
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Andreas Herbst,
Institute for Application Techniques in
Plant Protection, Germany

REVIEWED BY

Xiaojuan Zhang,
Sichuan University, China
Wenbin Wu,
Chinese Academy of Agricultural Sciences
(CAAS), China

*CORRESPONDENCE

Si Wang

frankly@163.com.cn

RECEIVED 20 August 2023
ACCEPTED 08 November 2023

PUBLISHED 27 November 2023

CITATION

Qiu X, Chen H, Huang P, Zhong D, Guo T,
Pu C, Li Z, Liu Y, Chen J and Wang S (2023)
Detection of citrus diseases in complex
backgrounds based on
image–text multimodal fusion
and knowledge assistance.
Front. Plant Sci. 14:1280365.
doi: 10.3389/fpls.2023.1280365

COPYRIGHT

© 2023 Qiu, Chen, Huang, Zhong, Guo, Pu,
Li, Liu, Chen and Wang. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 27 November 2023

DOI 10.3389/fpls.2023.1280365
Detection of citrus diseases in
complex backgrounds based on
image–text multimodal fusion
and knowledge assistance

Xia Qiu1,2, Hongwen Chen1,2, Ping Huang1, Dan Zhong1,2,
Tao Guo1,2, Changbin Pu1,2, Zongnan Li1,2, Yongling Liu1,
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Diseases pose a significant threat to the citrus industry, and the accurate

detection of these diseases represent key factors for their early diagnosis and

precise control. Existing diagnostic methods primarily rely on image models

trained on vast datasets and limited their applicability due to singular

backgrounds. To devise a more accurate, robust, and versatile model for citrus

disease classification, this study focused on data diversity, knowledge assistance,

and modal fusion. Leaves from healthy plants and plants infected with 10

prevalent diseases (citrus greening, citrus canker, anthracnose, scab, greasy

spot, melanose, sooty mold, nitrogen deficiency, magnesium deficiency, and

iron deficiency) were used as materials. Initially, three datasets with white,

natural, and mixed backgrounds were constructed to analyze their effects on

the training accuracy, test generalization ability, and classification balance. This

diversification of data significantly improved the model’s adaptability to natural

settings. Subsequently, by leveraging agricultural domain knowledge, a

structured citrus disease features glossary was developed to enhance the

efficiency of data preparation and the credibility of identification results. To

address the underutilization of multimodal data in existing models, this study

explored semantic embedding methods for disease images and structured

descriptive texts. Convolutional networks with different depths (VGG16,

ResNet50, MobileNetV2, and ShuffleNetV2) were used to extract the visual

features of leaves. Concurrently, TextCNN and fastText were used to extract

textual features and semantic relationships. By integrating the complementary

nature of the image and text information, a joint learning model for citrus disease

features was achieved. ShuffleNetV2 + TextCNN, the optimal multimodal model,

achieved a classification accuracy of 98.33% on the mixed dataset, which

represented improvements of 9.78% and 21.11% over the single-image and

single-text models, respectively. This model also exhibited faster convergence,

superior classification balance, and enhanced generalization capability,

compared with the other methods. The image-text multimodal feature fusion

network proposed in this study, which integrates text and image features with
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domain knowledge, can identify and classify citrus diseases in scenarios with

limited samples and multiple background noise. The proposed model provides a

more reliable decision-making basis for the precise application of biological and

chemical control strategies for citrus production.
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1 Introduction

Citrus crops are among the most important fruit crops

worldwide, and they are widely cultivated in more than 140

countries and regions and have significant economic value (Rao

et al., 2021). However, citrus pests and diseases pose serious threats

to orchard production in terms of quality and yield (Sun et al., 2019)

and represent major factors that hinder the sustainable

development of the citrus industry. Thus, the development of

efficient and applicable methods for detecting citrus pests and

diseases is crucial to ensuring the robust expansion of the citrus

industry. Previous studies typically identified citrus diseases

through field observations (Leong et al., 2022) or pathogen

identification (Patané et al., 2019). However, these methods are

influenced by subjective factors and require domain knowledge and

specialized equipment; further, they often present low accuracy and

efficiency. With the advancement of computer vision technology,

machine learning methods have gradually been applied to

identifying citrus diseases. Initially, researchers explored

traditional machine learning algorithms involving commonly

used support vector machine (SVM) and random forest (RF)

algorithms (Wang et al., 2021c; Dananjayan et al., 2022).

Classification and regression trees (CARTs) and multilayer

perceptrons (MLPs) have been used to identify storage diseases in

citrus (Gómez-Sanchis et al., 2012). However, these methods are not

appropriate for complex image features and multicategory

classifications; thus, their effectiveness in practical applications is

limited. In recent years, significant progress has been made in the

use of deep learning technology for citrus disease identification.

Convolutional neural networks (CNNs) are representative deep

learning methods that have achieved breakthrough results in

image classification tasks. Classic and lightweight networks, such

as visual geometry group (VGG) (Xing et al., 2019), residual

network (ResNet) (Luaibi et al., 2021), and efficient convolutional

neural networks for mobile vision (MobileNet) (Barman et al.,

2020), have been successively applied to image feature extraction

and classification to improve citrus disease classification accuracy

through higher-level feature mining. Despite these advances,

existing methods face challenges such as insufficient training

samples required for higher detection accuracy and poor

transferability to complex production environments and diverse

disease types. Therefore, improving detection accuracy based on

limited sample sizes has become increasingly important.
02
Deep learning has emerged as a research focal point for the

accurate identification of plant diseases. It overcomes the

limitations of traditional machine learning, which relies on

manually generated features, by enabling the construction of an

end-to-end deep network structure. This facilitates an automated

process that is advantageous for extracting high-level features

(Goodfellow et al., 2016). Previous research on deep learning

based methods have achieved promising results in the early

detection of plant diseases (Upadhyay and Kumar, 2021), lesion

segmentation (Li et al., 2022), disease type classification (Xing et al.,

2019), and disease occurrence prediction (Delnevo et al., 2022).

Historically, citrus disease identification and classification methods

have primarily used single-source data based on image modalities,

including images (Barman et al., 2020; Luaibi et al., 2021; Syed-Ab-

Rahman et al., 2022), fluorescence spectra (Neves et al., 2023), and

Internet of Things (IoT) data (Delnevo et al., 2022). The

performance of such methods is highly dependent on large

datasets and manual annotation. Expanding datasets to improve

disease identification performance can be expensive. Ferentinos

(2018) used 87848 images covering 25 plants and 57 diseases and

compared the disease identification accuracy of five typical CNN

networks; the results showed that the VGG model achieved the

highest accuracy of 99.53%. In addition, Chellapandi et al. (2021)

and Saleem et al. (2020) used 54306 images of 14 diseases, Abbas

et al. (2021) used 16,012 tomato disease images, and Brahimi et al.

(2017) used 16012 tomato disease images for training and obtained

more than 99% accuracy on networks such as DenseNet, AlexNet,

and Xception. However, with smaller datasets, the training accuracy

rarely exceeded 95% (Ramcharan et al., 2017; Sibiya and

Sumbwanyambe, 2019). In addition, approximately 50% of the

data in current plant disease identification research are obtained

from public datasets (Ramanjot et al., 2023). Using PlantVillage as

an example, images are primarily acquired in laboratories or under

unique background conditions. The uniformity of sample

backgrounds hinders model feature learning, and uncertainties

caused by sample selection biases hinder the adaptation of

automated plant disease detection systems production scenarios

(Hernandez and Lopez, 2020). Although the aforementioned

studies have achieved satisfactory identification results using

specific datasets, challenges, there are challenges such as poor

model robustness, long model iteration cycles, and difficulty in

generating massive datasets. As a result, models cannot easily adapt

to complex environments and backgrounds in real-world scenarios.
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Given the development of deep learning technologies and

the rapid acquisition of multi-source data coupled with complex

and varied real-world scenarios involving multiple data types,

multimodal fusion technology has been introduced in the field of

plant pest and disease detection. The full exploitation of the

complementarity and correlations between modalities to achieve

multimodal data fusion has emerged as a promising new direction

in disease research (Yang et al., 2021). By integrating images with

environmental parameters (Zhang et al., 2022), hyperspectral

information (Yang et al., 2021), and text information (Wang

et al., 2021b), the close relationship between disease occurrence

and the environment can be fully exploited. Moreover, the

complementarity between modalities facilitates the identification

of highly similar symptoms and disease classifications under limited

sample conditions. Text data are relatively easy to obtain and can be

processed without sophisticated equipment and techniques; thus,

they can serve as an excellent source of auxiliary information.

Information obtained from text sources can complement that

from image sources, thereby alleviating the problem of

insufficient image training samples (Wang et al., 2022). In fine-

grained image recognition tasks, image and text information are

jointly trained through different training forms and feature

representations, which effectively addresses the problem wherein

the image modality is similarly represented but other modalities are

underutilized (Reed et al., 2016; He and Peng, 2020). However,

traditional textual information derived from natural language

descriptions of observers may be incomplete or erroneous because

of subjectivity and limitations in the knowledge background (Wang

et al., 2021a). Moreover, the preparation and preprocessing of

natural language methods are challenging and time consuming.
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Given the needs and weaknesses of existing methods, this study

aimed to develop a plant disease detection method based on a deep

learning feature fusion network based on a multimodal image-text

classification to improve the accuracy and efficiency of citrus disease

detection in complex backgrounds. By selecting excellent networks

of a single image and text modal information and constructing

fusion models, the cross-complementarity of information was fully

exploited, which enhanced the comprehensive use of features and

improved detection accuracy and robustness. Moreover, we propose

the use of agricultural domain knowledge to construct a structured

glossary for citrus disease characteristics. This glossary can assist in

the preparation of text modal information, increase the efficiency of

data production, and improve the credibility of identification

results. To evaluate the performance and strengths of the

proposed method, we used various sample settings and performed

dataset cross-validations.
2 Materials and methods

2.1 Image and text models used
in this article

Deep learning architectures are associated with advancements

in various domains, including plant disease identification. This

section provides a review of the structural features of the models

used in this study, as well as their applications and potential

advantages in plant disease identification. The basic frameworks

of the models are shown in Figure 1. VGG16 has 13 convolutional

layers and 3 fully connected layers, and it can use small filters and
B

C D

E F

A

FIGURE 1

Basic framework of the used image and text models. (A) VGG16, (B) ResNet50, (C) MobileNet V2, (D) ShuffleNet V2, (E) TextCNN, and (F) fastText.
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deeper layers to extract more complex features from disease images

(Simonyan and Zisserman, 2014). In the context of plant disease

identification, VGG16 has been used to extract complex patterns

and features from disease images of rice (Jiang et al., 2021), millet

(Coulibaly et al., 2019), canola (Abdalla et al., 2019), and tomato

(Rangarajan et al., 2018). ResNet50 introduced a residual network

structure that effectively avoids overfitting problems by increasing

the network depth (He et al., 2016); additionally, it has been shown

to provide superior performance in scenarios with complex

background noise and diverse disease manifestations (Picon et al.,

2019). MobileNet V2 and ShuffleNet V2 stand out as lightweight

models. MobileNet V2 uses inverted residuals and linear

bottlenecks to enhance efficiency (Sandler et al., 2018), while

ShuffleNet V2 employs group convolution and channel shuffling

(Ma et al., 2018). Thus, they are ideal choices for resource-

constrained environments. These lightweight networks with fewer

parameters are efficient and accurate in plant disease classification

and suitable for deployment on limited-resource devices (Barman

et al., 2020; Lu et al., 2023). In terms of the text modality, this study

compared the classification performance of TextCNN and fastText.

While TextCNN leverages convolutional layers over word

embeddings to discern local semantic features in text (Kim,

2014), fastText captures morphological nuances by representing

words through character n-grams (Joulin et al., 2016). Textual

descriptions accompanying plant images can provide crucial

contextual information. Combining visual and textual modalities

can enhance the overall accuracy of disease classification and assist

in fine-grained disease categorizations (Wang et al., 2021b). With

the advancement of technology, the amalgamation and refinement

of these models will further increase the precision and applicability

of plant disease identification.
2.2 Data preparation

Through field collection, laboratory photography, and web

crawling, a total of 2200 citrus image samples were gathered; they

comprise healthy leaves, 2 bacterial diseases (citrus greening and

citrus canker), 5 fungal diseases (anthracnose, scab, greasy spot,

melanose, and sooty mold), and 3 physiological disorders (nitrogen

deficiency, magnesium deficiency, iron deficiency). Each sample

category contains 100 images with white backgrounds and 100

images with natural backgrounds. Original sample images are

shown in Table 1.

In addition to the image data, we used expert knowledge to

create a structured citrus disease features glossary (Table S1). This

glossary covers 12 categories of citrus disease characteristics,

including leaf color, leaf morphology, affected areas, covering

features, chlorosis region, chlorosis features, lesion shape, lesion

count, lesion size, lesion distribution, lesion color, and lesion

features. Such data provide a more accurate and comprehensive

description of the original images. To ensure data accuracy, the

textual data were generated by three Ph.D. scientists specializing in

pomology and checked by a psychologist. Sample origin texts are

shown in Table 1.
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2.3 Data preprocessing

The original image was uniformly cropped and -adjusted to

224×224 pixels. The image was enhanced by rotation, scaling,

flipping, and brightening. Simultaneously, data enhancement

methods such as “origin,” “rotated,” “brighter,” “flipped,” and

“scaled,” were embedded in the text descriptions to ensure a one-

to-one correspondence between the image and text. Symbols from

the text were filtered and tokenized using Jieba, and the tokenized

results were then mapped to a word index list based on a

vocabulary. Words that were not present in the vocabulary were

replaced with “<UNK>“. The max_length of the numeric sequence

was set to 100, and placeholders were used to supplement any

shorter parts. Finally, PyTorch’s tensor conversion was used to

transform the numeric sequence into tensors for subsequent

calculations. The training, verification, and test sets were divided

at a ratio of 7:2:1 for the image–text pairs.
2.4 Single-modality
comparative experiments

To identify a network architecture that can effectively extract

features from citrus disease images, we compared the classification

performance of four deep learning networks: VGG16, ResNet50,

MobileNet V2, and ShuffleNet V2. These networks use

convolutional operations that target key features in images, such as

texture, color, and shape, to produce more abstract feature

representations. Throughout the training process, all networks used

the Adam optimizer and the learning rate was set to 0.001 to ensure

training stability and efficiency. This experiment was conducted to

comprehensively evaluate the performance of each network in the

citrus disease image classification task and provide a basis for

selecting image networks for subsequent multimodal construction.

To select a network structure that can effectively extract features

from citrus disease text information, we compared the classification

performances of two deep learning networks: TextCNN and

fastText. Structured text descriptions were converted into word

vectors, and text extraction networks were used to extract features

such as contextual relationships. The optimizer and learning rate

settings were consistent with the image networks described in

Section 4.3.1 to ensure training consistency and fairness for

comparison. To avoid overfitting, the dropout was set to 0.5 and

the length of the input text vector was set to 20. This experiment

was conducted to comprehensively assess the performance of

each network on the citrus disease text classification task and

provide a basis for selecting the text network in the subsequent

multimodal construction.
2.5 Different-dataset
comparative experiments

To increase the diversity and practical applications of the data,

this study created three types of datasets: white, natural, and mixed
frontiersin.org
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TABLE 1 Example of the image-text origin database.

Disease
category

Origin Image Origin Text

Healthy
leaves
(CK)

Deep green in color, normal in morphology, asymptomatic on the front side.

Citrus
greening
(CGR)

Light green in color, normal in morphology, chlorosis on the back side,
chlorosis region is veined and randomly dispersed.

.Citrus
canker
(CCA)

Deep green in color, normal in morphology, lesions on the front side, lesions
shape is subcircular, lesions count is 4–20, lesions size is 3–5 mm, lesions are
randomly dispersed, lesion color is brown at the center and yellow at the
edges, lesions show a volcano-like feature.

Citrus
anthracnose
(CAN)

Deep green in color, curled in morphology, lesions on the front side, lesions
shape is subcircular, lesions count is less than 3, lesions size is larger than 15
mm, lesions are randomly dispersed, lesions color is light brown, lesions show
a withered feature

Citrus scab
(CSC)

Light green in color, normal in morphology, lesions on the back side, lesions
shape is irregular, lesions count is 4-20, lesions size is 3–5 mm, lesions are
randomly dispersed, lesions color is gray-white, lesions show a corked feature.

Citrus
greasy spot
(CGS)

Light green in color, normal in morphology, lesions on the front side, lesions
shape is irregular, lesions count is 4–20, lesions size is 3–5 mm, lesions are
randomly dispersed, lesions color is yellow, lesions show a flat and greasy
feature.

Citrus
melanose
(CME)

Deep green in color, normal in morphology, lesions on the front side, lesions
shape is irregular, lesions count is more than 20, lesions size is 1–3 mm,
lesions are randomly dispersed, lesions color is dark, lesions show a convex
and greasy feature.

Citrus sooty
mold
(CSM)

Deep green in color, normal in morphology, black mold spots or layers
covering the front side.

Citrus
nitrogen
deficiency
(CND)

Yellow in color, normal in morphology, chlorosis on the front side, chlorosis
region is uniformly dispersed

Citrus
magnesium
deficiency
(CMD)

Light green in color, normal in morphology, chlorosis on the front side,
chlorosis region near the leaf margin, inverted V-shaped chlorosis

(Continued)
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backgrounds. Specifically, in the white background dataset, each

category contains 100 images of single leaves with a white

background and multiple leaves with a white background. In the

natural background dataset, each category contains 100 images of

single leaves with a natural background and multiple leaves with a

natural background. The original images in each of the two above

datasets were expanded to 5500 images through data augmentation

techniques, such as rotation and highlighting. Then 5500 images

from these two datasets were randomly obtained in equal

proportions to form the mixed background dataset. All three

datasets were trained using the selected MobleNet50 and

ShuffleNet V2 networks. Testing was always performed using the

natural background dataset. The training and testing processes are

shown in Figure 2.
2.6 Construction of the image-text
multimodal networks

The image-text feature fusion framework proposed in this study

consists of two network branches: MobileNet V2/ShuffleNet V2 and

TextCNN. The input data consist of a disease image and structured

text describing the disease features. These descriptions were

corrected by fruit tree experts to ensure the standardization of the

feature description. MobileNet V2 and ShuffleNet V2 extract the

image feature vectors from the image-text pairs, while TextCNN
Frontiers in Plant Science 06
extracts the text feature vectors from the data pairs. The two types of

feature vectors are concatenated to obtain the feature vector for the

image-text pair. The model framework is shown in Figure 3.

2.6.1 Image branching in the
multimodal framework

The image branch selected two lightweight networks

(MobileNet V2 and ShuffleNet V2) that performed well in single-

image-modality comparative experiments. MobileNet V2

decomposes traditional convolution operations into depth-wise

and point-wise convolution steps, and it also adopts residual

connections and dilated convolutions to enhance the expressive

capability of models. When training the image modality with

MobileNet V2, the input image passes through 2 convolutional

layers and 17 bottlenecks to finally obtain the image feature vector.

MobileNet V2 introduces an inverted residual module that differs

from the traditional bottleneck. It first expands the feature vector

dimensionally through an expansion layer and then reduces

dimensionally through a pointwise convolution layer, with the

expansion factor set to six times. For instance, in the second

bottleneck with an input of 112×112×16, it first expands to

112×112×96, and after a depth-wise convolution layer, it

decreases to 56×56×96. After the second point-wise convolution

layer, it decreases to 56×56×24. As the feature vector passes through

the bottleneck, its dimensions increase from 16 to 96 and then

reduce to 24. This structure ensures that the depth-wise convolution
TABLE 1 Continued

Disease
category

Origin Image Origin Text

Citrus iron
deficiency
(CID)

Light green in color, normal in morphology, chlorosis on the front side,
interveinal netted chlorosis
FIGURE 2

Training and testing strategies for the different datasets; 10% of the natural background dataset was randomly extracted as the shared test set.
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within the bottleneck captures rich feature information while

effectively reducing the memory required for model training. To

address the feature loss issue when compressing high-dimensional

features to low-dimensional features, MobileNet V2 replaces the

ReLU6 non-linear activation function in the second pointwise

convolution layer with the linear operation Linear while keeping

ReLU6 unchanged in other positions, thus ensuring feature

information diversity.

Similar to MobileNet V2, ShuffleNet V2 adopts depth-wise

separable convolution but also adds channel shuffling and

grouped convolution operations. When training the image

modality with ShuffleNet V2, the input image first passes through

a convolutional layer, a max-pooling layer, three stage modules, and

then another convolutional layer to obtain the image feature vector.

In Stage 2, Stage 3, and Stage 4, a downsampling operation with

Stride = 2 is first performed, followed by different numbers of

depth-wise separable convolutions and grouped convolutions.

For training, the input vector is divided into two branches,

branch1 and branch2. The first inverted residual module

performs downsampling on both branches. In subsequent

inverted residual modules, only branch2 undergoes depth-wise

separable convolution operations. After completing the inverted

residual module, the vectors of the two branches are concatenated

and channel shuffling is performed to ensure the mutual interaction

of information between the two branches.

2.6.2 Text branching in the
multimodal framework

The text branch selected TextCNN, which performed well in the

single-text modality comparative experiments. It is a convolutional

neural network designed for text classification, and its structure is

depicted in Figure 1E. The text modality data are derived from the

structured citrus disease features glossary, and data enhancement
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methods are embedded into the textual descriptions at the time of

image enhancement to ensure correspondence of the image-text

pairs. When training the text with TextCNN, word indices of the

input text sequence are first mapped to fixed-dimensional word

vectors through an embedding layer. Then, the word vectors pass

through a convolutional layer. The width of the convolutional

kernel is the same as the dimension of the word vector, and its

height corresponds to each value in kernel_sizes. This convolution

operation can capture local word sequence features. Then, the ReLU

activation function is applied to enhance the network’s non-linear

capability. Next, a max-pooling operation is applied to each

convolution output, and the maximum value from each feature

map is selected as the output. This process retains the most

significant features extracted by each convolution kernel. Finally,

the features extracted by each convolution kernel are concatenated

to obtain the text feature vector.

2.6.3 Feature fusion
The features extracted from the different modalities are fused at

the feature layer. For the ith object, the features extracted from the

image and text are denoted as fimg(x
i
img) and ftext(x

i
text), respectively.

The fused feature is represented by f∅(x
i
fusion). First, the image and

text features were projected into low-dimensional space using a

projection matrix. The two projected vectors were then

concatenated and passed through a convolutional layer for feature

learning to obtain the fused feature output. C represents the feature

vector learned through the convolutional layer. The convolution

uses a 1×1 kernel with a stride of 1. The 1×1 convolution itself does

not change the size of the feature map but can reduce the dimension

of the vector. During the dimension reduction process, interaction

information can be learned between multiple channels. The feature

mapping function M is represented in equation (1), and the fused

feature is represented in equation (2).
FIGURE 3

Image-text multimodal network framework.
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M(x) = Wx · x (1)

f∅(x
i
fusion) = C

�
F
�
M
�
fimg

�
xiimg

��
,M
�
 ftext

�
xitext

����
(2)

where Fdenotes the feature vector concatenation function and

Crepresents the feature vector after convolutional layer processing.

Wx ∈ fN � Dxg  is the projection matrix for the features,

Dxindicates the dimension of the input feature x, and N signifies

the dimension after projection.

The loss function employs the Cross-entropy loss function. In

this context, x2 is the predicted result and represented as a vector

x = ½x1, x2,…, xn�. The number of elements in this vector is

equivalent to the number of categories. The variable “class”

indicates the true label of the sample. For instance, if the sample

belongs to the second category, then class = 2. Consequently, x½class�
refers to x2. This implies that the second element was extracted from

the predicted result vector, which corresponds to the predicted

value of the true category, as depicted in equation (3).

loss(x, class) = −log
ex½class�

oje
xj

 !
= −x½class� + log o

j
exj

 !
(3)
2.7 Experiment environments

The research and control experiments were conducted in an

Ubuntu 20.04 environment (processor: Intel core i9 9820X; RAM:

64G; graphics card: NVIDIA RTX A4000 16G DDR6). The deep

learning framework Pytorch was used along with Cuda10.1 for

training. In the experimental design and comparison processes, the

batch size for the training and validation sets was set to 32. Based on

the characteristics and convergence of the modalities data, the

number of iterations for the single image modality was set to 200

while the preset number of iterations for the single text modality

was set to 50. The multimodal model converged rapidly, and early

stopping was applied to prevent overfitting.
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2.8 Evaluation indices

This research compared the models from four perspectives:

accuracy, precision, recall, and F1. The specific calculation methods

are presented in equations (4–7).

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 =
TP

TP + FN
(7)

where TP is the number of true positive samples, FP is the number

of false positive samples, and FN is the number of false

negative samples.
3 Results

3.1 Comparison of image modality models

A comparison of the performance of the deep and lightweight

networks in the single-image modality classification tasks showed

that the lightweight neural networks exhibited better feature

extraction and classification performance on small-sample natural

background image datasets (Figure 4). Although deep neural

networks such as VGG16 and ResNet50 converged quickly during

training, they only achieved classification accuracies of 54.33% and

60.39%, respectively. In contrast, MobileNet V2 and ShuffleNet V2,

the two lightweight networks, achieved high classification

accuracies of 90.19% and 91.63% respectively, despite converging

at a slower rate. This might be because VGG16 and ResNet50 have
BA

FIGURE 4

Accuracy and loss variations among the image models. (A) Accuracy and (B) loss.
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complex structures that allow them to rapidly capture features in

the data. However, this depth might also render them more

susceptible to limitations imposed by data volume, impacting

accuracy. The results suggest that lightweight networks are more

suitable for small sample data. Their simplified structures and

various strategies, such as depth-wise separable convolutions and

channel shuffling, enhance their adaptability to complex

background data.

Additionally, we observed noticeable fluctuations in ShuffleNet

V2 during training. A local minimum or plateau area was

encountered around the 80th epoch, and it was subsequently

adjusted using the algorithm to escape this state and achieve

better convergence. Although ShuffleNet V2 exhibited fluctuations

around the 80th epoch, it could converge normally and reach a high

accuracy afterward. This demonstrated the robustness and self-

recovery capabilities of the proposed model.

We further analyzed the ability to recognize different disease

categories based on a single-image modality at a finer granularity.

The average precision, recall, and F1 values for all image networks

presented ranges of 58.12–84.89%, 57.21–85.72%, and 56.82–

85.62%, respectively (Table 2). The lightweight network

ShuffleNet V2, which boasts high generalization capability and

computational efficiency, performed the best, and its confusion

matrix of validation and training results is presented in Figure 4. An

analysis of the convolutional neural network feature extraction and

classification results for the 11 citrus leaf sample images revealed

significant differences between different category samples. The four

models perform well in extracting features for citrus scab (CSC),

citrus greening (CGR), citrus canker (CCA), healthy leaves (CK),

and citrus sooty mold (CSM). However, their classification results

for citrus greasy spot (CGS), citrus magnesium deficiency (CMD),

and citrus anthracnose (CAN) were less satisfactory, with F1

average values of <70%. Further examination of the image dataset
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revealed that several disease categories with higher error rates

contained background noise, including non-disease features, such

as fingers and fruits, which may confuse the model’s classification of

these samples. Additionally, the disease categories CGS and CAN

included some early stage symptoms, which increased the difficulty

of distinguishing between the more challenging diseases and

subsequently affected the classification performance.
3.2 Comparison of the text
modality models

The accuracy and loss curves during the training of the text

branch training set are shown in Figure 5. An analysis of the

performance of the different text models in the citrus disease

classification task showed that the two models in the text branch

displayed approximately the same performance (Figure 5) and

converged quickly around the 10th epoch. The final training

accuracies of TextCNN and fastText were 77.22% and 74.42%

respectively, with both showing reduced loss values of

approximately 0.6. A comparison with the image modality model

showed that the text modality model converged faster, with its

accuracy lying between that of the lightweight and deep

convolutional image networks. This might be attributed to the

fact that text data are more structured than are image data; thus,

the features can be more quickly learned by the model. However,

the relatively lower accuracy might indicate that the information

contained in the text data is not as rich as that in the image data for

the task of citrus disease classification.

The precision, recall, and F1 values of the two text networks were

between 78.36% and 82.83% (Table 3). TextCNN, which benefits

from the features of both convolutional and recurrent neural

networks, exhibited superior performance relative to fastText.
TABLE 2 Eleven classification results of the image modal networks.

Disease
category

VGG16 ResNet50 MobileNet V2 ShuffleNet V2

Precision
(%)

Recall
(%)

F1
(%)

Precision
(%)

Recall
(%)

F1
(%)

Precision
(%)

Recall
(%)

F1
(%)

Precision
(%)

Recall
(%)

F1
(%)

CK 72.55 67.27 69.81 57.89 60.00 58.93 92.00 83.64 87.62 88.68 85.45 87.04

CGR 59.26 65.31 62.14 68.18 61.22 64.52 90.20 93.88 92.00 97.87 93.88 95.83

CCA 56.94 73.21 64.06 73.91 60.71 66.67 92.00 82.14 86.79 85.96 87.50 86.73

CAN 60.78 56.36 58.49 57.89 40.00 47.31 74.24 89.09 80.99 79.41 98.18 87.80

CSC 77.78 77.78 77.78 75.00 73.33 74.16 87.80 80.00 83.72 97.56 88.89 93.02

CGS 40.63 26.00 31.71 46.15 36.00 40.45 75.47 80.00 77.67 96.55 56.00 70.89

CME 60.53 80.70 69.17 43.88 75.44 55.48 75.41 80.70 77.97 84.75 87.72 86.21

CSM 68.42 56.52 61.90 60.00 65.22 62.50 81.48 95.65 88.00 82.69 93.48 87.76

CND 57.58 76.00 65.52 51.72 60.00 55.56 97.67 84.00 90.32 80.00 80.00 80.00

CMD 58.70 45.76 51.43 48.78 33.90 40.00 82.35 71.19 76.36 83.58 94.92 88.89

CID 72.09 59.62 65.26 55.93 63.46 59.46 85.19 88.46 86.79 78.43 76.92 77.67

Avg. 62.30 62.23 61.57 58.12 57.21 56.82 84.89 84.43 84.39 86.86 85.72 85.62
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When extracting text features and classifying the 11 categories of

citrus leaf samples, the performance between the different sample

categories varied significantly. Specifically, for categories such as CK,

CSM, CMD, and Citrus iron deficiency (CID), the text models

effectively extracted features with F1 scores >95%. However, for the

CGS and CCA categories, the classification results of the text models

were suboptimal, with F1 scores<50%. The analysis of the disease text

dataset showed that certain descriptors of disease spots, such as

“yellow,” “smooth,” and “randomly distributed,” frequently occurred

in the descriptions of several disease categories. Conversely, highly

distinctive descriptive phrases such as “asymptomatic” for healthy

leaves and “volcano-like spots” for ulcers were missing from these

two disease categories. Such descriptors have a stronger

discriminatory power for text classification. In summary, although

text modality performs relatively well in classifying citrus diseases, it

faces challenges such as variations in sample categories and

disparities in descriptive phrases.
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A confusion matrix is a tool for visualizing and quantifying the

relationship between predicted results and actual labels. The

confusion matrices of the best models for the image and text

modalities are shown in Figure 6. In the confusion matrix for

MobileNet V2, misclassifications were scattered in almost every

category, suggesting that the image model has greater complexity

and learning capacity and may have more flexibility when

processing samples compared with the other models, thus

enabling it to learn features more evenly across different

categories. Compared with the image modality, misclassifications

in the TextCNN confusion matrix were relatively concentrated but

showed a higher error rate for individual points. This may be related

to the limitations in text information when describing citrus leaf

diseases as well as the lack of semantic richness, which increases

the difficulty of accurately expressing and distinguishing all the

features of different diseases. Consequently, the ability of TextCNN

to extract features from certain citrus disease categories was
TABLE 3 Eleven classification results of the text modal networks.

Disease category
FastText TextCNN

Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%)

CK 100.00 100.00 100.00 100.00 100.00 100.00

CGR 78.79 98.11 87.39 78.79 98.11 87.39

CCA 43.14 44.90 44.00 43.14 44.90 44.00

CAN 84.78 88.64 86.67 84.44 86.36 85.39

CSC 70.69 78.85 74.55 70.69 78.85 74.55

CGS 61.11 18.97 28.95 57.89 18.97 28.57

CME 48.65 81.82 61.02 48.65 81.82 61.02

CSM 100.00 100.00 100.00 100.00 100.00 100.00

CND 96.97 71.11 82.05 96.97 71.11 82.05

CMD 100.00 98.08 99.03 100.00 98.08 99.03

CID 100.00 100.00 100.00 100.00 100.00 100.00

Avg. 80.38 80.04 78.51 80.05 79.84 78.36
BA

FIGURE 5

Accuracy and loss variations among the text models. (A) Accuracy and (B) loss.
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comparatively weaker than that of MobileNet V2. In summary, the

image and text modalities exhibited different strengths and

limitations in classifying citrus leaves. A comparative analysis of

single-modality models provided crucial insights and directions for

subsequent modal fusion.
3.3 Effect of different datasets on
classification performance

The accuracy and loss curves for model training using different

datasets are shown in Figure 7. An analysis of the performance of

different datasets in the citrus disease classification task revealed

that the citrus disease samples from the white background dataset

achieved the highest classification accuracy of 89.61% and 94.76%,

respectively, with the loss function stabilizing at<0.5. As the
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complexity of the sample background increased, the classification

accuracy showed a decreasing trend, with the accuracy for the

natural and mixed background data falling between 83.45% and

91.63%. This suggests that a simplified background can assist the

model in more easily identifying the target, thereby improving

accuracy. However, in natural and mixed-background datasets, a

complex background might introduce considerable irrelevant

information and noise, such as shadows and light variations.

These factors could interfere with the model’s ability to extract

key features. Nevertheless, the model still demonstrated a relatively

high accuracy under these complex backgrounds, indicating that the

selected models are robust and adaptable.

In the unified natural background test set, the models trained on

different datasets showed significant differences (Table 4). The test

accuracy of the model trained on the white background dataset

was<21%, which is significantly lower than its training accuracy.
B C

D E F

A

FIGURE 7

Accuracy and loss variations among the different datasets. (A, D) Accuracy and loss in the white background dataset; (B, E) accuracy and loss in the
natural background dataset; and (C, F) accuracy and loss in the mixed background dataset.
BA

FIGURE 6

Confusion matrix of the image and text modality optimal models. (A) MobileNet V2 confusion matrix and (B) TextCNN confusion matrix.
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This indicates that the model overfilled on a simplified and non-

disturbed background and failed to fully learn the clutter features,

resulting in a poor generalization ability. Conversely, the models

trained on the natural and mixed-background datasets presented

similar accuracy as their training accuracy. The test accuracy of

ShuffleNet V2 reached 92.31%, surpassing its performance in the

training and validation sets. This suggests that sample diversity

helps the model learn to distinguish target objects from key features

during training and resist background interference, thereby

significantly improving the robustness and generalization of

the model.

The ability of the models to recognize different disease categories

under different training datasets was analyzed at a finer granularity.

Box plots for the precision, recall, and F1 values of each disease

category showed that the models exhibited greater balance when

trained with mixed background datasets (Figure 8). Although the test

accuracy of the mixed dataset was slightly lower than that of the

complex background, its performance in recognizing different disease

categories was more balanced, with no particular category showing

significantly lower recall or F1 values. This finding may be related to
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the ability of the mixed dataset to promote learning of target features

related only to the disease and the capture of auxiliary information

highly correlated with the background. Although a slight decrease in

accuracy may have occurred, the adaptability to complex

backgrounds and disturbances was stronger.

In conclusion, different dataset backgrounds, model structures,

and training strategies can influence the model’s classification

performance in real-world applications. The single-image modality

analysis showed that the use of a mixed dataset combined with a

lightweight neural network can yield a superior classification

accuracy, generalization capability, and category balance.
3.4 Comparison of the multimodal models

To further explore the complementarity between the image and

text modalities, we investigated the potential of feature fusion

strategies to address the classification problem of citrus diseases

with complex backgrounds. The accuracy and loss curves of the

fusion model during the training process for the training set are
B CA

FIGURE 8

Classification performance of the image modality models for 11 categories. The data in the figure represent the precision, recall, and F1 of the 11
citrus samples classified using MobileNet V2 and ShuffleNet V2 models. (A) Precision, recall, and F1 in the white background dataset; (B) precision,
recall, and F1 in the natural background dataset; and (C) precision, recall, and F1 in the mixed background dataset. ns, no significance.
TABLE 4 Test set results in the image modal networks.

Dataset
class

MobileNet V2 ShuffleNet V2

Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%)

White 21.00 17.17 17.36 19.20 15.12 16.03

Natural 84.89 84.43 84.39 86.86 85.72 85.62

Mixed 85.11 84.18 84.37 92.31 91.72 91.81
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shown in Figure 9. Compared with the previous unimodal results,

the results of the multimodal network exhibited significant

improvements. The fused networks MobileNet50 + TextCNN and

ShuffleNet V2 + TextCNN both achieved training accuracies of over

95% on the two datasets and reduced the loss to below 0.2. Among

them, ShuffleNet V2 + TextCNN yielded the best training results on

the mixed-background dataset, with an accuracy of 98.34%.

Moreover, the multimodal network converged within 10 epochs.

To prevent overfitting, we applied early stopping. The results show

that all models stopped within 22 epochs, indicating marked

acceleration in training. No further fluctuations were observed,

indicating that the multimodal network fully uses the

complementarity between the image and text modalities. The

cross-transfer of information and comprehensive use of features

enhanced the network’s ability to extract and recognize different

characteristics of citrus diseases.

The precision, recall, and F1 of the two fusion networks ranged

from 97% to 99%, thus showing excellent performance (Table 5).

Notably, the multimodal model achieved satisfactory results in

classifying each type of citrus sample. In the two datasets, the F1

score for each sample type exceeded 90%. This performance

enhancement may be attributable to the fact that after fusing

unimodal information, the model can fully use the complementarity

between this information and the cross-validation effect, helping the
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model to capture each category’s features more accurately and

reducing the likelihood of misclassification.

The confusion matrix of the optimal multimodal model–

ShuffleNet V2 + TextCNN–further confirms the superiority of the

multimodal strategy (Figure 10). Compared with the unimodal

model, this model reduced the number of misclassifications

and avoided the concentration of misclassifications in specific

categories, demonstrating better balance and generalization. Only

a few groups had errors, which did not exceed 2. Overall, when

handling the citrus disease classification task in complex

backgrounds, the multimodal strategy displayed higher robustness

and stability than the unimodal strategy.
4 Discussion

Multimodal feature fusion has become a popular research

direction in the field of plant disease classification. From the

perspective of information complementarity, a single modality,

such as image or text, has inherent limitations. While the image

modality can capture rich visual features, it may be affected by factors

such as lighting, shadows, and background noise (Huang et al., 2022).

Moreover, although the text modality can provide semantic and

contextual information about the disease (He and Peng, 2020), it
B

C D

A

FIGURE 9

Accuracy and loss variations among the multimodal models. (A) Accuracy in the natural background dataset, (B) loss in the natural background
dataset, (C) accuracy in the mixed background dataset, and (D) loss in the mixed background dataset.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1280365
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Qiu et al. 10.3389/fpls.2023.1280365
might lack sufficient details to describe certain subtle visual features.

These limitations can lead to classification inaccuracies. Combining

multi-source data, such as image and text (Feng et al., 2022), image

and hyperspectral data (Yang et al., 2021), or image and sensor

information (Zhao et al., 2020), leverages the strengths of each

modality and is beneficial in improving classification accuracy and

model robustness. In our experiments, we observed a clear advantage

of multimodal joint analysis. The accuracy of ShuffleNet V2
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+TextCNN using the mixed dataset reached 98.33%, representing

an improvement of 9.78% and 21.11%, compared with those of single

image and single text modalities, respectively. This is consistent with

previous results showing that the complementary information from

multimodal data could enhance object detection capabilities, thus

demonstrating the significant advantage of multimodal strategies in

handling complex backgrounds and noisy data (Liu et al., 2020).

Second, from the perspective of data fusion, feature fusion helps to
FIGURE 10

Confusion matrix of the multimodal optimal model. The data used in the matrix are the test results of ShuffleNet V2 on natural background images
after training on the mixed dataset.
TABLE 5 Eleven classification results of Multimodal networks.

Disease
category

Natural Background Dataset Mixed Background Dataset

MobileNet V2+TextCNN ShuffleNet V2+TextCNN MobileNet V2+TextCNN ShuffleNet V2+TextCNN

Precision
(%)

Recall
(%)

F1
(%)

Precision
(%)

Recall
(%)

F1
(%)

Precision
(%)

Recall
(%)

F1
(%)

Precision
(%)

Recall
(%)

F1
(%)

CK 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CGR 0.96 0.96 0.96 1.00 0.96 0.98 0.98 0.92 0.95 1.00 0.96 0.98

CCA 1.00 1.00 1.00 0.98 0.96 0.97 0.90 0.92 0.91 0.94 0.96 0.95

CAN 0.98 0.98 0.98 1.00 1.00 1.00 0.98 0.85 0.91 0.98 0.94 0.96

CSC 1.00 0.96 0.98 1.00 1.00 1.00 1.00 0.98 0.99 0.98 0.98 0.98

CGS 0.94 0.98 0.96 0.96 0.98 0.97 0.85 0.96 0.90 0.88 0.96 0.92

CME 0.96 0.96 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.97

CSM 1.00 1.00 1.00 1.00 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00

CND 1.00 0.94 0.97 0.96 1.00 0.98 0.93 0.98 0.95 0.96 1.00 0.98

CMD 0.94 1.00 0.97 0.98 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00

CID 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Avg. 0.98 0.98 0.98 0.99 0.99 0.99 0.97 0.96 0.96 0.98 0.98 0.98
frontiers
in.org

https://doi.org/10.3389/fpls.2023.1280365
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Qiu et al. 10.3389/fpls.2023.1280365
enhance multimodal interaction and generalization performance,

compared with decision fusion. Combining multi-source data at an

early stage allows the model to better understand and distinguish

complex backgrounds and noise, thereby improving classification

accuracy (Yang et al., 2021). In contrast, decision fusion is typically

performed at the later stages of the model and might not fully capture

the fine-grained feature interactions between modalities. Moreover,

classifying diseases using decision fusion might require a high

classification confidence level from one modality (Wang et al.,

2021a). Therefore, multimodal feature fusion has a more

pronounced advantage in tasks with complex and varied

backgrounds, especially in scenarios requiring cross-modal

collaboration, and showed promising results in our experiments.

Sample diversity has always been regarded as a key factor in the

field of deep learning. However, due to the challenges of dataset

preparation, its importance is often underestimated. Previous

studies on citrus disease identification and classification preferred

to use datasets with a single background (Barman et al., 2020; Yang

et al., 2021; Dananjayan et al., 2022), with few utilizing natural

background datasets (Xing et al., 2019). In addition, the disease

categories and scenarios were relatively limited. The text involves 4

scenarios and 11 types of samples, rendering this citrus disease

classification task with small samples, multiple scenarios, and

multiple categories a higher challenge for model recognition

performance. To address this, we designed a dataset with diverse

backgrounds, including white, natural, and mixed backgrounds.

This design has shown significant advantages in enhancing the

model’s generalization capabilities and preventing data leakage

issues. A diversified training set provides the model with a

broader data distribution, enabling it to better handle unknown

data. Studies have shown that training with diverse data helps the

model to capture the underlying structures and patterns of the data,

resulting in better performance in real-world applications

(Hernandez and Lopez, 2020). In this study, training with natural

and mixed backgrounds significantly improved the model’s test

accuracy and led to better classification balance, thereby

demonstrating the importance of sample diversity in enhancing

the model’s generalization capabilities in real complex backgrounds.

Moreover, data in the same dataset often come from the same

location, the same environment, or even the same plant. This sample

autocorrelation might pose a risk of data leakage (Stock et al., 2023).

In this study, cross-validation of the dataset effectively reduced the

potential for data leakage and overfitting, ensuring the fairness and

authenticity of model evaluation and effectively ensuring the

model’s generalization capabilities on natural background data.

The effective application of knowledge has demonstrated

undeniable value in enhancing model accuracy and credibility. To

improve the comprehensiveness, objectivity, and efficiency of text

description, expert knowledge was fully utilized and a glossary of

citrus disease characteristics was innovatively constructed to

provide a new approach to text description. The construction of

the feature word list allows describers to choose from 12 categories

of feature words, comprehensively covering information such as leaf

color, leaf morphology, affected parts, covering features, yellowing

characteristics, and lesion features, effectively avoiding omissions or
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errors. Notably, in subsequent practical applications, users without

a professional knowledge background can easily select highly

specialized and specific phrases such as “netted chlorosis,” “leaf

vein corking,” and “volcano-like lesions,” further enhancing the

professionalism and reliability of the text modality. Zhou’s research

also indicates that the application of domain knowledge is beneficial

for improving classification accuracy and the interpretability of the

model’s inference process (Zhou et al., 2021).

This study achieved satisfactory results in the citrus disease

classification task with complex backgrounds by leveraging the

complementary information of image-text multimodal and the

advantages of sample diversity. However, there are still some

shortcomings. First, although this experiment explored the feature

fusion of image-text multimodal, the fusion strategy is relatively

simple and may not fully mine the potential association information

between image and text modalities. Further research on more

advanced fusion strategies, such as attention mechanisms and

multi-task learning, can better utilize the complementary

information between images and text. Second, the interpretability

and explainability of the model in this experiment require

improvement. To enhance the credibility and application value of

the model, further research on model interpretability methods is

needed. This will help researchers and agricultural practitioners to

better understand how the model works, which is of great

significance for improving productivity and reducing economic

losses in the citrus industry.
5 Conclusion

The image-text multimodal deep learning method proposed in

this study combined text and image features with domain

knowledge to fully characterize the features of various diseases

and accurately identify and infer the main types of citrus diseases.

Even when dealing with small-sample and multi-background noise

datasets, this method achieved a high classification accuracy and

generalization performance. Moreover, by constructing a structured

feature word table as prior knowledge for text information

preparation, this study significantly reduced the volume and

preprocessing difficulty of the text modality. The inclusion of

domain knowledge also provided prediction results with higher

credibility. Taken together, the multimodal deep learning method

proposed in this study can effectively extract and integrate features

from multiple data sources and domain knowledge, thereby

achieving precise identification of citrus diseases in complex

backgrounds. This provides a more reliable basis for making

decisions regarding the precise application of biological and

biochemical control strategies in production.
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