i i) performing principal component analysis on the

characteristics to reduce the dimensionality of the data and

identify the number of factors grouping the traits, and (iii)

applying varimax rotation to estimate factorial loadings,

considering eigenvalues >1, to interpret variable grouping and

address multicollinearity concerns (Olivoto et al., 2017; Olivoto

et al., 2019b). Additionally, the obtained communality values

(representing the common variance explained by factors) ranged

from 68.0% to 98.0% across all three parameters, indicating that

the factors sufficiently represented an average of 88% of the total

variation in the data.
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The ideotype concept is crucial in breeding strategies, aiming to

obtain genotypes with high performance and stability across

multiple traits in a specific target environment (Yan, 2011).

In cassava, the ideotype aims for maximum yield for primary

and secondary traits, except for plant architecture, where smaller

values are desirable. In this study, an economic weight representing

65% performance and 35% stability was used, employing the

Eberhart and Russell (1966) regression model to compose the

MTMPS index.

Using a selection intensity of 30%, the MTMPS index identified

seven clones, most of which were new genotypes in the final

validation phase. These selected clones demonstrated lower

MTMPS values, indicating their proximity to the ideotype.

Genotypes such as BR11-34-69 and BR11-34-64 were chosen

based on all three stability parameters and were deemed suitable

for cultivation in diverse environments. On the other hand,

genotypes BRS Novo Horizonte, BRS Kiriris, and BR11-34-41

were selected based on the S2di   and R2 parameters, respectively, as

they exhibited low or zero GEI interaction even in the face of

environmental variations.

Analyzing strengths and weaknesses revealed that yield

components had a greater contribution, followed by secondary

variables, in explaining and influencing genotype selection. The

traits DRY (0.96), ShY (0.48), and HI (0.38), which represent yield

components, strongly influenced the highest FRY (R2 >0.97). FRY

and DRY were the most significant contributors to the first factor

(FA1) of the MTMPS index in all three stability parameters,

accounting for more than 56% of the contribution. Thus, the

selection process prioritized cassava genotypes with higher

potential for acceptance in starch and flour processing agro-

industries, which desire higher FRY and DRY values. Notable

improved genotypes included BRS Novo Horizonte, BRS

Tapioqueira, and two genotypes in the final validation phase,

BR11-34-69 and BR11-34-64.

In summary, both MPS and MTMPS techniques proved to be

effective in exploring GEI in cassava breeding, leading to improved

performance and productive stability across all primary and

secondary traits considered in the multi-trait evaluation.
4.4 Future perspectives

TheMPS andMTMPS indices provide valuable insights into the

optimization potential of the cassava breeding program, aiding in

the identification and selection of genotypes at different stages of the

program. The next steps involve incorporating new trials conducted

in diverse growing regions to assess the accuracy of the MPS and

MTMPS indices in the presence of increased GEI. Additionally,

different stability models will be explored, considering various

scenarios of economic weights. This analysis aims to identify

genotypes within the evaluated set (including intermediate and

final selection stages, as well as improved and unimproved varieties)

that exhibit potential for simultaneous genetic gains in both

quantitative traits (such as germination vigor, soil coverage,

tolerance to herbicides, root and aboveground productivity, starch

content) and qualitative traits (such as carotenoid content, root dry
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matter, cooking ability) of agronomic interest for both industry and

fresh consumption. By combining these approaches, the time

required for recommending new genotypes can be reduced, while

generating valuable information about parents with contrasting

traits, stability in productive attributes, and a higher likelihood of

expressing heterosis in the offspring.
5 Conclusion

Utilizing multivariate selection yielded significant insights into

estimating genetic parameters, resulting in an average heritability

(H2) of 0.39, and effectively gauging the extent of genotype-by-

environment interaction (s 2
ɡxe) across diverse traits. The MPS

index, utilizing varying weights (ranging from 0 to 100) assigned

through the Eberhart and Russell (1966) regression model,

efficiently and robustly explored the GEI in the multi-

environment trial (MET) data. This method adeptly formed

clusters of genotypes that exhibited heightened congruence in

both performance metrics and production stability.

Group 1 consisted of highly productive and stable genotypes for

primary traits like FRY, including varieties such as BRS Novo

Horizonte and BR11-34-69, as well as for DMC with genotypes

BRS Novo Horizonte and BR12-107-002. Regarding secondary

characteristics like HI and PIA, genotypes BRS Formosa and

BR12-107-002 showed the highest stability and better agronomic

performance. Therefore, employing methods that consider both

stability and productive performance can enhance the reliability of

recommending new cassava cultivars. Moreover, using the MTMPS

index with a selection intensity of 30% led to the identification of

seven genotypes with higher stability based on the parameters of

Eberhart and Russell (1966). Among these, four were novel

cultivars, chosen via R2 and RMSE metrics across multiple traits.

Overall, the application of multivariate selection, in conjunction

with the MPS and MTMPS indices, effectively demonstrated its

prowess in estimating genetic parameters, capturing the nuances of

genotype-by-environment interaction, and successfully pinpointing

genotypes showcasing amplified stability and performance within

cassava breeding initiatives.
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SUPPLEMENTARY FIGURE 1

Means of cassava clones in each of the 47 field trials evaluated for the

following traits: (A) fresh root yield (FRY, t ha-1), (B) shoot yield (ShY, t ha-1),
(C) dry root yield (DRY, t ha-1), (D) root dry matter content (DMC, %), (E)
Harvest index (HI, %), (F), Plant height (PH, m), (G) plant size (PIA, scale 1 to 5),

and cassava evaluated with 22 genotypes in 47 environments.

SUPPLEMENTARY FIGURE 2

Mean and phenotypic variation of individual environments for fresh root yield

(FRY, t ha-1), shoot yield (ShY, t ha-1), dry root yield (DRY, t ha-1), root dry matter
content (DMC, %), plant architecture (PIA, scale 1 to 5), harvest index (HI, %) and

plant height (PH, m) in 22 cassava genotypes evaluated in 47 environments.

SUPPLEMENTARY FIGURE 3

Pearson’s correlation between the agronomic variables for the mean
performance and stability (MPS) index for the parameters: (A) S2di (regression
deviations), (B) R2 (regression determination coefficient) and (C) RMSE (square
root of the regression mean square error) of the model by Eberhart and

Russell, 1966, with an economic weight of 65% for performance and 35% for

stability, respectively.
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León, R., Rosero, A., Garcıá, J.-L., Morelo, J., Orozco, A., Silva, G., et al. (2021). Multi-
trait selection indices for identifying new cassava varieties adapted to the Caribbean
region of Colombia. Agronomy 11 (9), 1694. doi: 10.3390/agronomy11091694

Malosetti, M., Ribaut, J.-M., and Van Eeuwijk, F. A. (2013). The statistical analysis of
multi-environment data: Modeling genotype-by-environment interaction and its
genetic basis. Front. Physiol. 4. doi: 10.3389/fphys.2013.00044

Malosetti, M., Ribaut, J. M., Vargas, M., Crossa, J., and van Eeuwijk, F. A. (2008). A
multi-trait multi-environment QTL mixed model with an application to drought and
nitrogen stress trials in maize (Zea mays L.). Euphytica 161 (1–2), 241–257.
doi: 10.1007/s10681-007-9594-0

Mohammadi, R., Armion, M., Zadhasan, E., Ahmadi, M. M., and Amri, A. (2017).
The use of AMMI model for interpreting genotype × environment interaction in
durum wheat. Exp. Agric. 54 (5), 670–683. doi: 10.1017/s0014479717000308

Nataraj, V., Bhartiya, A., Singh, C. P., Devi, H. N., Deshmukh, M. P., Verghese, P.,
et al. (2021). WAASB-based stability analysis and simultaneous selection for grain yield
and early maturity in soybean. Agron. J. 113 (4), 3089–3099. doi: 10.1002/agj2.20750

Nduwumuremyi, A., Melis, R., Shanahan, P., and Theodore, A. (2017). Interaction of
genotype and environment effects on important traits of cassava (Manihot esculenta
Crantz). Crop J. 5 (5), 373–386. doi: 10.1016/j.cj.2017.02.004

Ntawuruhunga, P., and Dixon, A. G. (2010). Quantitative variation and
interrelationship between factors influencing cassava yield. J. Appl. Biosci. 26, 1594–1602.

Ntivuguruzwa, S., Edema, R., Gibson, P., Alladassi, M. E. B., Nduwumuremyi, A., Abincha,
W., et al. (2020). Comparing the efficiency of base and multiplicative selection indices for
yield and quality traits in cassava. J. Exp. Sci. 11, 35–40. doi: 10.25081/jes.2020.v11.6256

Okeke, U. G., Akdemir, D., Rabbi, I., Kulakow, P., and Jannink, J.-L. (2017).
Accuracies of univariate and multivariate genomic prediction models in African
cassava. Genet. Sel. Evol. 49 (1), 88. doi: 10.1186/s12711-017-0361-y

Oliveira, E. J., Morgante, C. V., Aidar, S. T., Melo Chaves, A. R., Antonio, R. P., Cruz,
J. L., et al. (2017). Evaluation of cassava germplasm for drought tolerance under field
conditions. Euphytica 213 (188), 1–20. doi: 10.1007/s10681-017-1972-7

Oliveira, E. J., Resende, M. D. V., Santos, V. S., Ferreira, C. F., Oliveira, G. A. F., Silva,
M. S., et al. (2012). Genome-wide selection in cassava. Euphytica 187, 263–276.
doi: 10.1007/s10681-012-0722-0
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