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Kunming, China, 3School of Mechanical and Electrical Engineering, Yunnan Agricultural University,
Kunming, China
Deep learning models have been widely applied in the field of crop disease

recognition. There are various types of crops and diseases, each potentially

possessing distinct and effective features. This brings a great challenge to the

generalization performance of recognition models and makes it very difficult to

build a unified model capable of achieving optimal recognition performance on

all kinds of crops and diseases. In order to solve this problem, we have proposed a

novel ensemble learning method for crop leaf disease recognition (named

ELCDR). Unlike the traditional voting strategy of ensemble learning, ELCDR

assigns different weights to the models based on their feature extraction

performance during ensemble learning. In ELCDR, the models’ feature

extraction performance is measured by the distribution of the feature vectors

of the training set. If a model could distinguish more feature differences between

different categories, then it receives a higher weight during ensemble learning.

We conducted experiments on the disease images of four kinds of crops. The

experimental results show that in comparison to the optimal single model

recognition method, ELCDR improves by as much as 1.5 (apple), 0.88 (corn),

2.25 (grape), and 1.5 (rice) percentage points in accuracy. Compared with the

voting strategy of ensemble learning, ELCDR improves by asmuch as 1.75 (apple),

1.25 (corn), 0.75 (grape), and 7 (rice) percentage points in accuracy in each case.

Additionally, ELCDR also has improvements on precision, recall, and F1 measure

metrics. These experiments provide evidence of the effectiveness of ELCDR in

the realm of crop leaf disease recognition.
KEYWORDS

crop disease, recognition, ensemble learning, weight, feature extraction performance
1 Introduction

Crops face continuous threats from different diseases during planting, making disease

control a long-standing and crucial challenge for farmers. Early detection of crop diseases is

an essential task in agriculture (Applalanaidu and Kumaravelan, 2021). In the early stage,

farmers and experts relied on their knowledge and experience to diagnose crop diseases.
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However, this approach is inefficient, expensive, and characterized

by low accuracy. With the development of information technology,

researchers began to apply machine learning (ML) and deep

learning (DL) technologies for crop disease recognition. ML and

DL technologies offer the potential to automate and enhance the

accuracy of crop disease recognition. In recent years, DL has

become the mainstream technology in the field of crop disease

recognition due to its automated feature extraction, high accuracy,

and user-friendliness. Many researchers tried to apply more

advanced DL models to recognize diseases in different crops. For

instance, Fuentes et al. (2018) used faster R-CNN to recognize

tomato diseases, achieving a recognition rate of approximately 96%.

Nachtigall et al. (2016) proposed a technique for apple disease

recognition based on AlexNet, achieving an accuracy of 96.6%.

Jiang et al. (2020) applied convolution neural networks (CNNs) to

recognize four different rice diseases, achieving an accuracy of

96.8%. There are also many recognition studies on crops based

on DL models, including grape (Xie et al., 2020), mango (Singh

et al., 2019), millet (Coulibaly et al., 2019), olive (Cruz et al., 2017),

and cucumber (Kawasaki et al., 2015). The DL models used in these

studies include Xception, MCNN, VGG, LeNet, and custom CNN.

In these studies, different DL models are applied by the researchers

who e xp e c t t h a t b e t t e r mode l s w i l l b r i n g b e t t e r

recognition accuracy.

There are many kinds of crops and crop diseases. While the

leaves of different crops may exhibit distinct morphological

features, the symptoms caused by different diseases can often

appear visually similar (Ngugi et al., 2021). This brings a great

challenge to the generalization performance of the recognition

model. Different DL models have their own feature extraction

mechanisms, resulting in different recognition performances in

different crops’ disease recognition. This variability also makes it

difficult to build a common model that can achieve optimal

recognition performance across all crop types and diseases. To

solve this problem, we proposed a novel ensemble learning method

for crop leaf disease recognition (named ELCDR), which can

integrate different DL models to improve the generalization

performance of the recognition method.

The contributions of this paper include the following

key aspects:
Fron
1) We proposed a novel ensemble learning method for crop

leaf disease recognition (named ELCDR). Compared with

the crop disease recognition methods that are based on a

single model, ELCDR demonstrates better recognition

performance and generalization performance.

2) We proposed an innovative ensemble learning strategy and

deployed it within ELCDR. Compared with the traditional

voting strategy, our strategy can realize more reasonable

ensemble learning. By this, ELCDR can achieve better

recognition performance and generalization performance

than the methods based on the voting strategy.
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3) We executed experiments on the dataset that includes four

different crop types, and the results showed the effectiveness of

our methods.
2 Related works

The recognition of crop leaf disease images essentially

constitutes an image classification. In the past, many researchers

tried to achieve automated crop disease image recognition using

traditional machine learning technologies. Support vector machine

(SVM) is the most widely used machine learning algorithm in the

research field of crop disease image recognition. Raza et al (Shan-E-

Ahmed et al., 2015). proposed an SVM-based method that can

detect tomato powdery mildew with an accuracy of more than 90%.

Islam et al. (2017) suggested an SVM-based approach for

recognizing two potato diseases, with an accuracy of 95%.

Additionally, Pantazi et al. (2019) proposed a multiple crop

disease recognition system based on SVM, also achieving an

accuracy of 95%. On the other hand, Kaur et al. (2018) applied

SVM to recognize various diseases of soybean, with the highest

accuracy reaching 62.53%. Furthermore, the k-nearest neighbor

(KNN) (Hossain et al., 2019), k-means (Prakash et al., 2017),

transductive support vector machine (TSVM) (Ahmed et al.,

2019), and multiple linear regression (MLR) (Sun et al., 2018) are

also the traditional machine learning technologies that are widely

applied in crop leaf disease recognition. All of these recognition

methods based on traditional machine learning need to select image

features manually or by using other selection algorithms. The

quality of feature selection significantly impacts the performance

of recognition. This leads the traditional machine learning

methods to have a certain threshold for use and may have an

unstable performance.

In recent years, due to developments in deep learning

technologies, researchers have been incorporating deep learning

models into the realm of crop disease image recognition. Deep

learning models are proficient at automating feature selection and

extraction, allowing for end-to-end deployment. This has led deep

learning models to gradually become the mainstream methods in

the field of crop disease image recognition. For instance, Jiang et al.

(2019) achieved real-time disease recognition for apples using the

VGG model and attained an accuracy of 78.8%. Additionally, some

studies have applied VGG to recognize other crops (Paymode and

Malode, 2021) (Bhagat et al., 2023) (Kundu et al., 2021). VGG is a

widely applied deep learning model in crop disease recognition

studies because it has a simple network structure and a smaller

convolutional kernel. Researchers also introduced other deep

learning models to crop leaf disease recognition, such as ResNet

(Stephen et al., 2023), MobileNet (Chen et al., 2021), AlexNet (Chen

et al., 2022), and GoogLeNet (Yang et al., 2023). However, the

diverse array of crops and diseases poses a great challenge to the

generalization performance of recognition models. This challenge
frontiersin.org
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makes it very difficult to build a unified model that can achieve

optimal recognition performance on all kinds of crops and diseases.

When applying deep learning models to a new kind of crop or

disease, researchers often need to optimize the model to adapt to the

unique characteristics of that specific crop and disease (Ganesan

and Chinnappan, 2022) (Reddy et al., 2023). Otherwise, the models

may fail to achieve their optimal recognition performance.

In order to improve the generalization performance of the

recognition method, researchers have introduced ensemble

learning to image-based crop disease recognition (Li et al., 2021).

Ensemble learning (Ganaie et al., 2022) is an effective way to

improve the generalization performance of the recognition

method. The authors of refs (Chaudhary et al., 2020) (Mathew

et al., 2022) (Palanisamy and Sanjana, 2023). introduced the voting

strategy of ensemble learning to crop disease recognition

and observed improvements in recognition accuracy in the

experiments. When we apply the voting strategy to recognize an

image, each of the models costs a vote for a particular category.

Then, the image is assigned to the category which receives most of

the votes. Voting is the simplest and most effective ensemble

learning strategy, but it treats all models as equally important.

Even if a model fails to extract effective features, its vote still has

significant weight. This is obviously unreasonable. Furthermore, if

each model votes for a different category, it becomes challenging to

determine which category should the image belong to, rendering the

voting strategy ineffective.

To solve this problem, we have proposed a novel ensemble

learning method for crop leaf disease recognition method, named

ELCDR. Different from the traditional voting strategy, it assigns

varying weights to the models during ensemble learning. These

weights are determined based on the feature extraction performance

of each model, which can be measured by examining the

distribution of feature vectors. Using this approach, ELCDR can
Frontiers in Plant Science 03
achieve more accurate and stable disease recognition performance

across different corps. Figure 1 shows the primary differences

between the voting strategy and our proposed strategy when

applied in ensemble learning.
3 A novel ensemble learning method
for crop leaf disease recognition

The basic flow of ELCDR is shown in Figure 1. There are four

stages in ELCDR, and they are represented by arrows of different

colors in Figure 2.

1) Stage 1 is represented by the gray arrows. We build a training

set and multiple DL models at the beginning of this stage. Then, we

use the training set to train each of the DL models, respectively. If

there are nDLmodels, then we will get n trained models at the last of

this stage.

2) Stage 2 is represented by the blue arrows. This stage’s main

purpose is to measure each model’s feature extraction performance,

and then calculate the ensemble learning weight of each model. We

input the training set into each of the trainedmodels to get the feature

vector distribution of each trained model, respectively. Then, we can

get each model’s feature extraction performance by measuring the

vector distribution of all the trained models. At last, we calculate the

ensemble learning weight for each model based on their feature

extraction performance. The details about how tomeasure the feature

extraction performance of models are introduced in Section 3.1, and

the details about how to calculate the ensemble learning weight are

also introduced in Section 3.1. If there are n trained models, then we

will get their ensemble learning weight as w1 to wn by this stage.

3) Stage 3 is represented by the red arrows. Once a new image is

input into the trained models, we can get the softmax function output
FIGURE 1

Comparison of the voting strategy and our strategy.
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of each model. If there are n trained models, then we can extract their

softmax function output as sf1 to sfn.

4) Stage 4 is represented by the black arrows. Based on the

ensemble learning weight and the image’s softmax function output,

we can calculate the final softmax function output by the following

formula:

sffinal =on
i=1wi ∗ sfi : (1)

In Formula (1), n means the number of trained models. Lastly,

we can get the new image’s recognition result based on the final

softmax function output. The details regarding how to calculate the

final softmax function output are provided in Section 3.2.
3.1 Weight calculation by measuring the
feature extraction performance of
the models

The traditional ensemble learning method generally uses a

voting weighting strategy, but we find this strategy to be

irrational. Different DL models may exhibit different feature

extraction performances on the same dataset. If a model could

extract a more effective feature, it should be assigned more weight

during the ensemble process. Otherwise, the model with less

effective feature extraction should be assigned less weight. By this

thought, we have introduced a novel weight calculation method that

measures the feature extraction performance of the models. This

method uses the vectors’ distribution of the training set to measure

a model’s feature extraction performance. If there are t images in the

training set, they will be divided into k categories. Once we input the

training set into the DL model, we can get t feature vectors

corresponding to the images. Figure 3 shows an example of
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feature vector distribution in a two-dimensional space. In this

space, there are 18 feature vectors represented by spots. All of the

vectors can be divided into three categories, which we use different

colors to represent. Each category has a category centroid

represented by a star. The category centroid is an average vector

of all vectors in the category. For a specific categoryp, if there are

total m vectors in categoryp, its centroid cenp can be calculated by

the following formula:

cenp =om
i=1vector

 p
i : (2)

We believe that a model’s feature extraction performance can be

measured by considering the in-category distance and the between-

categories distance of the training set feature vectors.

The in-category distance in a vector space means the average

distance of all vectors to their respective category centroid. We use

icD to represent the in-category distance, and icD can be calculated

using the following formula:
FIGURE 2

The basic flow of ELCDR.
FIGURE 3

Example of feature vector distribution in a two-dimensional space.
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icD =ok
p=1om

i=1 fED(cenp, vector
 p
i )=t : (3)

In Formula (3), k means the total number of categories, and the

function fED(vectorx , vectory) means the Euclidean distance between

two vectors.

The between-categories distance means the average distance

between all category centroids. We use bcD to represent the in-

category distance, and bcD can be calculated using the following

formula:

bcD =  ok
p=1ok

q=p+1 fED(cenp, cenq)=C
2
k : (4)

In Formula (4), C2
k is the combination number formula.

If a model could effectively extract the images’ feature, then the

feature vectors that belong to the same category should be closely

distributed around their category centroid. Additionally, the

category centroid of different categories should be distributed far

apart from each other. As shown in Figure 4, there are two different

models’ feature vector spaces (ModelA and ModelB). ModelB
obviously has evidently extracted a more effective feature because

it is very easy to determine the category of an image in the vector

space of ModelB. In contrast, the vectors of ModelA are closely

distributed together, making it very challenging to distinguish the

category of an image. Therefore, we can conclude thatModelB has a

higher feature extraction performance than ModelA. From this

perspective, we should assign a higher weight to ModelB than to

ModelA during ensemble learning.

The distribution of vectors in the same category can be

measured by icD, and the distribution of different categories can

be measured by bcD. So, if a model has a bigger bcD and a smaller

icD, then we could consume it to have better feature extraction

performance. We use FEPg to represent the feature extraction

performance of modelg, and it can be calculated by the following

formula:

FEPg =   bcDg
icDg

.
: (5)

We should give the model that has a higher FEP more weight

when performing ensemble learning. So, the weight formula is

defined as follows:

wg =
FEPg

on
i=1FEPi

  : (6)
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In this formula, wg means the weight assigned to modelg, and n

means the total number of models used during ensemble learning.

In ELCDR’s stage 2, we input the training set into the trained

models and then calculate their weights by measuring their feature

extraction performance.
3.2 Ensemble learning strategy of ELCDR

Once a new image is input to the trained DL models, we can get

a softmax function output from each model. The softmax function

output is the probability distribution of this image belonging to each

category. For example, if we input imgx into a trained DL model, we

get a softmax function output as [0.2, 0.6, 0.2]. It means that there

are three categories in total, and imgx has the most probability that

belongs to the second category. If we input the imgx to multiple

trained DL models, we would get the corresponding multiple

softmax function output. Then, we can use the weighting strategy

in Section 3.2 to integrate them into a final softmax function output

sffinal . sffinal . is calculated as follows:

sffinal =on
i=1wi ∗ sfi : (7)

In this formula, sfi means the softmax output of the ith model, wi

means the weight of the ith model, and there are nmodels in total to

ensemble learning. At last, we choose the category that has the most

probability in the sffinal as the final crop disease recognition result.
3.3 The basic steps of ELCDR

The basic flowchart of ELCDR is shown in Figure 5, comprising

seven basic steps. In this section, we will introduce the details of

each step.

Step 1. In this step, we need to decide how many and which

deep learning models for deployment in ensemble learning are

necessary. If we aim to deploy nmodels, then we need to build these

models and set their hyperparameters. Generally, we can choose the

models that are widely used in crop disease recognition to deploy,

such as VGG, ResNet, and MobileNet. After completing this step,

we can have n models: M1, M2,…, and Mn.

Step 2. After the step of building the model, we can use the

training set images to train the models one by one. Each image in
A B

FIGURE 4

Example of feature vector distribution of different models. (A) Feature Vectors Distribution of ModelA. (B) Feature Vectors Distribution of ModelB.
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the training set is labeled to indicate its crop disease category. If

there are h images in the training set, they could be divided into k

crop disease categories. This means that for each imagei∈ {image1,

image2,…, imageh}, it will belong to a specific categoryj∈ {category1,

category2,…, categoryk}. After the training process, we can get n

trained models: TM1, TM2,…, and TMn.

Step 3. In this step, we need to input the training set images to

the trained models one by one and extract the feature vectors in the

pooling layer of the trained models. For each imagei∈ {image1,

image2,…, imageh}, if we input it to TMg, then we could extract its

feature vector in the pooling layer of TMg. Since there are h images,

we can get h feature vectors in the feature vector space of TMg.

Then, we can calculate the feature extraction performance of TMg

by Formulae (2–5) in Section 3.2. For each TMg∈ {TM1, TM2,…,

TMn}, we can calculate its feature extraction performance FEGg by

this way. So, we can get the feature extraction performance of all the

models as {FEG1, FEG2,…, FEGn}.

Step 4. Since we have obtained the feature extraction

performance of every model, we can calculate the ensemble

learning weight of each model by using Formula (6). Then, we
Frontiers in Plant Science 06
can get the ensemble learning weight of all the models as {w1, w2,

…, wn}.

Step 5. Once we want to recognize a new crop disease image, we

need to input it into the trained models one by one. Then, we can

get the softmax function output of each model. After this step, we

can get n softmax function output. We use sfi to represent the

softmax function output of TMi as follows:

sfi = s1,   s2,  …, skf g : (8)

In Formula (8), si means that from the perspective of TMi, the

possibility of the new image belonging to categoryj is si.

Step 6. After getting the softmax function output of each trained

model, we need to calculate the final softmax function output by

Formula (7). Then, we can get the final softmax function output

sffinal .

Step 7. After completing the previous step, we can have the final

softmax function output as follows:

sffinal = sc1, sc2,…, sckf g : (9)

In Formula (9), scj means the final possibility of the new image

belonging to categoryj. So, we will generally choose the category that

has the maximum possibility value as the final recognition result.
4 Experiments

To verify the effectiveness of ELCDR, our experiments were

performed on a dataset that includes four kinds of crops. We will

mainly address three research questions (RQ) as follows:
1) RQ 1: Can ELCDR achieve better crop disease recognition

performance than single model methods?

2) RQ 2: Can our weighting strategy achieve better crop disease

recognition performance than the voting and average

weighting strategies?

3) RQ 3: Is our feature extraction performance metric effective?
4.1 Dataset

As shown in Table 1, we have built a dataset which includes four

kinds of crops, and the details of the dataset are shown in Table 1. In

this dataset, each crop category has four image categories. The

datasets for apple, corn, and grape were taken from the PlantVillage

dataset (Hughes and Salathe, 2015), and the images were captured

against a simple background. The rice leaf images were taken from

the Sambalpur University’s dataset (Sethy et al., 2020), and these

images were captured in a natural environment with complex

backgrounds. The images in Figure 6 are the example images of

the dataset. The dataset has been uploaded to the Kaggle website

and can be accessed by the following website address: https://

www.kaggle.com/datasets/zhangguangchuan/crop-disease-dataset.
FIGURE 5

Basic flowchart of ELCDR.
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4.2 Performance metrics

We used accuracy, precision, recall, and confusion matrix to

measure the performance of crop disease recognition methods in

our experiments. These metrics are the most common metrics in

the research field of image recognition. For their specific definition,

please refer to our previous article (He et al., 2022).
4.3 Experiment details

We deployed three DL models in ELCDR, which are widely

used in crop disease recognition methods, specifically VGG11,

ResNet18, and MobileNet_v3. Their network structure is shown

in Figure 7. The main idea of the VGG model is to construct a deep

network model by reusing simple foundation blocks (Simonyan and

Zisserman, 2014). VGG uses small convolutional kernels and

pooling layers, with deeper layers and more channels. It hopes to

extract more features by increasing the number of channels. VGG11

has 11 parameter layers, consisting of 8 convolutional layers and 3
Frontiers in Plant Science 07
fully connected layers. ResNet is a deep residual network developed

by Microsoft Research Asia (He et al., 2016). It uses residual blocks

and residual connections to construct the network, which allows for

training deeper networks and avoids gradient vanishing problem. It

can achieve better classification performance by continuously

increasing the network depth. ResNet18 has 18 parameter layers,

including 8 residual blocks. MobileNet_V3 was proposed by Google

in 2019 and is the third-generation network of MobileNet (Howard

et al., 2019). MobileNet_V3 is a lightweight model and can

construct a very small, low latency, and low consumption model

by only setting two hyperparameters. MobileNet_V3 mainly

consists of 11 bottleneck layers. All of these models are widely

applied in crop disease recognition systems and research studies.

Thus, we chose them to test the effectiveness of our method in

the experiment.

To answer RQ 1, we tested ELCDR using each of the crops from

the dataset, and then we compared its performance against that of

VGG11, ResNet18, and MobileNet_v3, respectively.

To answer RQ 2, we compared the performance of ELCDR with

the voting and average weighting strategies.

To answer RQ 3, we calculated the ensemble learning weight

and recognition performance for each model separately to

investigate whether our weighting strategy effectively reflects the

feature extraction performance of different models.

The hyperparameter settings of the models in the experiment

are shown in Table 2. The number of epochs was set as 60 in the

experiment, as we found that the models’ loss function had basically

converged after 50 training epochs in the experiment.

The models’ training loss and accuracy in the training process

on different datasets are shown in Figure 8. We can find that as the
FIGURE 6

Samples of the dataset.
TABLE 1 Dataset.

Crop
Number
of images

Number
of categories

Training:
test

Apple 2,000 4

3:2
Corn 2,000 4

Grape 2,000 4

Rice 2,000 4
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number of training epochs increases, the loss gradually decreases

while the accuracy gradually improves. After over 50 training

epochs, the models’ loss and accuracy basically no longer show

significant changes. During the experiments, we extracted the

output from the pooling layer to serve as the feature vectors when

calculating the feature extraction performance of a model.
Frontiers in Plant Science 08
4.4 Experiment results

4.4.1 Comparison of recognition performance
between ELCDR and different single models

In order to answer RQ 1, we compared the recognition

performance of ELCDR with VGG11, ResNet18, and

MobileNet_v3. The results are shown in Table 3 and Figure 9.

From Table 3 and Figure 9, we can find that the accuracy,

precision, recall, and F1 measure of ELCDR are the highest across

all crop datasets. The single model that has the best recognition

performance is ResNet18, while the single VGG11 model has the

worst recognition performance. Compared with ResNet18, ELCDR

improves by as much as 1.5 (apple), 0.88 (corn), 2.25 (grape), and

1.5 (rice) percentage points in accuracy in each case. As observed in

Table 3, ELCDR also has improvements in precision, recall, and F1

measure over the single ResNet18 model.

In Figure 10, it can be found that ELCDR recognizes the greatest

number of correct images on each category of the apple, corn, and
FIGURE 7

The basic network structure of deep learning models that are deployed in the experiment.
TABLE 2 Hyperparameter settings.

Hyperparameters VGG11 ResNet18 MobileNet_v3

Learning rate 0.001 0.001 0.001

Batch size 32 32 32

Number of epochs 60 60 60

Optimizer Adam Adam Adam

Loss function Cross-
entropy

Cross-
entropy

Cross-entropy
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rice datasets. In the case of the grape dataset, while ELCDR

recognizes a smaller number of correct images than VGG11 in

the category of “black rot,” it still recognizes the greatest number of

correct images in total.

Based on these results, we can answer research question 1:

compared with the single model methods, ELCDR can achieve

better crop disease recognition performance. Table 3 and Figure 9

show that ELCDR attains higher accuracy, precision, recall, and F1

measure than the methods relying on a single deep learning model.

Additionally, Figure 10 shows that ELCDR can recognize more

correct images than the methods that are based on the single deep

learning model. These findings have proven that the ensemble

learning strategy of ELCDR is effective in achieving a better crop

disease recognition performance than the single model methods.

4.4.2 Comparison of the recognition
performance between ELCDR and other
ensemble learning strategies

To answer research question 2, we also investigated the

performance of the ensemble learning strategy of voting and

average weighting. The results are shown in Table 4 and

Figure 11. The average weighting strategy calculates the final
Frontiers in Plant Science 09
softmax function output as follows:

sffinal =  o
n
i=1sfi
n

: (10)

In Formula (10), sfi means the softmax function output of

model i, and n means the number of the models. We can see in

Table 4 and Figure 11, ELCDR consistently achieves the best

recognition performance on the experiment dataset. On the apple,

corn, and grape datasets, the average weighting strategy achieves

better performance than the voting strategy. On the rice dataset, the

voting strategy has better performance than the average weighting

strategy. However, ELCDR consistently achieves the best

recognition performance regardless of the dataset. Compared with

the voting strategy, ELCDR improves by as much as 1.75 (apple),

1.25 (corn), 0.75 (grape), and 7 (rice) percentage points in accuracy

in each case. Compared with the average weighting strategy,

ELCDR improves by as much as 1.13 (apple), 1 (corn), 0.5

(grape), and 5.37 (rice) percentage points in accuracy in each

case. Especially on the rice dataset, the voting strategy and the

average weighting strategy both achieve the worse performance

than the single ResNet18 model, and the performance improvement

of ELCDR is most evident in this case. This might be because the
FIGURE 8

Loss and accuracy of different models on different datasets.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1280671
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


He et al. 10.3389/fpls.2023.1280671
images in the rice dataset have a complex background, making it

challenging for the models to extract the efficient feature, while the

voting strategy and the average weighting strategy cannot determine

which model has extracted the most efficient features. The

recognition performance of the voting strategy and the average

weighting becomes worse. In contrast, ELCDR can determine which

model has extracted the most efficient features and assigns more

weight during ensemble learning, consistently achieving better
Frontiers in Plant Science 10
recognition performance. We will further discuss this hypothesis

in research question 3.

In Figure 12, we can see that ELCDR consistently recognizes the

greatest number of correct images on each dataset. When

recognizing an image using the voting strategy, if each model

votes for a different category, the voting strategy is considered

invalid for that image. We can see that in Figure 12, there are

consistently some images for which the voting strategy is invalid.
TABLE 3 Comparison of the recognition performance between ELCDR and different single models.

Crop Model Accuracy Precision Recall F1 measure

Apple

VGG11 85.88 87.07 85.88 86.47

ResNet18 96.63 96.70 96.63 96.66

MobileNet_v3 94.88 94.96 94.88 94.92

ELCDR 98.13 98.14 98.13 98.13

Corn

VGG11 91.13 92.26 91.13 91.69

ResNet18 95.00 95.04 95.00 95.02

MobileNet_v3 91.50 91.81 91.50 91.65

ELCDR 95.88 96.00 95.88 95.94

Grape

VGG11 84.75 70.70 84.75 77.09

ResNet18 96.13 96.24 96.13 96.18

MobileNet_v3 93.38 93.34 93.38 93.36

ELCDR 98.38 98.39 98.38 98.38

Rice

VGG11 69.50 73.34 69.50 71.37

ResNet18 89.25 91.21 89.25 90.22

MobileNet_v3 79.75 84.12 79.75 81.88

ELCDR 90.75 91.86 90.75 91.30
Bold values highlight ELCDR performance.
FIGURE 9

Comparison of the recognition performance between ELCDR and different single models.
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This is also the main reason why the voting strategy achieves the

worse performance than the other ensemble learning strategies.

By this, we can answer research question 2: the weighting

strategy of ELCDR achieves better recognition performance than

the voting strategy and average weighting strategy. Table 4 and

Figure 11 show that ELCDR can achieve better accuracy, precision,
Frontiers in Plant Science 11
recall, and F1 measure than the voting strategy and average

weighting strategy. Figure 12 shows that ELCDR can recognize

more correct images than the voting strategy and average weighting

strategy. These results have proven that the ensemble learning

strategy of ELCDR is more effective than the voting strategy and

average weighting strategy.
FIGURE 10

Different models’ confusion matrix on different datasets.
TABLE 4 Comparison of the recognition performance between ELCDR and other ensemble learning strategies.

Crop Method Accuracy Precision Recall F1 measure

Apple

Voting 96.38 97.03 96.38 96.70

Average weighting 97.00 97.05 97.00 97.02

ELCDR 98.13 98.14 98.13 98.13

Corn

Voting 94.63 94.86 94.63 94.77

Average weighting 94.88 95.16 94.88 95.02

ELCDR 95.88 96.00 95.88 95.94

Grape

Voting 97.63 98.25 97.63 97.94

Average weighting 97.88 98.24 97.88 98.13

ELCDR 98.38 98.39 98.38 98.38

Rice

Voting 83.75 89.79 83.75 86.66

Average weighting 85.38 88.49 85.38 86.91

ELCDR 90.75 91.86 90.75 91.30
Bold values highlight ELCDR performance.
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4.4.3 Comparison of the ensemble learning
weights of different models

In order to answer research question 3, we calculated the in-

category distance (icD), between-categories distance (bcD), feature

extraction performance (FEP), weight, and accuracy performance

for each model integrated into ELCDR. The results are shown in

Table 5 and Figure 13. We can find that the ResNet18 model
Frontiers in Plant Science 12
consistently achieved the best accuracy performance on each of the

datasets, resulting in the highest FEP and ensemble learning weight.

Conversely, the VGG11 model consistently demonstrated the worst

accuracy performance on each of the datasets, resulting in the

lowest FEP and ensemble learning weight. So, the FEP and weight

distribution of the models in ELCDR are consistent with their

recognition performance. It means that the model that has better
FIGURE 11

Comparison of the recognition performance between ELCDR and other ensemble learning strategies.
FIGURE 12

Different ensemble learning strategies’ confusion matrix on different datasets.
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feature extraction and recognition performance receives greater

weight during ensemble learning with ELCDR, while those with

lower performance receive lower weight.

By this, we can answer research question 3 that the feature

extraction performance metric of ELCDR is effective. We can use it

to measure the model’s feature extraction performance and

calculate ensemble learning weight efficiently.

We also compared the feature maps of different models in the

experiment. The original image was input into VGG11, ResNet18, and

MobileNet_V3, respectively. Then, we extracted the feature maps from

their convolutional layer. The feature maps are shown in Figure 14. We

can find that the feature map of ResNet18 has the most texture detail

features and lesion features, while the feature map of VGG11 is the

blurriest. This means that ResNet18 has extracted the most effective

features, and VGG11 has extracted the least. MobileNet_V3 is a

lightweight model, so it cannot extract as many effective features as

ResNet18. However, we also can find that the feature map of

MobileNet_V3 has more texture detail features and lesion features

than the VGG11. Therefore, we can suggest that different models have
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different feature extraction performance, which is the main reason why

different weights are assigned to these models in ensemble learning.
4.5 Discussion

In this section, we conducted experiments to assess the crop leaf

recognition performance of ELCDR. The experimental results show

that ELCDR can achieve better recognition performance than the

methods that are based on a single model. It can also achieve better

recognition performance than the traditional ensemble learning

methods that rely on the voting or average weighting strategies. This

is because we applied a novel weight calculation method, which can

measure different models’ feature extraction performance through

the distribution of feature vectors. With this weight calculation

method, we assign more weight to the models with better

recognition performance when conducting ensemble learning for

crop leaf disease recognition. Otherwise, the models with poorer

performance receive less weight. All of the experimental results

verify the effectiveness of the ELCDR as proposed in this paper.

5 Conclusions

Compared with the crop leaf disease recognition methods based

on single models, ensemble learning methods have the advantage of

integrating multiple single learning models to get more accurate,

stable, and robust results. This advantage stems from the fact that

different models can extract image features from various

perspectives. Ensemble learning can combine these features

effectively to get a more powerful integrated model.

Traditional ensemble learning methods generally use the voting

or average weight strategies, treating all integrated models as equally

important. However, different models may have different feature

extraction ability. When using ensemble learning, it is essential to

assign more weight to the models that have better feature extraction
TABLE 5 Comparison of the ensemble learning weights of different models.

Crop Model icD bcD FEP (bcD/icD) Weight (%) Accuracy (%)

Apple

VGG11 2.051201 1.807103 0.880997 14.371 85.88

ResNet18 8.251477 23.11970 2.801886 45.706 96.63

MobileNet_v3 6.055690 14.82056 2.447378 39.923 94.88

Corn

VGG11 1.335760 2.818918 2.110348 20.023 91.13

ResNet18 4.639691 20.89895 4.504383 42.738 95.00

MobileNet_v3 4.316191 16.94026 3.924816 37.239 91.50

Grape

VGG11 1.756650 1.635504 0.931035 13.523 84.75

ResNet18 6.790820 20.96166 3.086765 44.833 96.13

MobileNet_v3 3.948179 11.32035 2.867232 41.644 93.38

Rice

VGG11 2.27075 0.979885 0.431525 10.061 69.50

ResNet18 11.52429 22.49176 1.951684 45.504 89.25

MobileNet_v3 8.528134 16.25342 1.905859 44.435 79.75
Bold values highlight ELCDR performance.
FIGURE 13

Comparison of the ensemble learning weights of different models.
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ability and less weight to those that have a weaker feature extraction

ability. To solve this problem, we have introduced a novel ensemble

learning method for crop leaf disease recognition, named ELCDR.

This approach measures each model’s feature extraction ability by

calculating the model’s feature vector distribution and calculates the

ensemble learning weight for each model based on the model’s

feature extraction ability. Through this approach, ELCDR can

integrate more effective features from different models, to obtain

more accurate, stable, and robust crop leaf disease recognition

results. In order to verify the recognition performance of ELCDR,

we compared its performance with the recognition methods which

are based on a single model, voting strategy, and average weighting

strategy in the experiments. The experimental results clearly

demonstrate that ELCDR can achieve better accuracy, recall,

precision, and F1 measure performance than the recognition

methods which are based on a single model, voting strategy, and

average weighting strategy. Compared with the VGG11 model,

ELCDR improves by as much as 12.25 (apple), 4.75 (corn), 13.63

(grape), and 21.25 (rice) percentage points in accuracy in each case.

Compared with the ResNet18 model, ELCDR improves by as much

as 1.5 (apple), 0.88 (corn), 2.25 (grape), and 1.5 (rice) percentage

points in accuracy in each case. Compared with the MobileNet_V3

model, ELCDR improves by as much as 3.25 (apple), 4.38 (corn), 5

(grape), and 11 (rice) percentage points in accuracy in each case.

Compared with the voting strategy, ELCDR improves by as much as
Frontiers in Plant Science
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1.75 (apple), 1.25 (corn), 0.75 (grape), and 7 (rice) percentage points

in accuracy in each case. Compared with the average weighting

strategy, ELCDR improves by as much as 1.13 (apple), 1 (corn), 0.5

(grape), and 5.37 (rice) percentage points in accuracy in each case.

These experimental results validate that ELCDR consistently has

better recognition performance than the methods that are based on

a single model or traditional voting strategy.

We have successfully verified the effectiveness of our proposed

feature extraction ability metric in the experiments. However, our

new method currently only completes the recognition task in a

small range of scenarios. We still face some challenges as follows:
1) The effectiveness of ELCDR on more complex datasets,

which may involve a greater variety of crops and harsh

environmental conditions, still needs further verification.

2) It remains to be determined how the number of integrated

models in ELCDR impacts the recognition performance.

3) Identifying the optimal combination of models to achieve

the best recognition performance for ELCDR is another

area of potential research.
In the future, we aim to compare the potential benefits and

limitations of the existing crop leaf disease recognition methods and

explore a robust and accurate crop leaf disease recognition

segmentation method.
FIGURE 14

The feature map comparison of the different models.
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