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Accurate recognition of pest categories is crucial for effective pest control. Due

to issues such as the large variation in pest appearance, low data quality, and

complex real-world environments, pest recognition poses challenges in practical

applications. At present, many models have made great efforts on the real scene

dataset IP102, but the highest recognition accuracy is only 75%. To improve pest

recognition in practice, this paper proposes a multi-image fusion recognition

method. Considering that farmers have easy access to data, the method

performs fusion recognition on multiple images of the same pest instead of

the conventional single image. Specifically, the method first uses convolutional

neural network (CNN) to extract feature maps from these images. Then, an

effective feature localizationmodule (EFLM) captures the featuremaps outputted

by all blocks of the last convolutional stage of the CNN, marks the regions with

large activation values as pest locations, and then integrates and crops them to

obtain the localized features. Next, the adaptive filtering fusion module (AFFM)

learns gate masks and selection masks for these features to eliminate

interference from useless information, and uses the attention mechanism to

select beneficial features for fusion. Finally, the classifier categorizes the fused

features and the soft voting (SV) module integrates these results to obtain the

final pest category. The principle of the model is activation value localization,

feature filtering and fusion, and voting integration. The experimental results

indicate that the proposed method can train high-performance feature

extractors and classifiers, achieving recognition accuracy of 73.9%, 99.8%, and

99.7% on IP102, D0, and ETP, respectively, surpassing most single models. The

results also show that thanks to the positive role of each module, the accuracy of

multi-image fusion recognition reaches the state-of-the-art level of 96.1%,

100%, and 100% on IP102, D0, and ETP using 5, 2, and 2 images, respectively,

which meets the requirements of practical applications. Additionally, we have

developed a web application that applies our research findings in practice to

assist farmers in reliable pest identification and drive the advancement of

smart agriculture.

KEYWORDS

pest recognition, multiple images, feature localization, feature filtering and fusion,
smart agriculture
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1 Introduction

Pests pose one of the biggest threats to crop safety due to their

extensive spread and rapid evolution. Effective pest control requires

fast and accurate recognition of pest categories. Usually, agricultural

practitioners identify pests by examining the surface of the crop, but

which requires a high level of expertise and effort. With the help of

computer vision technology, early researchers relied on carefully

designed image processing programs to extract shallow features,

and then trained machine learning classifiers for pest recognition.

However, these models suffer from poor generalization and low

accuracy (Liu and Wang, 2021). In recent years, deep learning

technology has received extensive and profound research because of

its simple modeling process, ability to extract deep features, and

good recognition performance.

Although recent studies have achieved high pest recognition

accuracy, most of them were conducted in laboratories with high-

quality data, clear targets, few categories, and small datasets.

However, the complex outdoor environment, different perspectives,

and varying degrees of color and light changes will seriously affect

their recognition performance in practice.

IP102 is the most widely studied large-scale pest dataset with

images that match real-world scenarios (Wu et al., 2019). However,

due to issues with the pests themselves and the quality of the IP102,

pest recognition presents significant challenges in practical

applications (Kong et al., 2022), as outlined below:
Fron
• Pests go through multiple growth stages throughout their

lives, which have different external characteristics, leading

to large intra-class differences, as shown in Figure 1A.

• Different pests may be similar at the same growth stage,

which leads to small inter-class differences, as shown in

Figure 1B.

• Some pests have similar appearances to their backgrounds,

and some images from the Internet contain irrelevant

elements, as shown in Figure 1C.

• Some images do not contain pests and only provide scenes

of pest activity, as shown in Figure 1D.

• The images have various resolutions, and some are even

blurry. Moreover, there are label errors in some images, as

shown in Figure 1E.
Due to these practical issues, researchers have spent a lot of

effort on recognition models based on a single image, but currently

they can only achieve an accuracy of about 75% at best (Wang et al.,

2023), with little improvement. It appears that the accuracy has

reached a ceiling. However, in actual production, farmers may

require close to 100% credibility to prevent incorrect pest control.

This poses a great challenge for researchers. We consider the fact

that pest infestation usually breaks out regionally and it is easy for

farmers to obtain multiple images of the same pest category. To

increase recognition credibility, we increase the amount of

information input to the model and design information

processing algorithms, thus proposing a fusion recognition

method that integrates information from multiple images.
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We propose the effective feature localization module (EFLM)

and the adaptive filtering fusion module (AFFM) to improve pest

recognition. To learn the accurate location of pests in complex

background, in EFLM, we aggregate feature maps in the channel

dimension to obtain the activation map, and then divide the feature

location with a threshold that gradually increases to the average

value of the activation map over the training epoch. The location

information frommultiple layers is lastly fused to construct the final

location. To filter out incorrect and useless features, AFFM uses gate

masks and selection masks to adaptively select optimal features

from multiple images and then performs attention fusion. The

experimental results show that the proposed method significantly

improves the accuracy of identifying complex pest data and is

suitable for practical scenarios. The main contributions of this

paper are as follows:
1) The proposed EFLM helps the network quickly extract

target features from complex backgrounds.

2) The proposed AFFM allows the network to automatically

mine optimal features while suppressing incorrect and

useless features, enhancing feature representation.

3) The proposed multi-image fusion recognition method

significantly improves the accuracy of pest recognition,

meeting practical application requirements.
2 Related research

2.1 Pest recognition based on CNN

Convolutional neural network (CNN) has shown outstanding

performance as feature extractors in image recognition and have

rapidly expanded to pest recognition applications. Ahmad Loti et al.

(2021) compared traditional feature-based approaches with deep-

learning feature-based approaches for extracting pest features from

chili leaf images. The results proved that deep learning feature-

based approaches performed better than traditional feature-based

approaches. Cheng et al. (2017) used a deep residual convolutional

neural network to recognize ten types of pests in 550 images. The

study achieved an impressive accuracy of 98.67%, outperforming

both support vector machine (SVM) and back propagation (BP)

neural network significantly. In this paper, our research focus is not

on the improvement of feature extractors, but on the localization

and filtering fusion of extracted features. In fact, we can use any type

of feature extractor, but CNN is the most commonly used.
2.2 Methods for improving
pest recognition

To improve the recognition accuracy despite the limited size of

pest datasets, a widely used and effective method is to apply transfer

learning (Sharma et al., 2022). Transfer learning fine-tunes a CNN

model that has been pre-trained on ImageNet (Deng et al., 2009) on
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a pest dataset to improve the model’s robustness. For example,

Huang et al. (2022) first fine-tuned ResNet-50 to extract features

and then used discriminant analysis to classify eight types of tomato

pest images. The results demonstrated that transfer learning can

reduce training time and improve recognition accuracy. Li et al.

(2020) collected 5,629 images of ten common crop pests, used

GrabCut and watershed algorithms to remove complex

backgrounds, and then fine-tuned the GoogLeNet model to

achieve a maximum accuracy of 98.91%.

In addition, researchers have proposed various methods to

improve pest recognition accuracy from different perspectives. To

enhance feature representation, Ullah et al. (2022) designed deeper

CNN and achieved 100% accuracy on Deng pest dataset (Deng

et al., 2018), surpassing SqueezeNet and GoogLeNet models. Liang

et al. (2022) enhanced feature extraction by introducing depthwise

separable convolution and squeeze-and-excitation (SE) module (Hu

et al., 2018), achieving 93.66% accuracy on a dataset of 1,426 images

containing nine rice pests and diseases. Wei et al. (2022) fused

multi-scale features of images to achieve 98.2% recognition

accuracy for 12 crop pests. To address imbalanced distribution of

pest data, Yang et al. (2021) proposed a convolutional rebalancing
Frontiers in Plant Science 03
network to extract more comprehensive features, achieving an

accuracy of 97.58% on a dataset containing 18,391 images of rice

diseases and pests. Furthermore, Hu et al. (2023) increased the

number of samples using generative adversarial network (GAN),

optimized the residual blocks using ConvNeXt in ResNet, and

constructed a multi-scale dualbranch structure to extract features

of different scales, achieving a recognition accuracy of 99.34% on a

dataset containing four rice diseases and pests, surpassing classic

CNN and transformer networks.

Although these methods have demonstrated impressive

performance, it should be noted that their success is based on

small datasets with high data quality. Therefore, it is difficult to

maintain high performance in complex and constantly changing

real-world environments.
2.3 Pest recognition on IP102

IP102 is a typical large-scale pest dataset with poor data quality,

which is representative of real scene recognition. Based on transfer

learning, five CNN models (VGG19, ResNet-50, EfficientNetB5,
A

B

DC E

FIGURE 1

Issues with pests and data quality. (A) Large intra-class differences. From the horizontal view, rice leaf roller and rice leaf caterpillar have different
appearances in larva, pupa and adult stages. (B) Small inter-class differences. From the vertical view, rice leaf roller and rice leaf caterpillar have
similar appearances at the same stage. (C) Interference. (D) No pest. (E) Error label.
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DenseNet-121, InceptionV3) were tested on IP102. The highest

recognition accuracy achieved was only 71.98% for DenseNet-121

(Mohsin et al., 2022). Pest recognition on IP102 is challenging, but

significant for smart agriculture. To take advantage of multi-model

ensemble learning to improve recognition, Nanni et al. (2022)

integrated six high-performance CNNs (EfficientNetB0, ResNet-

50, GoogleNet, ShuffleNet, MobileNetV2, and DenseNet-201) and

improved the Adam algorithm, obtaining an accuracy of 74.11%.

Ensemble learning is effective but computationally demanding. As a

general method, the key to improving performance still depends on

the feature extraction ability of each model. Therefore, based on the

new architecture vision transformer (ViT), Liu et al. (2022)

proposed a latent semantic mask autoencoder to learn more

discriminative feature representations, achieving the accuracy of

74.69%. Wang et al. (2023) further extended ViT to fine-grained

recognition. They built an attention aggregating transformer with

an information entropy selector to capture subtle differences

between images, resulting in the highest accuracy of 75%.

However, this method comes with a very high computational

cost. By combining the above techniques, Xia et al. (2023) used

multi-branch and multi-scale learning networks to extract fine-

grained features and proposed a DNVT model combining

DenseNet-201 and an improved ViT to enhance feature

extraction. Finally, they achieved a maximum accuracy of 74.2%

using ensemble learning. On the other hand, considering the main

issues with IP102, Feng et al. (2022) designed a coarse-to-fine CNN

to recursively filter complex backgrounds. They addressed

occlusion problems by randomly deleting discrimination regions.

Furthermore, they used a decoupling learning strategy to address

class imbalance. Finally, their model recognition accuracy

reached 74.61%.

Although pest recognition on IP102 has made great progress in

the past few years, the state-of-the-art accuracy is only close to 75%.

In this paper, we propose a multi-image fusion recognition method

to improve the recognition accuracy of IP102.
3 Materials and methods

3.1 Datasets

The IP102 dataset contains a total of 75,222 images in 102

categories from 8 crops: rice, corn, wheat, beet, alfalfa, vitis, citrus,

and mango (Wu et al., 2019) (see Figure 1). The training set has

45,095 images, the validation set has 7,508 images, and the test set

has 22,169 images. To further demonstrate the effectiveness of our

proposed method, we also conducted experiments on two high-

quality small-scale pest datasets: D0 (Xie et al., 2018) and eight

tomato pest (ETP) (Huang et al., 2022). Both datasets have higher

image quality and only one growth stage for each category of pest, as

illustrated in Figure 2. The D0 dataset contains 4,508 images of 40

common crop pest categories. The ETP dataset contains 609

original images of eight common tomato pests, which are

increased to 4,263 images using image augmentation. Similar to

Nanni et al. (2022), we used 70% of each class for training and the

remaining 30% for testing.
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3.2 Overview of the proposed method

The overall architecture of the multi-image fusion recognition

method is shown in Figure 3, which consists of two branches: a

general branch and an improving branch. The improving branch

contains the EFLM and AFFM modules, which are used for feature

localization and filtering fusion of multiple image features,

respectively. The input of the model is multiple pest images of the

same class.

The general branch uses a classic CNN as the backbone network

to extract image features. Unlike conventional methods, the obtained

feature embeddings are subjected to dropout processing to eliminate

overfitting problems caused by excessive input information. The

processed embeddings are then fed into the fully-connected (FC)

layer, and the output results are optimized by the loss function to

promote feature localization in the EFLM module.

In the improving branch, the EFLM module is used to locate

fine features based on the activated feature maps in CNN. Then, the

processed feature embeddings are sent to the AFFM module, where

the features are filtered by gate masks and selection masks and then

fused through multi-head self-attention network. Here, each image

selects the most useful image-level features. Then, the fused

embeddings are sent to the same FC layer as the general branch

for classification. To obtain more accurate result, a soft voting

strategy is adopted to integrate all outputs at the end.
3.3 Effective feature localization module

The proposed EFLM module is shown in Figure 4, which is

inspired by SCDA (Wei et al., 2017). To use deep features, we focus

on all blocks in the last convolutional stage, whose output feature

maps have the same height h and width w. The activated region of

the feature map on the channel can indicate the semantically

meaningful part of the target or some background noise. To

eliminate noise and obtain accurate feature location, we first

aggregate the feature maps in the channel dimension to obtain

the activation map A ∈ Rhxw.

A =oc

n=1
Fn (1)

where c represents the number of channels in the feature maps, and

Fn represents the feature map of the n-th channel.

Then, we calculate the overall average value Ā of all positions in

the activation map as a threshold to divide the regions with higher

activation values, where the target is more likely to be located.

�A = o
w
i=1oh

j=1A(i,j)

w� h
(2)

Next, we consider that the model is more easily disturbed

during the early stages of training and may not activate the

correct feature locations. Therefore, we multiply the threshold by

a parameter l that linearly increases from 0 to 1 with the training

epoch to gradually discover the feature locations. Specifically, the

feature mask mapM used for partitioning is represented as follows:
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M(i,j) =
1 ifA(i,j) > l�A

0 otherwise

(
(3)

During the training and validation phases, l = Epoch
Epochs−1 ∈ ½0, 1�,

where Epoch represents the current training epoch and Epochs

represents the total number of training epochs. In the testing phase,

l takes the median value of 0.5. We have conducted multiple

experiments and found that this setting can achieve the best

results. In the mask map, M(i, j) = 1 represents that the channel at

position (i, j) should be retained, whileM(i, j) = 0 represents that the

channel at position (i, j) should be removed.

Inspired by multi-layer integration to improve performance

(Wei et al., 2017), we calculate the feature mask maps for all the

block outputs of the last convolutional stage by equations (1), (2),

(3). Taking ResNet-50 as an example, we aggregate the feature mask

mapsMconv_5a,Mconv_5b andMconv_5c, and retain their intersection

to obtain an aggregated mask map Mf as follows:
Frontiers in Plant Science 05
Mf (i, j) = f
1 ifMconv_5a(i,j)

+Mconv_5b(i,j)
+Mconv_5c(i,j)

= 3

0           otherwise
(4)

Then, we take the bounding box that contains the area of

Mf (i, j) = 1 as the final determined feature location. If all

positions in Mf are 0, the bounding box is the box of the

whole feature map. Finally, we use the bounding box to crop

the feature maps and upsample them to the original size to

obtain the localized features.
3.4 Adaptive filtering fusion module

The proposed AFFM is shown in Figure 5. The input of the

module is the feature embedding matrix X ∈ Rn×d obtained by

processing the multiple localized features, where n is the number

of input images and d is the dimension of the embedding. The
A B

FIGURE 2

Image samples from D0 (Xie et al., 2018) and from ETP (Huang et al., 2022). (A) D0. (B) ETP.
FIGURE 3

Overview of the proposed method.
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main framework of the module is a multi-head self-attention

network. For the i-th head, the query matrix Qi, key matrix Ki,

and value matrix Vi are obtained by linear transformation,

respectively:

Qi = XWQ
i

Ki = XWK
i

Vi = XWV
i

8>><
>>: (5)

wh e r e WQ
i ∈ Rd�(dk=h),WK

i ∈ Rd�(dk=h) a n d WV
i ∈ Rd�(dv=h)

represent the query parameter matrix, key parameter matrix, and

value parameter matrix of the i-th head, respectively. h is the

number of heads. dk and dv are the dimensions of them, both of

which are set to d in this paper.

Considering the noisy background in pest images, we introduce

a gating mechanism to filter out useless information. Specifically, we

use the non-linear mapping function of the sigmoid function to

adjust the information transmission of the query matrix and key

matrix. We first linearly map the query matrix Qi and key matrix Ki

of the i-th head to a joint space and concatenate them to obtain a

fusion matrix Gi ∈ Rn�2(d=h):
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Gi = Concat(QiW
Q
G + bQG ,  KiW

K
G + bKG) (6)

where WQ
G ∈ R(d=h)�(d=h) and WK

G ∈ R(d=h)�(d=h) are learnable

mapping matrices, and bQG ∈ R1�(d=h) and bKG ∈ R1�(d=h) are bias

vectors. Next, we apply two FC layers followed by sigmoid function

to obtain the query mask MQ
i ∈ Rn�(d=h) and key mask MK

i ∈
Rn�(d=h), respectively:

MQ
i = s (GiW

Q
M + bQM)

MK
i = s (GiW

K
M + bKM)

(
(7)

where s(·) is sigmoid function, and WQ
M ∈ R2(d=h)�(d=h),WK

M ∈
R2(d=h)�(d=h),  bQM ∈ R1�(d=h) and bKM ∈ R1�(d=h) are the learnable

FC layer parameters.

To further remove image interference such as label errors and

no features, we designed a selection mask to force discard image

embeddings with attention scores smaller than probability p, which

can be represented as a value mask MV
i ∈ Rn�n:

MV
i =

1 otherwise

0 if a < p

(
(8)

In summary, in the calculation of self-attention within each

head, the i-th head output hi ∈ Rn×(d/h) is represented as follows:

hi = MV
i ⊙ Softmax

(MQ
i ⊙Qi)(M

K
i ⊙Ki)

Tffiffiffiffiffi
dk

p
 !

Vi (9)

Finally, after aggregating all the heads and applying batch

normalization (BN), we obtain the enhanced feature embeddings,

which can be represented as:

 FAFFM(X) = BN(Concat(h1,…, hh)) + X (10)

The AFFM module enhances the feature selection ability of

attention, resulting in more discriminative features. Specifically, the

gate mask and selection mask suppress the transmission of

irrelevant information in the image, improving the quality of the

features. The multi-head self-attention network further filters and

fuses the features to extract the most beneficial features for

recognizing each image. This process can be adaptively adjusted

through learnable parameters.
FIGURE 5

AFFM module.
FIGURE 4

EFLM module.
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3.5 Soft voting

To achieve more accurate recognition by merging multiple

results, the soft voting (SV) strategy is used in practical

applications to determine a category for these images. Specifically,

given the feature embedding matrix X ∈ Rn×d after fusion of n

images, a FC layer and a softmax layer are used to obtain the

probability matrix p ∈ Rn×m, where m is the total number of

categories. SV calculates the average of the predicted probabilities

for n images:

Pj =
on

i=1

pij

n
, j ∈ ½1,m� (11)

where Pj denotes the probability of being predicted as category j

after soft voting. SV takes the category with the highest probability

as the final result.
3.6 Loss function

The general branch and the improving branch share a FC layer,

and both use the predicted category and true category to calculate

the cross-entropy loss:

Lgeneral = − log  Pɡ(t) (12)

Limproving = − log  Pi(t) (13)

where t is the ground truth label of the input image, Pɡ and Pi
represent the classification probabilities output by the general

branch and the improving branch, respectively. The two losses

are jointly optimized during training and mutually promote each

other. The overall loss is defined as the sum of them:

Ltotal = Lgeneral + Limproving (14)
4 Experiments and discussion

4.1 Experimental settings

We use ResNet-50 as the backbone network and load the

parameters pre-trained on ImageNet. Stochastic gradient descent

(SGD) with a momentum of 0.9 and weight decay of 1e-4 is used as

the optimizer. We set the batch size to 16, and each image in the

batch selects 4 more images from its own category as positive

samples, i.e., the number Nt of training samples per group is 5. The

initial learning rate is set to 0.001 and is decayed by 0.1 after 10

epochs, under the condition of a total of 20 epochs. All experiments

are conducted on an RTX 3090 GPU. The threshold probability p

for selecting masks is set to 1
2Nt

.

We use Accuracy and weighted F1-score as evaluation metrics,

which are denoted as Acc and F1, respectively. Acc calculates the

proportion of correctly classified images to the total number of

images, while F1 combines Precision (P) and Recall (R) to prevent

individual classes from affecting Acc and causing poor evaluation
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when the data is imbalanced. A higher F1 indicates a more robust

model. The formulas for calculating these metrics are as follows:

Acc =
TP + TN

TP + TN + FN + FP
(15)

P =
TP

TP + FP
(16)

R =
TP

TP + FN
(17)

F1 =
2PR
P + R

(18)

where TP, FP, TN, and FN stand for true positive, false positive,

true negative, and false negative, respectively.
4.2 Performance comparison

We conducted experiments on three pest datasets and

compared our results with the current state-of-the-art methods.

For methods that were not tested on the corresponding dataset, we

reproduced them based on the best configuration in our

environment and marked them with an *. Methods without a
TABLE 1 Performance comparison on IP102 dataset.

Methods Backbone Acc F1

Pre-trained ResNet-50* (He
et al., 2016)

ResNet-50 72.0 71.5

Pre-trained DenseNet-169*
(Huang et al., 2017)

DenseNet-169 72.8 72.5

MMAL* (Zhang et al., 2021) ResNet-50 73.1 72.8

BCL* (Zhu et al., 2022) ResNet-50 73.1 72.8

ViT (Dosovitskiy et al., 2020) Transformer 73.4 72.7

PCNet (Zheng et al., 2023) EfficientNetV2 73.7 –

Ours (general branch) ResNet-50 73.9 73.6

CNNs Ensemble + Exp +
ExpLR (Nanni et al., 2022)

EfficientNetB0 + ResNet-
50
+ GoogleNet + ShuffleNet
+
MobileNetV2 + DenseNet-
201

74.1 73.0

MMALNet + DNVT +
ResNet-50 + Ensemble (Xia
et al., 2023)

ResNet-50 + DenseNet-201
+ Transformer

74.2 67.8

MS-ALN + DL (Feng et al.,
2022)

ResNet-50 74.6 67.8

FRCF + LSMAE (Liu et al.,
2022)

Transformer 74.7 74.4

AA-Trans (Wang et al., 2023) Transformer 75.0 –

Ours (improving branch) ResNet-50 96.1 95.9
frontie
The bolded lines are the results obtained by our method, to emphasize.
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mark use the results from the original paper. To maintain

objectivity, we listed the backbone of all models.

4.2.1 Comparison on IP102
We compared our method with the 12 latest methods, as shown

in Table 1. Our general branch achieved 73.9% accuracy with only

trained CNN and FC layers, outperforming most CNN-based

methods. This is because we trained a robust feature extractor

and classifier by selecting optimal features from low-quality data.

Pre-trained CNN based on transfer learning is the basis of many

methods, including ours, and the reason for their low performance

may be mainly due to the lack of information interaction. MMAL

(Zhang et al., 2021) is a fine-grained recognition method that has

some improvement compared to the baseline, but its performance is

limited due to small pests and low image resolution. BCL (Zhu et al.,

2022) uses an advanced supervised contrastive learning strategy to

balance samples, but it is limited by the number of samples in each

batch, and the feature extraction performance is relatively weak.

Although PCNet (Zheng et al., 2023) is a lightweight framework, it

also adds a complex coordinate attention mechanism and feature

fusion process, and its accuracy is not as good as our trained general

CNN. Among CNN-based methods, only MS-ALN+DL (Feng et al.,

2022) exceeded our general branch. Although it solves the problems

of localization, occlusion, and class imbalance, the model is

extremely complex and the obtained accuracy is still not enough

for application.

Compared with transformer-based and ensemble-based

methods, most of them exceeded the accuracy of our general

branch. This is mainly because they use more advanced and

complex feature extractors and other special processing

techniques to improve feature representation ability, which also

makes their models complex and computationally expensive.

The biggest feature of our method lies in its practical

applications, not just in performance comparison. The improving

branch can achieve recognition results far beyond other complex

models. This is primarily achieved by leveraging a trained efficient

CNN, multiple image information, feature localization, filtering

fusion, and voting. For example, when inputting 5 images to be

recognized at the same time, our method achieved 96.1% accuracy.

Although additional information is introduced, considering the

significant improvement in accuracy and the low cost of image

acquisition in practical applications, our method has great

practical significance.

4.2.2 Comparison on D0 and ETP
Our method not only has excellent performance on low-quality

dataset IP102 but also has a positive effect on normal datasets.

Tables 2 and 3 respectively show the comparison results of the D0

dataset and ETP dataset with other state-of-the-art methods. Due to

the high image quality, all models achieved high accuracy on the

two datasets. Our method trained a high-performance feature

extractor and classifier through strategic fusion of multiple

information. As a result, on the general branch, using the same

feature extractor and classifier, our method outperformed the pre-
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trained CNN in terms of performance. However, the general

branch’s performance was inferior to that of the model ensemble-

based methods, primarily because they leverage the advantages of

multiple feature extractors to obtain better feature representations.

However, this approach requires significant computational

resources and storage space. MMAL (Zhang et al., 2021) performs

well in classifying images of pests with multiple stages. However, its

improvement in recognition is not significant for dataset D0, which

contains only single-stage images. For ACEDSNET (Li et al., 2021),

a lightweight model constructed by researchers, its low accuracy

may be due to its inability to effectively extract important features.

The performance of ResNet-50 + DA (Huang et al., 2022) is weaker

than our experiment’s pre-trained ResNet-50. We discovered that a

possible reason is that they used a smaller learning rate, resulting in

insufficient training of the network. It is worth mentioning that on

these two datasets, using the improving branch with only two input

images can achieve almost 100% accuracy, surpassing other

methods, and its simplicity and efficiency make it suitable for

practical applications.
TABLE 2 Performance comparison on D0 dataset.

Methods Backbone Acc F1

Pre-trained ResNet-50* (He
et al., 2016)

ResNet-50 99.4 99.4

Pre-trained DenseNet-169*
(Huang et al., 2017)

DenseNet-169 99.6 99.6

MMAL* (Zhang et al., 2021) ResNet-50 99.8 99.8

Ours (general branch) ResNet-50 99.8 99.8

CNNs Ensemble + Exp +
ExpLR (Nanni et al., 2022)

EfficientNetB0 + ResNet-
50
+ GoogleNet + ShuffleNet
+
MobileNetV2 + DenseNet-
201

99.8 99.7

MMALNet + DNVT +
ResNet-50 + Ensemble (Xia
et al., 2023)

ResNet-50 + DenseNet-201
+ Transformer

99.9 99.9

Ours (improving branch) ResNet-50 100 100
frontie
The bolded lines are the results obtained by our method, to emphasize.
TABLE 3 Performance comparison on ETP dataset.

Methods Backbone Acc F1

ACEDSNet (Li et al., 2021) MobileNet 96.8 –

ResNet-50 + DA (Huang et al., 2022) ResNet-50 97.1 96.1

Pre-trained DenseNet-169* (Huang et al.,
2017)

DenseNet-169 99.2 99.2

Pre-trained ResNet-50* (He et al., 2016) ResNet-50 99.7 99.7

Ours (general branch) ResNet-50 99.7 99.7

Ours (improving branch) ResNet-50 100 100
The bolded lines are the results obtained by our method, to emphasize.
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4.3 Ablation study

We conducted ablation studies on IP102 to analyze the impact of

the methods used in our model on classification. Each group is trained

with 5 positive samples during training. During testing, the general

branch uses single image, while the improving branch uses 5 images of

the same category per group by default to improve recognition.

4.3.1 Module ablation
To verify the effectiveness of our proposed framework, we

conducted ablation studies on the main modules, and the results

are shown in Table 4.

In the improving branch, we use the full module as the baseline,

and remove each major module separately for training and testing, as

shown in No.1-4. As a comparison, we also listed the test results of

the fully trained network in the general branch, as shown in No.5.

Comparing No.1 and No.5, the improving branch can achieve

recognition accuracy far higher than the general branch, mainly

because the improving branch can merge multiple image information

and eliminate the adverse effects of bad information during separate

image classification. Comparing No.1 and No.2, it can be found that

the accuracy decreases by 1.1% without the EFLMmodule, indicating

that EFLM is useful as it can locate features and remove some noisy

information. Comparing No.1 and No.3, it can be found that the

accuracy decreases the most by 5.2% without the AFFM module,

which indicates that the filtering and fusion of information has a great

impact on the model, as it can filter out useless information

adaptively and fuse useful information to achieve more accurate

classification. Comparing No.1 and No.4, it can be found that the soft

voting method can increase the recognition accuracy by 1.9%. As the

last step in determining recognition results, it can avoid

misclassifying images without obvious features.

To ablate multiple image information, we fine-tuned the model

on a pre-trained ResNet-50 and applied a hard voting strategy to the

same number of image classification results, as shown in No.6-7.

Hard voting takes the most majority of the voted categories as the

final result, in line with human subjective consciousness.

Comparing No.1 and No.7, it can be found that our multi-image

fusion recognition method can achieve higher accuracy.

Furthermore, comparing No.6 and No.7 also shows that

introducing multiple image information can bring simpler and

more practical accuracy improvements.
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4.3.2 The impact of the number of training
positive samples and the number of test images

The number of training samples in each group mainly

determines the quality of CNN and FC after training. We trained

the model with the number of positive samples ranging from 1 to 6

and tested it with a single image input to the general branch,

drawing a curve graph as shown in Figure 6.

According to the results, when the number of training images is

1, the AFFM does not work due to the lack of image interaction,

resulting in lower performance of the trained model. When the

number of images is greater than 1, the performance of the trained

model improves as the number of images increases, reaching its

maximum value when the number of images is 4 or 5. However, the

performance no longer increases or even decreases thereafter. This

could be due to the fact that when there are too many training

images, a few low-quality images are filtered out, and more normal

images tend to participate equally in the fusion process, leading to a

decrease in the optimal feature selection effect.

The number of additional images introduced during testing

determines the recognition performance of the improving branch in

practical applications. Therefore, we used the network trained with

5 positive samples as the basis and conducted experiments by

changing the number of test images from 1 to 6, as shown

in Figure 7.

From Figure 7, it can be seen that the accuracy of the improving

branch increases as the number of test images increases,

demonstrating the effectiveness of EFLM, AFFM, and SV in

extracting and fusing multiple image information. Specifically, for

the high-quality datasets D0 and ETP, the accuracy reached 99.9%

and 99.8%, respectively, when tested with a single image. When the

number of test images increased by one more, the accuracy

remained at the peak of 100%. However, for the low-quality

dataset IP102, the increase in accuracy gradually slowed down as

the number of test images increased. The accuracy reached 96.1%

when there were 5 test images, and the increase in accuracy became
TABLE 4 Module ablation.

No. Branch Method Acc

1

Improving branch

Full 96.1

2 w/o EFLM 95.0

3 w/o AFFM 90.9

w/o SV 94.2

5 General branch Trained ResNet-50 73.9

6
No

Pre-tained ResNet-50 72.0

7 w/i Multiple images & Hard voting 88.7
FIGURE 6

The impact of the number of training samples in each group on the
performance of CNN and FC after training.
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minimal thereafter, indicating that the role of multiple image

information was no longer significant.

4.3.3 The impact of integrated localization and
gradual localization

To test the impact of the number of integrated localization

layers on accuracy, we used ResNet-50 as an example to conduct

experiments on the last one block output, the integration of the last

two block outputs, and the integration of all three block outputs of

its last stage. All other modules were configured as “Full.” The

results are presented in Table 5.

As shown in Table 5, the accuracy gradually increases as the

number of integrated localization layers increases, demonstrating

the effectiveness of multi-layer integrated localization. The small

improvement in accuracy is mainly due to the fact that the fusion of

information from 5 images enhanced recognition. We believe that

integrated localization will play a greater role in fusing information

from fewer images and in more complex image recognition tasks,

relative to the small computational cost.

In the EFLM module, we linearly increase the activation map

average value from 0 to the original value as the training progresses

to gradually discover the feature location. The experiments show

that without gradual localization, we achieved an accuracy of 95.7%,

which is lower than 96.1% with gradual localization, demonstrating

the effectiveness of gradual localization.

4.3.4 The impact of information filtering
To test the impact of the information filtering in the AFFM

module on accuracy, we conducted four separate experiments by

combining the query and key masks as one set and the value mask

as another set. The results are shown in Table 6.

Although using 5 images in the improving branch helped to

enhance recognition and narrow the accuracy gap, we can also draw

the following conclusions from the table. Firstly, the query and key

masks played a crucial role in information filtering. Secondly,

filtering information with a separate value mask had a negative
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effect on the results, but when combined with the query and key

masks, the best experimental results were obtained. This is mainly

because the value mask is a forced filtering method, which removes

features that the query and key masks consider to be useless.

However, when there are no query and key masks, direct forced

filtering can cause useful information to be erroneously removed. In

summary, due to the background of the pest itself and the issues of

the dataset, the images contain significant interference, making

adaptive information filtering necessary.
4.4 Visualization

Grad-CAM (Selvaraju et al., 2017) is a feature visualization

method that uses gradients to compute the attention regions of the

network in the feature maps. We applied Grad-CAM to compare

pre-trained ResNet-50 with our general branch and improving

branch, both trained with 5 positive samples. Figure 8 shows the

visualization results, where the labels of the original images are all

rice leaf rollers.

The results show that the pre-trained ResNet-50 network can

only roughly focus on the target and even incorrectly locate it.

However, with the enhancement of multiple positive samples, our

model has better discriminative ability, and the general branch can

accurately focus on the target. The attention performance of the

improving branch is affected by the quality and quantity of the test

images. With the help of additional information, the improving

branch can more accurately focus on the target, which to some

extent promotes subsequent feature localization and fusion, thereby

achieving more accurate recognition accuracy.
4.5 Application deployment

To apply our research results practically, we built a web

application called “Smart Agriculture,” which can run on personal

computers and mobile phones, as shown in Figure 9. The

application includes multiple common crops for users to choose
TABLE 5 The impact of integrated localization on accuracy.

Methods Acc

Last one block output 95.8

Integration of the last two block outputs 95.9

Integration of all three block outputs 96.1
frontier
TABLE 6 The impact of information filtering on accuracy.

No Query & Key Mask Value Mask Acc

1 ✘ ✘ 95.5

2 ✔ ✘ 95.9

3 ✘ ✔ 95.4

4 ✔ ✔ 96.1
FIGURE 7

The impact of the number of test images on the accuracy of the
improving branch.
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from. On the left side of the page, users can upload pest images for

identification without restrictions to improve identification

credibility. On the right side of the page, the identification results

are displayed, including the pest type, probability, and a link to

learn more about the identified pest. Below the page, the

identification history can be displayed and exported to Excel for

users to review repeatedly.

We deployed the model trained with 5 positive samples on a

cloud server to receive requests from the web application.

Regardless of how many images need to be identified, the model

can give very high identification credibility. As shown in Figure 7,

the more images users input, the higher accuracy they will get. The

time taken by the model is related to the number of input images

and the configuration of the cloud server. In general, results will be

displayed within two seconds. However, when it comes to achieving

highly accurate recognition results, the time spent is negligible.
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4.6 Discussion

We achieved very high recognition accuracy by the improving

branch, but the main reason for the improvement is the

introduction of additional images. Our method only makes the

most of this information as much as possible. Comparing No.6 and

No.7 in Table 4, it can be observed that with the input of 5 images,

the basic hard voting fusion recognition method can achieve an

accuracy of 88.7%, which is a significant improvement of 16.7%

compared to 72.0% for single image recognition. Through the

fusion process of EFLM, AFFM, and SV, we achieved an accuracy

of 96.1% in the improving branch, which is only 7.4% higher than

the basic hard voting method. This may be the true improvement

ability of our proposed method. Additionally, the input requirement

of multiple images also brings inconvenience to pest recognition.

On the one hand, during model training, the dataset is required to
A B C

FIGURE 8

Visualization results. (A) Pretained ResNet-50. (B) General branch. (C) Improving branch.
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have as rich pest images as possible to increase the feature richness

of input images, thereby improving the fusion ability of the

network. On the other hand, according to Figure 7, reliable

recognition results can only be obtained by inputting as many

images as possible in practical applications. Although farmers can

easily capture photos, this increases their inconvenience and the

computational consumption.

Therefore, looking ahead to the future, we will optimize the

fusion recognition method to achieve high recognition accuracy

with fewer input images. Firstly, when extracting features from each

image, we will consider feature fusion within each image to fuse

multi-scale information, thus improving model robustness.

Secondly, we will optimize the feature localization process of

EFLM and the filter fusion mechanism of AFFM by introducing

more advanced processing methods to improve localization

accuracy and fusion efficiency. Finally, we will also explore

efficient solutions from the perspective of addressing the

challenges in recognition for more accurate pest identification.
5 Conclusion

To improve the performance of pest recognition in complex

real-world scenarios, we proposed a multiimage fusion recognition

method in this paper. In our method, CNN is used as the backbone

network to extract features, EFLM effectively locates feature regions,

AFFM adaptively filters and fuses features, and SV integrates

multiple image recognition results to further improve recognition.

To validate the effectiveness of our method, we conducted
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experiments not only on the low-quality pest dataset IP102 but

also on the high-quality pest datasets D0 and ETP. The results

demonstrate that our method can extract features to train high-

performance networks and achieve much higher accuracy than the

current state-of-the-art methods by inputting multiple images.

Moreover, we developed a web system to facilitate users with

recognition needs to recognize pests in various crops and provide

extreme recognition accuracy according to the amount of uploaded

information, which meets the practical application requirements. In

the future, we aim to more accurately locate targets and make better

use of feature information to achieve higher accuracy with fewer

images in practice.
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