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Genetic analysis of phenotypic
plasticity identifies BBX6 as
the candidate gene for maize
adaptation to temperate regions

Yuting Ma1,2†, Wenyan Yang1,2†, Hongwei Zhang2†, Pingxi Wang2,
Qian Liu2, Fenghai Li1 and Wanli Du1*

1College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China, 2State Key
Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of
Agricultural Sciences, Beijing, China
Introduction: Climate changes pose a significant threat to crop adaptation and

production. Dissecting the genetic basis of phenotypic plasticity and uncovering

the responsiveness of regulatory genes to environmental factors can significantly

contribute to the improvement of climate- resilience in crops.

Methods: We established a BC1F3:4 population using the elite inbred lines

Zheng58 and PH4CV and evaluated plant height (PH) across four

environments characterized by substantial variations in environmental factors.

Then, we quantified the correlation between the environmental mean of PH (the

mean performance in each environment) and the environmental parameters

within a specific growth window. Furthermore, we performed GWAS analysis of

phenotypic plasticity, and identified QTLs and candidate gene that respond to

key environment index. After that, we constructed the coexpression network

involving the candidate gene, and performed selective sweep analysis of the

candidate gene.

Results: We found that the environmental parameters demonstrated substantial

variation across the environments, and genotype by environment interaction

contributed to the variations of PH. Then, we identified PTT(35-48) (PTT is the

abbreviation for photothermal units), the mean PTT from 35 to 48 days after

planting, as the pivotal environmental index that closely correlated with

environmental mean of PH. Leveraging the slopes of the response of PH to

both the environmental mean and PTT(35-48), we successfully pinpointed QTLs

for phenotypic plasticity on chromosomes 1 and 2. Notably, the PH4CV

genotypes at these two QTLs exhibited positive contributions to phenotypic

plasticity. Furthermore, our analysis demonstrated a direct correlation between

the additive effects of each QTL and PTT(35-48). By analyzing transcriptome data

of the parental lines in two environments, we found that the 1009 genes

responding to PTT(35-48) were enriched in the biological processes related to

environmental sensitivity. BBX6 was the prime candidate gene among the 13

genes in the two QTL regions. The coexpression network of BBX6 contained

other genes related to flowering time and photoperiod sensitivity. Our

investigation, including selective sweep analysis and genetic differentiation

analysis, suggested that BBX6 underwent selection during maize domestication.
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Discussion: Th is research substantially advances our understanding of critical

environmental factors influencing maize adaptation while simultaneously

provides an invaluable gene resource for the development of climate-resilient

maize hybrid varieties.
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1 Introduction

Unforeseen climate changes, coupled with extensive climatic

diversity, present significant challenges to crop production (Swarts

et al., 2017). As stationary organisms, crop plants must adapt to these

climate shifts through internal and phenotypic adjustments to ensure

survival. The capacity of crops to adapt to diverse planting regions can

be reflected in their phenotypic plasticity (Sultan, 2000). Phenotypic

plasticity reflects the phenotypic variations across environments, and

can be calculated by fitting regression models, in which phenotypic

data in each environment are regressed against environmental factors

(Arnold et al., 2019). Crop breeders aim to reduce phenotypic plasticity

to confer stable performance across different planting regions. A

comprehensive analysis of environmental parameters in distinct

ecological regions serves as the foundation for investigating

phenotypic plasticity and devising actionable strategies for developing

climate-resilient crop varieties (Lobell et al., 2008).

Genetic analysis of phenotypic plasticity holds the potential to

enhance crop improvement in the face of fluctuating environmental

conditions. Earlier studies have unveiled both the similarities and

disparities in the genetic architectures governing trait performance

and plasticity in crops (Li et al., 2019a) indicating that enhancing

trait performance and plasticity can be achieved with a certain

degree of independence, and that it is possible design crop varieties

with stable and desired field performance. Furthermore, genetic

analysis of trait performance and plasticity paves the way for

identifying genes linked to plasticity that can inform genome-

guided breeding efforts, and for optimizing crop performance

under favorable environments while mitigating yield losses during

adverse climate changes.

Maize (Zea mays ssp. mays) was domesticated from its wild

ancestor, teosinte (Zea mays ssp. Parviglumis), around 6,000 to

9,000 years ago in Mexico (Matsuoka et al., 2002). It was

subsequently introduced to the southwestern regions of America

approximately 4,000 years ago. The divergence of temperate maize

from its tropical counterpart occurred after this period (Li et al.,

2018). Human ancestors in the Americas selected maize based on

agronomic traits, leading to its adaptation to varying climate

conditions and indirect changes in its genome and transcriptome

(Camus-Kulandaivelu et al., 2006). The knowledge-driven maize

breeding efforts from the 19th century onwards further augmented

its global adaptability, resulting in an eight-fold increase in seed

production (Schnable and Springer, 2013). Nevertheless, our
02
understanding of the intricate interplay between maize and its

environment in adapting to diverse conditions remains limited.

B-box transcription factors (BBXs) are well-known in regulating

flowering, photoperiod sensitivity, photomorphogenesis, and stress

tolerance (Talar and Kiełbowicz-Matuk, 2021). The Arabidopsis CO,

also known as AtBBX1, is the central regulator of photoperiod

sensitivity (Valverde, 2011). Hd1, the rice homolog of CO,

promotes flowering under short day conditions (Kojima et al.,

2002), and is involved in the control of plant height (PH) and

grain yield (Zhang et al., 2012). Moreover, several other BBX genes

were associated with photoperiod sensitivity in Arabidopsis and rice

(Talar and Kiełbowicz-Matuk, 2021). The maize homolog of CO,

Conz1, controls photoperiod sensitivity by activating the FT-like gene

ZCN8 (Meng et al., 2011; Wu et al., 2023). According to our literature

review, no other BBX genes were involved in environmental

sensitivity in maize except for Conz1.

Three genes positively regulate ZCN8 expression, including

Conz1, ZmMADS1 (a MADS-box transcription factor), and ID1

(a zinc finger protein transcription factor specific to

monocotyledonous plants) (Lazakis et al., 2011; Meng et al., 2011;

Guo et al., 2018). In contrast, ZmRap2.7 (an AP2 family

transcription factor) and ZmCCT9 negatively regulate the

expression of ZCN8 (Salvi et al., 2007; Huang et al., 2018; Liang

et al., 2019). ZmMADS69 negatively regulates ZmRap2.7 expression

to relieve its repression of ZCN8, and leads to early flowering (Liang

et al., 2019). ZCN8 and DLF1 (a bZIP transcription factor) interact

to mediate the differentiation and formation of floral organ in the

shoot apical meristem. DLF is homologous to FD gene in

Arabidopsis, and its loss-of function can delay flowering time

(Mu s z y n s k i e t a l . , 2 0 0 6 ) . C h I P - s e q (Ch r oma t i n

Immunoprecipitation sequencing) and RNA-seq analysis found

that DLF1 activated the expression of two MADS-box genes,

ZmMADS4 and ZmMADS67, by binding to their promoters.

Knocking-out of ZmMADS4 and ZmMADS67 delays flowering

time and increases leaf number (Sun et al., 2020). Above all, the

pathway of ZmMADS69-ZmRap2.7-ZCN8-DLF1-ZmMADS4/

ZmMADS67 was known to regulate the photoperiod sensitivity

and adaptation of maize. However, given the unpredictability of

climate changes, there is a pressing need to uncover additional

genes associated with maize adaptation, especially in elite lines used

in hybrid maize breeding.

However, prior genetic and molecular studies on crop

adaptation have primarily utilized flowering time as an indicator
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of phenotypic plasticity (Guo et al., 2020). It is essential to explore

the adaptation of other traits to varying environments, particularly

PH. PH is a pivotal trait linked to biomass and has implications for

both yield and lodging resistance (Wang et al., 2023). Investigating

the genetic foundation of PH and its plasticity holds significance for

developing silage corn, requiring elevated biomass and PH (Wu

et al., 2020), as well as high-density tolerant maize, necessitating

shorter stature (Wang et al., 2023). Remarkably, few studies have

focused on maize PH plasticity.

To dissect the genetic underpinnings of PH plasticity and

identify candidate genes, we established a BC1F3:4 population

utilizing elite inbred lines Zheng58 and PH4CV. We evaluated

PH of this population across four distinct environments

characterized by variations in environmental parameters. By

exhaustive searching of the mean environmental parameters

within a growth window, we identified an environment index

closely correlated with the environmental mean. The reaction

norm of PH to an environment index was as well modelled as

that of PH to the environmental mean. By utilizing the slopes of

reaction norms to represent PH plasticity, we identified two

potential QTLs responsive to the environment index through a

genetic analysis of PH plasticity. Transcriptome analysis unveiled a

candidate gene, BBX6, that responded to environmental

parameters. Selective sweep analysis indicated that BBX6

underwent selection during the transition from teosinte to

landrace. Our findings furnish QTLs and candidate genes for

enhancing maize adaptation.
2 Materials and methods

2.1 Phenotypic and genotypic data

The BC1F3:4 population comprising 481 families has been detailed

in a previous study (Li et al., 2019b). In summary, Zheng58 and

PH4CV were used as the donor and recurrent parents respectively to

generate 481 BC1F3 plants, which were subsequently self-pollinated to

yield 481 BC1F3:4 families. It’s noteworthy that Zheng58 serves as the

maternal parent of Zhengdan958, while PH4CV is the paternal parent

of Xianyu335. Notably, Zhengdan958 and Xianyu335 stand as

renowned hybrid varieties in China. PH of the BC1F3:4 families was

assessed during the summers of 2016 and 2017 in Shunyi (BJ: Beijing)

and Changji (XJ: Xinjiang), respectively. These four environments were

denoted as 16BJ, 17BJ, 16XJ, and 17XJ (Li et al., 2019b). Pertinent

geographic and environmental details of these four environments can

be found in Table S1. For specifics on experimental design and field

management, refer to the previously published description (Li et al.,

2019b). PH was determined as the measurement from the ground to

the tassel tip, with outliers removed based on 1.5 times the interquartile

range. The PH values for all four environments are provided in

Table S2.

Genotyping of the 481 BC1F3 plants was conducted by CapitalBio

Corporation using a DNA array containing approximately 55,000

SNPs. Processing of the genotypic data yielded 11,781 polymorphic

SNPs, and these data are publicly available (Li et al., 2019b).
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2.2 Variance component analysis

Dissection of variance components was carried out in

accordance with a previously reported methodology (Li et al.,

2019b). In brief, the model can be expressed as:

PH = m + G + E + G x E + Rep + e,

where PH represents the PH of the ith (i = 1, 2,…, 481) line

within the mth (m = 1, 2) replication in the kth (k = 1, 2, 3, 4)

environment. The terms denote the overall mean (m), genotype
effect (G), environment effect (E), genotype-by-environment

interaction effect (G x E), replication effect nested within the kth

environment (Rep), and residual error (e). Each effect was treated as
a random effect, with a specific normal distribution. Heritability was

calculated using the formula described previously (Li et al., 2019b).
2.3 Genomic selection analysis

Genomic selection was performed for single environments

(GS_SE) and for integrating the G x E effect (GS_GE). In the case

of GS_SE, the BGLR package (Pérez and de los Campos, 2014) was

employed. The RKHS method was utilized to estimate parameters.

The model can be represented as:

PH = Xb + Km + e,

where PH signifies the PH for each environment, b denotes the

fixed effect, m symbolizes the marker effect following a distribution

of m ~ N(0, Ksm^2), X corresponds to the design matrix for the fixed

effect, K stands for the n x n kernel matrix where n is the number of

markers, and k represents the Gaussian kernel function. The RKHS

model adopts a Bayesian framework for Gibbs sampling, employing

model parameter settings of 10,000 iterations and a 2,000 burn-in.

The GS_GE model utilized the Multitrait function from the BGLR

package, enabling Bayesian models with an arbitrary number of

random effects to be fitted (Cheng et al., 2018). Phenotype in

different environments were treated as distinct traits, leveraging the

covariances of phenotype across different environments to predict trait

values in specific environments (Burgueño et al., 2012; Pérez and de los

Campos, 2014). Prediction was carried out with 200 five-fold cross-

validations. The correlation coefficient between predicted and actual

data was computed in each cross-validation, and prediction accuracy

was the mean correlation coefficients across all cross-validations. The

ggplot2 package was employed for visualization, and the ggpubr

function was used to determin e whether the difference between

GS_SE and GS_GE was statistically significant.
2.4 Searching the environmental index

Temperature and day length data was acquired from a public

source as outlined by Guo et al. (Guo et al., 2020). Growing degree

days (GDDs) follows the formular GDD = ((Tmax + Tmin)/2 - Tbase),

where Tmax is the maximum temperature (°F), and is assigned as

100°F if Tmax exceeds 100°F. Tmin is the minimum temperature, and
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becomes 50°F if Tmin is less than 50°F. Tbase is the species-specific

base temperature, and is 50°F for maize.Photothermal units (PTT)

and photothermal ratio (PTR) follow the formulars: PTT = GDD x

DL; PTR = GDD/DL.

To identify the critical environmental index, we employed the

CERIS algorithm (github.com/jmyu/CERIS_JGRA) to establish the

relationship between environmental parameters and environmental

means. In the growth period before 62 days after planting (DAP),

we computed the average of environmental parameters from the

window of consecutive starting and ending days (DAPi to DAPj),

encompassing DL, GDD, PTT, and PTR. DAPi and DAPj represent

the ith and jth DAP (i < j -5). For each environmental parameter, the

mean parameter from DAPi to DAPj was computed, followed by the

calculation of the correlation coefficient between the mean

parameter and the environmental mean. The parameter–window

combination that had the highest correlation coefficient with the

environmental mean was employed as the environmental index.
2.5 GWAS analysis

The reaction norm captures the relationship between

environmental mean/index and PH. The reaction norms of each

genotype were obtained via regression of PH of each line against

environmental mean/index (as explanatory variables). Two

parameters, the slope and the intercept, were extracted from each

reaction norm, with the slope representing PH plasticity.

The rrBLUP package (Endelman and Jannink, 2012) was

utilized to perform GWAS analysis of the slopes derived from the

two reaction norms. The intercept and average PH in each

environment were employed as line performance for GWAS. P3D

was set to false during GWAS execution. The threshold was

determined by the Bonferroni correction, defined as -log10(0.1/

Ne), where Ne signifies the number of effective markers, calculated

via the SimpleM package (https://github.com/LTibbs/SimpleM). To

assess the response of each QTL to the environmental index, the

additive effect of each QTL in each environment were computed.
2.6 Transcriptome analysis

In July 2nd, 2018, the parental lines (Zheng58 and PH4CV)

were planted in Haidian (Beijing). On August 9th, the decapitated

internodes were sampled, with three replicates for each line. This

data was utilized in our prior research (Zhou et al., 2022).

Additionally, on May 16th, 2022, the same lines were planted in

Langfang (Hebei), with decapitated internodes sampled on June

25th, also with three replicates for each line. RNA samples were

extracted and subjected to RNA-seq library construction, following

the method described previously (Zhou et al., 2022). The RNA-seq

data generated in 2018 were published in our previous article (Zhou

et al., 2022), while the RNA-seq data generated in 2022 are

accessible on NCBI under BioProject number PRJNA1006801.

The RNA-seq data underwent filtration to remove low-quality

reads, contaminants, and reads with N bases exceeding 5%. Hisat2

(Kim et al., 2015) was employed to align the clean reads to the
Frontiers in Plant Science 04
B73_RefGen_V3 reference genome (www.maizegdb.org), and HTSeq

tool (Anders et al., 2015) was used to quantify the number of uniquely

mapped reads. The reading counts were normalized by library size, and

the TMM normalization method was used to derive the CPM value for

each gene in each sample (Robinson and Oshlack, 2010). Subsequently,

the CPM values were normalized based on gene CDS length to obtain

FPKM values (exon fragments per thousand bases per million reads).

DESeqDataSetFromMatrix function of the R package DESeq2 was used

to obtain the differentially expressed genes with the criteria of |log2
(FoldChange)|>=1 and Padj < 0.05.

Genes showing significant differential expression in PH4CV

between the two environments, and showing non-significant

differential expression in Zheng58 between the two environments

were used for GO enrichment analysis, which was carried out by

using the enrichGO function of the R package clusterProfiler.

Significance was declared by an adjusted P value (P-adjust) below 0.05.

The three replications of the filtered RNA-seq data of each

sample were combined to assemble the transcribed sequences

following the command: Trinity –genome_guided_bam –

genome_guided_max_intron 10000 –max_memory 150G –CPU

40 –output. The assembled coding sequence of Zheng58 and B73

were blasted against BBX6 coding sequence of B73, and the best

matches of coding sequences of the two parental lines were

considered as BBX6 coding sequences.
2.7 Construction of the coexpression
network of BBX6

RNA-seq data were sampled from 31 tissues or stages of B73 (a

classical maize inbred line), and two biological replicates were

collected for each tissue or stage (Han et al., 2023). The procedures

of RNA isolation, library construction and sequencing, and

quantification of RNA were described previously (Han et al., 2023).

Genes detected in more than 10 tissues or stages was used to

construct a coexpression network using WGCNA (v.1.70-3) with

default parameters, and genes showing strong correlation with BBX6

were extracted from the coexpression network.
2.8 Selective sweep and genetic
differentiation analysis

Given the reliance of variety adaptability on environmental

shifts, we conducted a selective sweep analysis of BBX6 to ascertain

whether it was subjected to selection during domestication or

improvement processes. This analysis utilized maize haplotype

version 3 (HapMap 3), derived from whole genome sequencing

data of maize, landraces, and teosinte lines (Bukowski et al., 2018).

Based on B73 reference genome V3 (https://www.maizegdb.org/),

we extracted the promoter, 5’ UTR, coding sequence, and 3’ UTR

sequence of BBX6 from three populations, encompassing 21

teosinte lines, 26 landraces, and 1486 inbred lines. Population

genetic differentiation analysis (Fst) and nucleotide diversity

analysis (Pi) were performed using VCFtools (Weir and

Cockerham, 1984).
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Sliding window calculation was chosen to enhance the sensitivity

of selection signals (Ma et al., 2015). The parameter settings for

calculating Fst values were –fst-window-size 100 bp and –fst-

window-step 25 bp, while the parameter settings for calculating Pi

values were –pi window-size 1000 bp and –pi-window-step 100 bp.
3 Results

3.1 Genotype by environment interaction
contributes phenotypic variations

An initial examination of PH distributions revealed notable

differences among different environments. PH was highest in the

17XJ environment, followed by 16XJ, 17BJ, and 16BJ (Figure 1A).

Additionally, the performance of most lines displayed variations

across different environments (Figure 1A). High correlation

coefficients between replications within the same environment

indicated that these variations were not due to errors (Table S3).

Furthermore, the heritability of PH was substantial, reaching a value

of 0.83. Therefore, the variations of PH (Figure 1A) could be

attributed to genotype by environment interactions. Subsequent

variance component analysis highlighted that genotypic variance

was the primary component, but G x E variance also played a

significant role in the variations of PH across environments

(Figure 1B). Moreover, exploring whether GS_GE outperformed

GS_SE models revealed that incorporating the G x E effect greatly

increased the prediction accuracy of GS models (Figure 1C). This

finding further supported the influence of G x E interactions on the

variations of PH across different environments.
3.2 Variations of environmental parameter

In light of the above results, an investigation into the variations of

environmental parameters across the four environments was
Frontiers in Plant Science 05
conducted. These environments differed in terms of altitude,

latitude, longitude, and planting date (Table S1). Although Beijing

and Xinjiang shared similar latitudes, indicating potentially

comparable day lengths, Xinjiang exhibited more pronounced

variations in day length during both 2016 and 2017 compared to

Beijing (Figure 2A). Notably, the altitude of Xinjiang exceeded that of

Beijing (Table S1), which could account for the lower temperatures

observed in Xinjiang (Figure 2B). Analyzing temperature changes

across 2016 and 2017 showed that the summers of 2017 were hotter

than those of 2016 in both locations (Figure 2B). This unexpected

climate change underscored the variability of climate across years.

The variations in temperature and day length led to corresponding

variations in PTT and PTR across the four environments (Figures 2C,

D). Such variations in environmental parameters, both across years

and locations, further complicate the impact of the environment on

maize performance.
3.3 Searching for an environmental index
closely correlated with PH

PH is heavily influenced by environmental factors, particularly

temperature and day length (Mu et al., 2022). Although the

population was evaluated in only two locations, PH of most lines

generally have a gradual increase along with the increase of the

environmental mean (Figure 3A), indicating environment factors

play a complicate role in determining PH performance across

environments. In-depth analysis of the exact influence of

environmental factors on PH was undertaken by examining the

reaction of PH to average temperature, day length, GDD, and PTR.

However, PH exhibited patterns that were not well-modeled by these

individual factors (Figure S1). Given this complexity, an effort was

made to identify an environmental index that could serve as a

surrogate for environmental mean. The approach involved

averaging the environmental parameters within specific growth

windows using the CERIS algorithm (Li et al., 2021). Notably, the
A B C

FIGURE 1

Genotype by environment interaction contribute to PH variation. (A) PH variations across environments; the circles in the plot indicate the
environmental mean; (B) variances of different components; (C) comparison of the prediction accuracy of GS_SE and GS_GE models, and
*** indicates P < 0.001 based on t-test analysis.
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oscillating increase in PTT values was observed across the four

environments (Figure 3B), and the average value of PTT from the

window of 35 to 48 DAP, labeled as PTT(35-48), displayed a stronger

correlation with the environmental mean (Figure 3C) than the

average values of other parameters within various growth windows

(Figures S2A–C). Because there is overlapping among windows, the

mean PTT values of the windows around 35-48 DAP also displayed

strong correlations with the environmental mean (Figure 3C). In the

growth period from 35 to 48 DAP, substantial differences were

evident among the environments, particularly from 35 to 40 DAP

(Figure 3B). Correspondingly, the mean PTT(35-48) values exhibited

strong correlations with the environmental mean (Figure 3D). By

establishing the relationship between PH and PTT, the critical growth

stage influencing PH was narrowed down to 35 to 48 DAP –

coinciding with the maize stem-elongation stage. Reaction norms

based on the environmental mean and PTT(35-48) as explanatory

variables were well-modeled (Figures 3E, F), with the two slopes

exhibiting a highly strong correlation (r = -0.97). The negative

correlation is caused by the negative correlation between

environmental mean and PTT(35-48) (Figure 3D).
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3.4 Genetic basis of phenotypic plasticity

GWAS utilizing the two slopes extracted from the reaction

norms as phenotypes revealed the identification of two consistent

QTLs on chromosomes 1 and 2 (Figures 4A, S3). These QTLs were

denoted as qPHP1 and qPHP2 (PHP indicating PH plasticity). The

peak positions of qPHP1 and qPHP2 are 300,034,330 bp and

196,386,747 bp, respectively. The QQ plot illustrated that the

population structure was effectively controlled (Figure 4B). The

proportion of phenotypic variance explained (PVE) for qPHP1 and

qPHP2 was 3.25% and 3.54%, respectively, with qPHP2 (-0.44)

possessing a larger additive effect compared to qPHP1 (-0.25)

(Figure 4C). Interestingly, the PH4CV genotypes at the two QTLs

have positive contributions to phenotypic plasticity, indicating

PH4CV genotypes are more sensitive to environmental changes

than the Zheng58 genotypes.

Given the pivotal role of the 35-48 DAP period in maize growth

(Figures 3B, C), it was hypothesized that the detected QTLs’

additive effects might respond to PTT(35-48) variations. To prove

this hypothesis, we performed GWAS analysis using the PH in each
A B

DC

FIGURE 2

The variations of environment parameters across environments. The environment parameters contain day length (A), Temperature (B), PTT (C), and
PTR (D).
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environment, and the intercept of the reaction norm that regresses

PH against the environmental mean.

This analysis unveiled that the absolute values of additive effects

of both QTLs decreased with the increase of PTT(35-48) (Figure 4D),

which mirrors the negative correlation between PTT(35-48) and PH

(Figure 3D). Additionally, GWAS demonstrated that qPHP2

consistently influenced PH across environments, whereas qPHP1

exhibited no association with PH in any environment (Figure S4).

This indicated both overlapping and divergence between the genetic

basis of trait performance and phenotypic plasticity.
3.5 RNA-seq analysis indicates that BBX6 is
the candidate gene in qPHP2 region

Focusing on the critical 35-48 DAP growth period, RNA samples

were extracted from elongating internodes at th is period. Given

PH4CV’s stronger response to PTT(35-48) variations, a gene search

conducted to identify differentially expressed genes with significant

responses to PTT(35-48) in PH4CV and non-significant responses in

Zheng58 yields 1009 genes (Table S4). GO annotation analysis found

that these genes are enriched in multiple biological processes such as

responsive to temperature and abiotic stress (Figure 5A), indicating

that most of these genes are sensitive to environmental fluctuation.
Frontiers in Plant Science 07
Five and eight genes were respectively located in the qPHP1 and

qPHP2 regions (Table S4), among which BBX6 (spanning from

195,818,312 to 195,828,932 bp on chromosome 2) was very close to

the peak position of qPHP2, and was identified as the candidate gene

within qPHP2. The homolog of BBX6 functions in rice and

Arabidopsis was associated with PH and flowering time (Wang

et al., 2014; Chai et al., 2021; Cao et al., 2023), further supporting

BBX6 as the candidate gene in the qPHP2 region.

The expression level of BBX6 decreased with increasing PTT

(35-48) in PH4CV (Figure 5B), mirroring the sensitivity of the

PH4CV genotype of qPHP2 to PTT(35-48) changes (Figure 4D).

However, there were no sequence variants in the coding sequences

of BBX6 of the two parental lines, and only a SNP in the 3’ UTR

regions were detected (Figure S5). To prove that BBX6 is the

candidate gene, the coexpression network of BBX6 was extracted

from the coexpression network constructed using the

transcriptomic data of 31 tissues or stages (Han et al., 2023).

There are 17 genes in the coexpression network (Figure 5C).

Among the s e g ene s , t he Arab idop s i s homo log s o f

GRMZM5G814314 and GRMZM2G170625 are respectively UBC1

(AT1G14400) and JAL1 (AT3G16470), which were associated with

flowering time (Xu et al., 2009; Xiao et al., 2015). Especially,UBC1 is

involved in activating FLC expression and repressing flowering

(Xiao et al., 2015) and JAC1 Influences RNA processing of FLC
A B

D E F

C

FIGURE 3

Identifying an environmental index using environmental and performance data. (A) PH of most lines generally increase with the increase of the
environmental mean; (B) PTT variations from 1 to 62 DAP in four environments; (C) search for the most indicative growth window within which mean
PTT has the strongest correlation with the environmental mean; (D) the correlation between mean PTT(35-48) and environmental mean; (E) the reaction
norm using environmental mean as the explanatory variable; (F) the reaction norm using mean PTT(35-48) as the explanatory variable.
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A

B DC

FIGURE 4

GWAS analysis of PH plasticity. (A, B) and B are Manhattan and QQ plot obtained by performing GWAS using the slope obtained from Figure 3E as
the phenotype, and phenotypic variances explained by the QTLs are added in the Manhattan plot; (C) is the additive effects of the two QTLs on
chromosome 1 and 2, and negative values indicate PH4CV genotypes have positive contributions; (D) the correlation coefficients (r) between PPT
(35-48) and additive effects.
A B

C

FIGURE 5

RNA-seq analysis reveals that BBX6 is the candidate gene underlying qPHP2 (A) GO enrichment analysis of the 1009 genes responding to PTT(35-
48); (B) Responsive expression of BBX6 to PPT(35-48); (C) BBX6 coexpression network. With the increase of weight, the colors of edges changed
from yellow to purple, and the width of edges become thicker.
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antisense transcripts in Arabidopsis (Xu et al., 2009). FLC is key to

photoperiod and vernalization perception and antagonistically

regulates FT to influence the flowering time of plants (Searle

et al., 2006). Therefore, BBX6 may control PH plasticity by

regulating photoperiod sensitivity.
3.6 Selective sweep analysis and genetic
differentiation analysis revealed that BBX6
was selected during maize domestication

Subsequent exploration focused on whether BBX6 underwent

selection during domestication or improvement. The Pi ratio of

teosinte exceeded that of landrace and inbred lines, with differences

between landrace and inbred lines proving non-significant

(Figures 6A, B), particularly in coding sequence and 3’ UTR

regions. These results suggested that BBX6 underwent selection

during domestication. Evaluating genetic divergence between

populations using BBX6 genotypic data indicated greater

divergence between maize and teosinte than between maize and

landrace (Figure 6C). This observation further supported the notion

that BBX6 was selected during maize’s divergence from teosinte.
4 Discussion

The current era witnesses ongoing climate changes and

increasing global temperatures, with potential threats posed to

crop production (Keith, 2021). The development of climate-

resilient crops exhibiting low plasticity across different

environments is of paramount importance. However, our

knowledge of the genetic and molecular mechanisms governing

phenotypic plasticity remain limited. This study’s comprehensive

approach, encompassing the establishment of a large population

derived from elite inbred lines in China, field performance

evaluations across diverse environments, assessing the variations

of environmental parameters, identification of the key

environmental index, integration of genetic and transcriptomic
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analyses, and genetic analysis of the candidate gene, offers

valuable insights into maize plasticity.

Field performance emerges from the interplay of genotypic and

environmental interactions (Li et al., 2022). The current findings

substantiate that G x E variance significantly contributes to

phenotypic variations. The significance of G x E interactions in

influencing field performance is reinforced by the enhanced

prediction accuracy of GS models upon incorporating the G x E

effect. These results underscore the pivotal role of G x E interactions

in shaping field performance across different environments, and is

the basis for the searching of critical environment index in the next

step. By demonstrating environmental parameters in the growth

period (before 62 DAP) across environments, this study sheds light

on the unique aspects of temperature, day length, GDD, and PTR

variations across environments. Especially, we witness a great

temperature increase in 2017, which is due to unexpected climate

changes. This complexity of environmental variations adds an

additional layer of challenge to the already intricate interplay

between genetics and environment in shaping plant performance.

Identification of an environmental index closely correlated with

performance offers insights into understanding the precise

influences of environmental factors on maize growth. By

investigating the relationship between environmental mean and

environment parameters with varying growth window, we found

that 35-48 DAP is the critical period determining PH, and PTT(35-

48) can be used as a reliable surrogate for environmental influence

(Figures 3B, C). Identification of the two QTLs for PH plasticity

support the reliability of PTT(35-48) for surrogating the overall

environmental factors (Figures 4A; S3). Importantly, using PTT(35-

48) to surrogate environmental influences allow us to investigate the

relationship between additive effects and PTT(35-48) variations,

which underscores the interplay between genetics and environment

in shaping phenotypic plasticity. Specifically, the additive effects of

qPHP2 increased with the increase of PTT(35-48) (Figure 4D).

Moreover, the additive effects of qPHP1 are nearly zero in Beijing,

and the genotype of PH4CV in qPHP1 increase PH only in Xinjiang

(Figure 4D). Interestingly, by performing GWAS analysis of the

intercept, we find that qPHP2 is associated with the intercept and
A B C

FIGURE 6

Selective sweep analysis of BBX6 (A) the Pi values of the three populations. The gene structure is demonstrated at the bottom. The four regions from
left to right are promoter (2000bp), 5’UTA, coding sequence, and 3’UTA; (B) Significant test of Pi values among the three populations; ** and ns
indicate P < 0.01 and P > 0.05, respectively. (C) Fst along the gene sequence of BBX6.
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qPHP1 is not, indicating that qPHP1 and qPHP2 have divergent

effects across environments, and qPHP2 had consistent effect on

both intercept and slope.

Using diversity panels of maize wheat and oat, Li et al. found that

QTL controlling the intercept and slope offlowering time showed great

differences in their locations and effects (Li et al., 2021). In another

research based on flowering time of a rice biparental population, Guo

et al. found that the QTL controlling the intercept and slope were in the

same genomic regions, but had different phenotypic contributions

(Guo et al., 2020). These conclusions, together with our findings,

highlight the nuanced interplay and complicated mechanism between

trait performance and plasticity.

In plants, plant growth can be influenced by photoperiod and

temperature (Song et al., 2013; Osnato et al., 2021). In this study,

PTT is calculated by day length and growing degree days, and is

related to photoperiod and temperature. Therefore, photoperiod

and/or temperature are related to the control of PH plasticity of the

tested population. In rice, Ghd8 interacts with Ghd7 to controls rice

photoperiod sensitivity, and both genes affect heading date, PH and

grain yield of rice (Wang et al., 2019). Ghd7 is a central regulator of

plant growth and development. Temperature regulates Ghd7

expression, which is quantitively associated with field

performance (Weng et al., 2014). Maize genes such as ZmCCT

and gigantea was involved in photoperiodic control of plant growth

(Bendix et al., 2013; Yang et al., 2013). Based on these clues, we

suspect that photoperiod and/or temperature regulate BBX6

expression, and the differences of photoperiod/temperature

among the four environments caused the differences in BBX6

expression, leading to different additive effects of PH4CV

genotype at the qPHP2 locus.

Owning to its differential expression in response to PTT(35-48)

and the coexpression relationship with genes potentially associated

with flowering time and photoperiod sensivity (Figures 5B, C),

BBX6 was selected as the candidate gene for phenotype plasticity.

Moreover, the BBX gene family were known to be involved in

photoperiod sensitivity and adaptation. Especially, Arabidopsis CO

gene and its homologs in maize, rice, and sorghum are well known

as a photoperiod regulated activator of flowering. Because CO

belongs to a large family, and members in this family have

diverse functions (Gangappa and Botto, 2014), we further retrieve

the closest homologs of maize BBX6 by protein-to-protein BLAST.

The Arabidopsis genes showing the highest similarity to maize

BBX6 is BBX19, followed by BBX18. BBX19 interacts with CO to

repress FT transcription, and constitutive expression of BBX19

delays flowering and decreases PH under inductive photoperiods

(Wang 2014). Both BBX19 and BBX18 have crucial roles in fine-

tuning circadian rhythm (Yuan et al., 2021). As the closest homolog

of BBX19 and BBX18, BBX6 might regulate PH by responding to

photoperiod variations across different environments.

The breeding history was divided into Breeding 1.0 to Breeding

4.0 (Wallace et al., 2018). Breeding 1.0 indicated domestication of

wild plants by ancient farmers. Breeding 2.0 used statistics and

experimental design to assist the selection of desired plants.
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Breeding 3.0 combined genotypic and phenotypic data to improve

breeding efficiency. We are now at the beginning of Breeding 4.0

stage with the help of multiple cutting-edge technologies. Crop

domestication corresponded to Breeding 1.0 stages, and crop

improvement started from Breeding 2.0. Both crop domestication

and crop improvement changed agronomic traits and indirectly

changed the sequences of genes associated with crop performance.

Investigating the selection signature and genetic divergence of these

genes increased our knowledge about what happed during the

Breeding 1.0 stage, after the Breeding 2.0 stage, and perhaps

would be advisable for crop improvement in the Breeding 4.0

stage. Through performing selective sweep analysis, we found that

BBX6 was selected during maize domestication, and the coding

sequencing underwent strong selection. Genetic differentiation

analysis further supported the result of selective sweep analysis.

The gene expression analysis, gene coexpression analysis, and

selective sweep analysis of BBX6 indicated that BBX6 could be a

potential target gene for improving maize adaptation.
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Reaction norms using mean GDD, day length, PTT, and PTR as the

explanatory variables

SUPPLEMENTARY FIGURE 2

The correlation coefficients between environmental mean and the mean

environment parameters within a growth window Note: Mean day length
from 1 to 53 DAY (A), GDD from 38 to 48 DAP (B), and PTR from 38 to 48 DAP

(C) have the strongest correlation with environmental mean

SUPPLEMENTARY FIGURE 3

Manhattan plot for the slope obtained from

SUPPLEMENTARY FIGURE 4

Manhattan plot of GWAS using the intercept and mean PH as the phenotype

SUPPLEMENTARY FIGURE 5

Gene structure of BBX6 in Zheng58 and PH4CV Note: The three regions from

left to right are 5’UTR, coding sequence, and 3’UTR.
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