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Editorial on the Research Topic

Rhizosphere interactions: root exudates and the rhizosphere microbiome
The rhizosphere, a term introduced by Lorenz Hiltner in 1904, is defined as a thin layer

of soil that surrounds and is influenced by plant roots (Philippot et al., 2013). It can be

divided into several distinct zones, including the endorhizosphere, the rhizoplane, and the

ectorhizosphere (Morgan et al., 2005). The rhizosphere is one of the key interfaces between

plants and their environment, with intensive root-induced physical, chemical, and

biological processes (Zhang et al., 2022). It is also considered a hotspot for plant-

microbe interactions because plant roots release enormous amounts of

photosynthetically fixed carbon into the surrounding soil. Root exudation typically

creates a nutrient-rich rhizosphere microenvironment in which microbial activity is

stimulated. Root exudates consist of a wide variety of primary and secondary

compounds, including carbohydrates, amino acids, and organic acids, phenolics,

flavonoids, auxins (Zhu et al., 2016). They provide a readily bioavailable supply of

nutrients and energy for microbial growth and also act as a signaling messenger to

shape the rhizosphere microbiome (Luo et al., 2020; Koprivova and Kopriva, 2022). The

rhizosphere microbiome, referred to as the plant’s second genome, plays a crucial role in

plant growth and health (Berendsen et al., 2012). The rhizosphere is colonized by a huge

number of microorganisms and invertebrates, which exert either positive, negative, or

neutral effects on plant growth and fitness. In recent years, there has been a growing interest

in exploring plant-microbe rhizosphere interactions, termed rhizosphere cross-talk, in

natural and agricultural ecosystems.

The number of records retrieved through Web of Science with keywords ‘rhizosphere

interactions’ or ‘plant-microbe interactions’ or ‘rhizosphere crosstalk’ or ‘plant–soil

feedbacks’ or ‘rhizosphere microbiome’ increased from 406 (1948–2000) to 1924 (2001-

2010) and then to 11,451 (2011-2023) (data retrieved August 12, 2023). As a response to

the importance of plant-microbiome rhizosphere interactions, we proposed the Research

Topic “Rhizosphere Interactions: Root Exudates and Rhizosphere Microbiome”. This
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Research Topic aims to present current information on trends and

methods utilized in the study of plant-microbe rhizosphere

interactions and also highlights the multifaceted research

approaches used to characterize root exudates, the associated

rhizosphere microbiome, and interactions among the two. In this

Research Topic, we have collected 22 original research articles that

contribute to expanding our knowledge about the mechanisms of

plant-microbe interactions and their significance for plant growth

and soil health, the key factors framing the microbial community in

the rhizosphere, and the applications of rhizosphere interactions for

sustainable agriculture, forest, and environmental management.
Rhizosphere microbiome and
plant health

Plants and their microorganisms have established intimate

associations throughout the length of their evolutionary history. It

is increasingly recognized that plants could be considered as ‘meta-

organisms’ or ‘holobionts’, consisting of the plant itself plus the

associated microbiota (Snelders et al., 2022). The rhizosphere

microbiome can directly or indirectly influence plant growth,

development, and health by modulating plant nutrient uptake

and/or resistance to abiotic and biotic stress. Wang H. et al.

indicate that the rhizosphere microbiome could regulate plant

drought tolerance of Atractylodes lancea. Zhang J. et al. reveal the

close relationships between the rhizosphere microbial community

and corm rot disease resistance of Crocus sativus.

Among the beneficial microbes, plant growth-promoting

rhizobacteria (PGPR) and fungi (PGPF) can facilitate a host’s

growth and health through various mechanisms, including

improving soil structure and nutrient availability, modulating/

producing plant hormones, and preventing phytopathogens by

direct antibiosis or inducing systemic resistance. For instance, the

enrichment of PGPR, mediated by intercropping with maize, could

significantly promote the growth of A. lancea (Peng Z. et al.). Zhang

F. et al. demonstrate that PGPR members (i.e. Bacillus Megaterium)

of the genus Bacillus benefit the competitive growth and successful

invasion of Ambrosia artemisiifolia by increasing available nutrient

levels. Recently, there has been an increasing interest in utilizing

PGPRs for the biocontrol of soil-borne diseases (Wu et al., 2020; El-

Saadony et al., 2022). Pu et al. indicate that pre-inoculation of

arbuscular mycorrhizal fungi enhances disease resistance of Salvia

miltiorrhiza to Fusarium wilt by inducing the expression of defense

enzymes and defense-related genes. Han et al. find that the

Pseudomonas strain ZL8 isolated from the sclerotium of

Polyporus umbellatus exhibits broad-spectrum antifungal activity

and could promote the growth of Salvia miltiorrhiza by inhibiting

its wilting. In addition, it should be noted that the rhizosphere

microbiome is reported to be vital for the accumulation of active

ingredients and the quality formation of medicinal plants (Köberl

et al., 2013). Chen J. et al. provide insights into relationships

between root metabolism and rhizosphere microbiota of Angelica

sinensis at different growth stages. Wang J. et al. find that the

application of Burkholderia ambifaria LK-P4 could promote the
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growth and the content of specific active ingredients in

Anoectochilus roxburghii.
Rhizosphere microbiome assembly
and its driving factors

Given the importance of the rhizosphere microbiome for plant

growth, an in-depth understanding of rhizosphere microbiome

assembly and its driving factors is key to rhizosphere engineering

for sustainable crop production. The composition and structure of

the rhizosphere microbial community can be influenced by many

factors, including plant domestication, plant genotype, plant

development stage, plant compartment, root exudates, soil type,

growth conditions, and agricultural practice (Edwards et al., 2015;

Chen et al., 2019; Qu et al., 2020; Bai et al., 2022; Guo et al., 2022;

Luo et al., 2022). For instance, Peng B. et al. reveal the strong effects

of drip irrigation on the rhizosphere bacterial community of cotton

as compared with traditional flood irrigation, and indicate that drip

irrigation under plastic film mulch alters the core bacterial network

module and suppresses soil nutrient cycling. Huang et al. indicate

that on- and off-year management practices affect soil organic

carbon sequestration by changing soil microbial communities of

Phyllostachys edulis. Among the aforementioned driving factors,

soil physicochemical properties including soil pH could directly or

indirectly affect the structure and function of rhizosphere

microbiota (Wei et al., 2018; Xun et al., 2019; Zhang et al., 2022).

Lin et al. indicate that soil acidification results in significant changes

in soil microbial community structure and the abundance of genes

involved in the soil nitrogen cycle. Similarly, Lu et al. find that the

excessive application of K2SO4 fertilizer increases soil acidification

and alters the rhizosphere microbial community and functions.

Recently it has been reported that cropping patterns such as

monoculture, intercropping, and crop rotation exerted a strong

effect on the rhizosphere microbiome assembly (Wu et al., 2020; Li

et al., 2022; Zhou et al., 2023). For example, consecutive

monoculture of blueberry, Chinese fir, and tobacco remarkably

alter the assembly of microbial communities in the rhizosphere

(Che et al.; Chen J. et al.; Wang P. et al.).

Root exudates, acting as substrates and signaling molecules for

microbes, are another critical factor modulating the assembly of the

rhizosphere microbiome (Chagas et al., 2018; Bai et al., 2022). On

the one hand, root exudates are known to have specialized roles in

plant–plant communication (Kong et al., 2018). Li J. et al. indicate

that allelochemicals including benzoic acid and cinnamic acid

derivatives secreted by allelopathic rice roots play important roles

in inhibiting surrounding weeds. On the other hand, root exudates

are the key regulators in plant-microbe cross-talk, and can modify

both biological and physical interactions between roots and soil

microorganisms by mediating various positive and negative plant-

microbe interactions (Berendsen et al., 2012; Deng et al., 2023).

Root exudates, particularly those containing specific secondary

metabolites, play crucial roles in shaping the rhizosphere

microbiome by recruiting or repelling different community

members (Voges et al., 2018; Li et al., 2023). Sun et al.
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demonstrate that the root exudates of Flaveria bidentis could

significantly increase the abundances of Bacillus frigoritolerans

and Bacillus megaterium and promote their nitrogen-fixing and

phosphate-solubilizing abilities, which further increases soil

available phosphorus and nitrogen levels and promotes the

invasiveness of F. bidentis. Li Q. et al. show that the dominant

chemoattractants (i.e. 2,4-di-tert-butylphenol, methyl stearate, and

arginine) in the root exudates mediate the rhizosphere bacterial

community assembly of Casuarina equisetifolia L.

Increasing evidence has shown that plant allelopathy, replant

disease, and interspecific facilitation in intercropping systems are

facilitated by the integrative effects of plant-microbe interactions

mediated by root exudates (Li et al., 2020; Mwendwa et al., 2021; Xu

et al., 2021; Zhou et al., 2023). Yang et al. indicate that root exudates

of Rehmannia glutinosa could stimulate the proliferation of

Fusarium oxysporum, which alters the expression patterns of

Leucine-rich repeat receptor-like protein kinases (RgLRRs),

disorders the growth and development of R. glutinosa, and finally

results in the formation of replant disease. However, intercropping

with Achyranthes bidentata alleviates Rehmannia glutinosa replant

disease by modulating root exudates and improving the rhizosphere

microenvironment (Liu et al.). Furthermore, An et al. indicate that

alfalfa cultivars affect rhizosphere microbial biomass and

community composition. Li Q. et al. investigate the bacterial and

fungal communities in multiple compartment niches of Casuarina

equisetifolia L., and find that ecological niche selection shapes the

assembly and diversity of microbial communities. Ultimately, the

effects of plant domestication, plant genotype, plant development

stage, and plant compartment on the assembly of rhizosphere

microbiomes have also been reported to be associated with the

changes in root exudation profile (Zhalnina et al., 2018; Oyserman

et al., 2022; Yue et al., 2023). Therefore, a deeper understanding of

the spatiotemporal dynamics of root exudates is vital in

disentangling the chemical communication between plants and

microbes and modulating the rhizosphere microbiome for plant

fitness and sustainable agriculture.
Outlook and future challenges

Plants have evolved over millions of years, with surrounding

microbiota including mutualists, pathogens, and commensals,

through diverse signaling mechanisms. Despite great progress in

understanding the assembly and functions of the rhizosphere

microbiome, a huge gap still exists in the understanding of the

complex mechanisms of plant–microbe cross-talk in the

rhizosphere and the application of beneficial microbiomes for

sustainable agriculture, horticulture, and forestry. More recently,

remarkable progress related to the methods and technologies used

when performing rhizosphere ecological research has been noted.

For example, the use of metabolomics coupled with imaging

technology has resulted in key information on the localization of

the production and release of secondary plant products. Stable

isotope probing (SIP) of DNA and RNA combined with high

throughput sequencing has enabled the characterization of the

active rhizosphere microbiome that utilizes root exudates for
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nutrient and energy requirements. Furthermore, the use of

synthetic microbial communities (SynComs) has enriched our

knowledge of plant-microbe and microbe-microbe interactions as

well (Liu et al., 2019). It is optimistically recognized that a deeper

and more fine-grained understanding of the precise mechanisms

underlying the rhizosphere interactions between plants and other

organisms will be achieved in the near future, thanks to advanced

techniques such as high-throughput sequencing technologies,

integrating omics approaches, system molecular biology, non-

invasive in situ analyses, and high-performance computing.

To date, the construction and application of beneficial microbial

consortia in agriculture production continue to present a great

challenges. Many biocontrol agents are effective under experimental

conditions but perform poorly in complex field environments,

which is mainly attributed to poor rhizosphere colonization and

persistence (Bai et al., 2022; Yang et al., 2023). Therefore, one future

direction is to explore the environmental factors and microbial

phenotypes required for colonization and persistence in the

rhizosphere environment. In addition, it is necessary to

disentangle the genetic basis of rhizosphere microbiome assembly

and identify plant genes that regulate microbial colonization.

Breeding for improved cultivars with beneficial microbial

interactions is a potentially effective way to engineer the

rhizosphere microbiome and promote plant growth and fitness.

Overall, novel discernment of the biotic and abiotic factors that

shape the rhizosphere microbiome will be crucial in harnessing the

most beneficial microbiome to enhance agricultural productivity

and ecosystem functions.
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