
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Ruslan Kalendar,
University of Helsinki, Finland

REVIEWED BY

Hubert Hasenauer,
University of Natural Resources and Life
Sciences Vienna, Austria
Leena Hamberg,
Natural Resources Institute Finland (Luke),
Finland

*CORRESPONDENCE

Jian Liu

fafudoctor@126.com

RECEIVED 19 August 2023

ACCEPTED 30 October 2023
PUBLISHED 17 November 2023

CITATION

Ji B, Yu K, Wang F, Ge H and Liu J (2023)
Simulation and prediction of changes in
tree species composition in subtropical
forests of China using a nonlinear
difference equation system model.
Front. Plant Sci. 14:1280126.
doi: 10.3389/fpls.2023.1280126

COPYRIGHT

© 2023 Ji, Yu, Wang, Ge and Liu. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 17 November 2023

DOI 10.3389/fpls.2023.1280126
Simulation and prediction of
changes in tree species
composition in subtropical
forests of China using a
nonlinear difference equation
system model

Biyong Ji1,2,3, Kunyong Yu1,3, Fan Wang1,3, Hongli Ge4

and Jian Liu1,3*

1College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China, 2Zhejiang Forest
Resources Monitoring Center, Hangzhou, China, 3University Key Lab for Geomatics Technology and
Optimize Resource Utilization in Fujian Province, Fujian Agriculture and Forestry University,
Fuzhou, China, 4College of Environment and Resources Science, Zhejiang Agriculture and Forestry
University, Hangzhou, China
Changes in tree species composition are one of the key aspects of forest

succession. In recent decades, significant changes have occurred in the tree

species composition of subtropical forests in China, with a decrease in

coniferous trees and an increase in broad-leaved trees. This study focuses on

Zhejiang Province, located in the subtropical region of China, and utilizes seven

inventories from the National Continuous Forest Inventory (NCFI) System

spanning 30 years (1989-2019) for modeling and analysis. We categorized tree

species into three groups: pine, fir, and broadleaf. We used the proportion of

biomass in a sample plot as a measure of the relative abundance of each tree

species group. A novel nonlinear difference equation system (NDES) model was

proposed. A NDES model was established based on two consecutive survey

datasets. A total of six models were established in this study. The results indicated

that during the first two re-examination periods (1989-1994, 1994-1999), there

was significant fluctuation in the trend of tree species abundance, with no

consistent pattern of change. During the latter four re-examination periods

(1999-2004, 2004-2009, 2009-2014, 2014-2019), a consistent trend was

observed, whereby the abundance of the pine group and the fir group

decreased while the abundance of the broad-leaved group increased.

Moreover, over time, this pattern became increasingly stable. Although the

abundances of the pine group and the fir group have been steadily declining,

neither group is expected to become extinct. The NDES model not only

facilitates short-term, medium-term, and even long-term predictions but also

employs limit analysis to reveal currently obscure changing trends in tree

species composition.

KEYWORDS

species composition, species abundance, species abundance limit value, forest
succession, nonlinear difference equation system (NDES) model, subtropical forest
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1 Introduction

As an essential part of the global ecosystem, the forest

ecosystem is a complex heterogeneous hierarchical system

characterized by dynamic species replacement (Bruelheide et al.,

2011). Forest succession can reveal changes in the whole forest,

affect the wood supply of the forest (Lantz et al., 2022), and

influence ecological functions, such as the supply of ecosystem

services (Cortés-Calderón et al., 2021), carbon sequestration

(Dulamsuren, 2021), soil carbon accumulation (Zhu et al., 2021),

and animal and plant habitation (González et al., 2022). Species

composition is a vital expression of forest succession (Mi et al.,

2016). Species composition can reflect the composition of tree

species in forest ecosystems and the reasonable proportion of

each tree species (He et al., 2015; Pelissari et al., 2017). It is

necessary to characterize the changes in species composition and

predict the forest succession process (Tian et al., 2022), which helps

us better understand the effects of human disturbance and climate

change on species composition and provide sustainable forest

management (Rutishauser et al., 2015).

Mathematical models have been widely used to simulate and

analyze the process of forest succession. There is a category known

as forest gap models, which primarily focus on small-scale forest

succession. The patterns of forest succession, such as the optimal

growth, replacement, and death of a single tree or the gap phase

dynamics at the plot scale, can be well demonstrated using the

succession gap model (Larocque and Bell, 2021). Examples of these

models include JABOWA (Botkin et al., 1972), FORET(Shugart and

West, 1977; Bormann and Likens, 1979), SORTIE (Pacala et al.,

1993; Bugmann, 2001), and FAREAST (Yan and Shugart, 2005).

Some of researchers prefer highly parametric models to simulate the

photosynthesis and transpiration of individual leaves, as these

models can well explain the process of dynamic forest succession

(Medlyn et al., 2005; Ibrom et al., 2006). In addition, climate-

sensitive gap models were applied to capture the effects of climate

and ecological processes on future forest dynamics, such as ForClim

(Mina et al., 2015; Martin-Benito et al., 2022), TreeMig (Thuiller

et al., 2008), FireBGCv2 (Keane et al., 2011), PnET-Succession

(Scheller et al., 2011), and FAREAST (Hu et al., 2018).

With increasing simulation scale, stand-level and landscape-

level models are being proposed in forest succession research. For

example, LANDIS-II (De Jager et al., 2019), FATES (Koven et al.,

2020), FORMIND (Rödig et al., 2017) and SIMREG (Perin et al.,

2021) have been applied to simulate the formation, development,

disturbance, degradation, and other processes of forests on a wide

range of spatial and temporal scales. Some of these researchers in

this area have paid more attention to the basal area and

compositional changes during tropical forest succession, and

demographic forest models have been developed to analyze the

growth-survival and stature-recruitment trade-offs (Ouyang et al.,

2016; Hu et al., 2018; Ruger et al., 2020). Other researchers have

focused on the dynamic disturbances involved, such as the survival

rate of tree species in the process of forest succession (Peng et al.,

2010), the regeneration rate after disturbance (Blanco et al., 2021),

and the occurrence of natural disasters (Yin et al., 2009). The

Markov chain model is used to describe the state of the forest
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ecosystem in forest growth scenarios, in which dynamic

disturbances are treated as special events of forest growth

scenarios that are constantly transferred according to a certain

probability (Risch et al., 2009). Ecological process models are

commonly employed for predicting changes in forest tree species

composition, such as forecasting the loss and replacement of 111

tree species in China under climate change (Li et al., 2020).

In terms of research content, some researchers have

emphatically explored the vertical structure changes of subtropical

tree species (Yang et al., 2014), community structure changes (Xu

et al., 2020), phylogenetic turnover (Chen et al., 2017; Michalski

et al., 2017; Zhang et al., 2021), and ecological memory (Sun et al.,

2013). Some researchers are concerned about how interacting forest

components affect forest succession (Norden et al., 2015).

Most of the current research on forest succession is based on

time series data (Clara et al., 2018; Mathieu et al., 2022). Studies

have shown that difference equation theory can provide novel

insights into forestry (Tomé et al., 2006; Chen, 2021). For

example, Gilbertson and Kot (2021) proposed applying the

Pioneer-Climax model based on difference equations to conduct a

nine-case steady-state analysis of the long-term behavior of pioneer

and climax species. Fort and Grigera (2021) developed a logistic

difference model based on linear Lotka-Volterra equations to model

and predict the tree species composition of the Barro Colorado

tropical forest. Utilizing national forest resource continuous

inventory data provides numerous conveniences for simulating

and predicting forest tree species composition. For instance,

Nikolova et al. (2019) employed generalized linear models based

on forest inventory data from the National Continuous Forest

Inventory (NCFI) to simulate and predict tree species

composition in Swiss forests.

The tree species in Zhejiang Province effectively represent the

forest ecosystems of South China and East China (Wu, 1980; Zhang

et al., 2022). The distributed forests of Masson pine (Pinus

massoniana), mixed conifer-broadleaf forests, and broad-leaved

forests within the region represent different stages of forest

succession, reflecting the temporal sequence of tree species

composition evolution in the subtropical region of China (Sun

et al., 2013; Li et al., 2021; Zhang et al., 2011; Piao et al., 2015).

Over the past few decades, due to sustained economic

development and increased awareness of ecological benefits, as

well as the impact of pine wilt disease (Hao et al., 2022) and a

decline in timber prices, the forest species composition in Zhejiang

Province has undergone significant changes. The proportion of pine

and fir tree species has consistently decreased, while the broadleaf

tree species have notably increased (Lin et al., 2012). This shift is not

unique to Zhejiang Province but is observed across much of the

subtropical regions in China. Simulating and analyzing this change

and forecasting its trends is evidently crucial and meaningful.

Where will this transformation ultimately lead? Will pine and fir

species become extinct? To date, there is limited reporting on

macro-temporal studies of tree species composition changes in

the subtropical regions of China. This study utilized NCFI data

from Zhejiang Province to investigate the relationship and

dynamics among three major tree species groups: pines, firs, and

broadleaves. The tree species group abundance (referred to as
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species abundance in some cases) was quantified using the

proportion of biomass in each plot. Based on the plot-level

species abundance, a nonlinear difference equation system

(NDES) model comprising three equations was developed to

simulate the temporal changes in tree species composition over

the past 30 years (1989-2019) in Zhejiang Province. Furthermore,

long-term trends and ultimate scenarios (limits) of future changes

were analyzed.
2 Materials and methods

2.1 Study area

Zhejiang Province is located along the southeastern coast of

mainland China (118°01’ to 123°10’ E, 27°02’ to 31°11’ N)

(Figure 1). The region belongs to the subtropical monsoon humid

climate zone. The annual average temperature ranges from 16.1 to

18.6°C, and the annual average precipitation ranges from 1109.1 to

2132.3 millimeters. The southwestern part of the region is

characterized by higher elevation, while the northeastern part is

relatively lower. The total land area is approximately 105,500 square

kilometers, with approximately 70% consisting of mountains and

hills. Plains are predominantly distributed in the northern region.

In 2020, the forest area in the study area was 60,800 square

kilometers, accounting for 61.17% of the total land area in the

province. The vegetation in the region is characterized by zonal

vegetation, predominantly consisting of subtropical evergreen

broad-leaved forests. The main broad-leaved tree species include

Quercus L, Cinnamomum camphora, and Schima superba Gardn. et
Frontiers in Plant Science 03
Champ. The main coniferous tree species include Pinus

massoniana, Pinus elliottii, Pinus taiwanensis Hayata, and

Cunninghamia lanceolate (Tao et al., 2022).
2.2 Experimental design and data
preprocessing

The data were collected from forest plots within the permanent

plots of the NCFI in Zhejiang Province, China (Figure 2). A total of

4250 permanent plots were established across the entire province

using a grid of 4 km × 6 km. The plots were square with an area of

800 square meters. Individual measurements were conducted for all

trees within the plots with a diameter at breast height (DBH) equal

to or greater than 5 centimeters (NFGA, 2020). The survey interval

for NCFI was 5 years. The NCFI data selected for analysis were

obtained from surveys conducted in 1989, 1994, 1999, 2004, 2009,

2014, and 2019, spanning a total period of 30 years. Subsequently,

the entire set of seven datasets was divided into six periods: 1989-

1994, 1994-1999, 1999-2004, 2004-2009, 2009-2014, and 2014-

2019. The plots within the same period were paired. The plots

were required to be forested at the beginning of the reexamination

period (early stage).

In forest management practices in subtropical China, tree

species are often categorized into three groups: pine, fir, and

broadleaf. Such classification meets the requirements of general

forest management practices. Classifying tree species is crucial for

determining dominant tree species within a community

(Kazmierczak et al., 2014). The pine group includes Pinus

massoniana Lamb, Pinus thunbergii Parl, Pinus taiwanensis
FIGURE 1

The distribution of forest resources in Zhejiang Province, China. (Note:Image cited from:http://bzdt.ch.mnr.gov.cn/browse.html?picId=%
224o28b0625501ad13015501ad2bfc0290%22.).
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Hayata, Pinus elliottii Engelm, and others. Among them, Pinus

massoniana Lamb (Masson pine) accounts for the vast majority.

The fir group includes Cunninghamia lanceolata (Lamb.) Hook,

Cryptomeria fortune Hooibrenk ex Otto et Dietr, Metasequoia

glyptostroboides Hu & W. C. Cheng, Taxodium ascendens Brongn,

and Taxus wallichiana var. chinensis (Pilg.) Florin, and others.

Among them, Cunninghamia lanceolata (Lamb.) Hook (Chinese

fir) constitutes the vast majority. The broad-leaved group includes

Quercus, Castanopsis, Liquidambar, Schima superba Gardn. et

Champ., Lauraceae (Sun et al., 2020), and others.

Table 1 displays the number of remeasured forest plots in each

period based on dominant tree species group statistics. The tree species

group that exhibited the highest proportion of biomass within a plot
Frontiers in Plant Science 04
was considered the dominant tree species group. The forest plots in the

first three periods were relatively fewer compared to the latter three

periods because in the surveys conducted in 1994, 1999, and 2004, one-

third of the plots were relocated and could not be paired. The tree

biomass was calculated based on plot stem measurement data (Ji et al.,

2012). The biomass proportion of each tree species group in each plot

was calculated as an indicator of species group abundance, where the

sum of abundance indices for the three tree species groups within each

plot was equal to 1. The variation in actual tree species abundance

across years is illustrated in Figure 3, revealing significant trends. The

pine group exhibits a continuous decline, transitioning from absolute

dominance to absolute inferiority, whereas the broad-leaved group

exhibits the opposite pattern.
TABLE 1 The numbers of plots in each reexamination period.

Amounts of plots 1989-1994 1994-1999 1999-2004 2004-2009 2009-2014 2014-2019

Total 842 824 909 1582 1657 1712

pine dominant 493 498 481 683 575 478

fir dominant 236 211 294 483 432 402

broadleaf dominant 113 115 134 416 650 832
A group-dominant plot is dominated by one group of trees species with the largest proportion of the gross biomass.
FIGURE 2

Distribution of NCFI plots in Zhejiang Province, China.
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2.3 Nonlinear difference equation system
model

In this study, a nonlinear difference equation system (NDES)

model was developed, consisting of three difference equations (the

model construction and derivation process are described in

Appendix A). The NDES model is presented as follows:

y11 =
1

1+t1et3y10+t4y20 +t2et5y10+t6y20
≡ f1                        

y21 =
1

(1=t1)e−t3y10−t4y20 +1+(t2=t1)e(t5−t3)y10+(t6−t4)y20
≡ f2 

y31 =
1

(1=t2)e
−t5y10−t6y20 +(t1=t2)e

(t3−t5)y10+(t4−t6)y20 +1
≡ f3 

8>>><
>>>:

(1)

where yij represents the species abundance, i denotes the species

group, i=1 (pine), 2 (fir), 3 (broadleaf), and j represents the

temporal sequence of the remeasured plots, j=0 (former), 1

(latter). Auto conform 0≤yij ≤ 1, y11+y21+y31 = 1. t1, t2, t3, t4, t5,

and t6 are 6 parameters of the NDES model.

Rewriting Eq. (1) in vector form:

Y1 = F(Y0) (2)

where Y1 = (y11, y21, y31)
0
, Y0 = (y10, y20, y30)

0
, and F = (f1, f2, f3)

0

. By substituting Y0 into the right side of Eq. (2), the estimated value

Y1 for 5 years later (the remeasurement interval in this study is 5

years) can be obtained. Similarly, by substituting Y1 into the right

side of Eq. (2), the estimated value Y2 for 10 years later can be

obtained. This process continues iteratively, such that if Yk(k=0,1,2,

…) is already known, Yk+1 can be calculated as Yk+1=F(Yk).

The estimation of the model parameters is based on plot-level

data. For each plot, the species abundance (yij) is calculated,

including both the early and late stages. First, the total biomass of

the plot is computed, and the proportion of biomass for each species

group to the total biomass represents the species abundance of that

particular species group.
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2.4 Prediction of species abundance limits,
interval analysis and hypothesis

If lim
k→∞

F(Yk) = Y*, i.e., Y* = F(Y*), where Y* = (y*1 , y
*
2 , y

*
3 )

0
is a

constant vector, then Y* is referred to as the equilibrium point of

the difference equation system, and such an equilibrium point is

inherently stable (Elaydi, 2005). A model with a stable equilibrium

point possesses significant biological significance, as it facilitates

theoretical analysis and long-term predictions. In this study, the

equilibrium point is referred to as the limit, representing the

theoretical ultimate state of tree species abundance variations.

Reliability analysis is necessary for limits. This paper simulates

the variance of limit Y* through Monte Carlo methods. Let T =

(t1,⋯, t6)
0
be the estimated value of the model parameter, with its

covariance matrix denoted aso. Let T0 ∼ N(T ,o), and generate

a set of random numbers T0 = (t01 ,⋯, t06)
0
for each plot. Taking the

latter observed abundance of the plot as the initial value, we

calculated the limit of the model by considering T0 as the model

parameter. We estimate the covariance matrix D(Y*)by computing

the covariance matrix S*3�3 based on the simulated limits of all n

plots and consider it as an estimate for D(Y*) . Since y*1 + y*2 + y*3 =

1 , the sum of the elements in matrix S*3�3 is zero.

Interval estimation of the abundance limit for a single tree

species group. Assume that the abundance limit follows a normal

distribution. Because the abundance limit is bounded between 0 and

1, it is theoretically appropriate to use a truncated normal

distribution. Let y* be the point estimate of the abundance limit

for a certain tree species group and s 2 be the variance of y*,

represented by the diagonal elements in matrix

S*3�3 . Let p(y, y*,s
2) denote the probability density function of

the normal distribution. The probability density function of the

truncated normal distribution is given by:

ptr(y, y*,s
2) = p(y, y*,s 2)=t  , t =

Z 1

0
p(y, y*,s 2)dy (3)
FIGURE 3

Changes in the average abundance of each species group (pine, fir, and broadleaf) during 1989-2019 based on the CFI data.
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Overall hypothesis testing of the limit vector. The overall

hypothesis testing of the limit vector for tree species abundance

was conducted using a multivariate normal distribution. Let Y* =

(y*1 , y
*
2 , y

*
3 )

0
be the point estimate of the limit vector and Y0* =

(y
0*
1 , y

0*
2 , y

0*
3 )

0
be another vector. The aim is to assess the possibility

of Y* = Y0* . The sum of the three components of the abundance

limit is 1, implying that it has 2 degrees of freedom (3-1 = 2).

Consequently, the rank of matrix S*3�3 is also 2, indicating that the

matrix is not full rank and thus cannot be inverted. Considering the

abundance limits of the first two tree species groups, namely, pines

and firs, the determination of the abundance limit for broadleaves

was subsequently established. Therefore, we only need to examine

the limits of the first two tree species groups.

Let Y*(2) = (y*1 , y
*
2 )

0
, Y0*(2) = (y

0*
1 , y

0*
2 )

0

and S*(2)2�2 =

� s 2
1 s1·2

s2·1 s 2
2

�
, and compute the F-statistic:

F =
(n − p)
(n − 1)p

(Y*(2) − Y0*(2))
0
(S*(2)2�2)

−1(Y*(2) − Y0*(2)) ∼ F(p, n − p) (4)

The F distribution has the first degree of freedom equal to p and

the second degree of freedom equal to n-p, where p is 2. To test

whether both pines and firs may converge to zero in the future, a

hypothesis test can be conducted by setting Y0*(2) = (0, 0)
0
.

2.5 Long-term prediction of tree species
abundance

To uniformly forecast tree species abundance until 2119, a

comparison of the prediction curves from models of different

periods was enabled. This analysis can then be used to examine

the changes in tree species composition over the past 30 years

within the modeling dataset. Based on the plot data and using the

initial species abundance from the latter observations of the

modeling dataset, iterative calculations can be performed to

obtain predicted values of species abundance for every 5-year

interval in the plots. The average of the predicted species

abundance values for the plots was calculated as the predicted
Frontiers in Plant Science 06
average value of species abundance for the entire province. A

predicted value for a plot is dependent only on the previous

adjacent state and is not influenced by other preceding states

(Scherstjanoi et al., 2014).
3 Results

3.1 Model parameter estimation results and
the actual prediction accuracy

The parameters of the nonlinear differential equation model in

each reexamination period are shown in Table 2. The parameters

had a certain regularity. t1 ranged from 0.722 to 1.5111, t2 ranged

from 20.4263 to 42.8872, t3 ranged from -3.3836 to -2.3495, t4

ranged from 2.5992 to 3.5865, t5 ranged from -6.9519 to -5.4936,

and t6 ranged from -4.4867 to -2.8888 (Table 2). The same

parameter in different reexamination periods had the same trend

label, i.e., positive or negative. The coefficients of determination

were greater than 0.8.

The predicted data are shown in Table 2. The abundance data in

the table represent predicted values. The relative error is defined as

the difference between the predicted values and actual values

divided by the actual values. The actual values are shown in

Figure 3. In general, as the prediction horizon increases, the error

also increases. However, for the same prediction horizon, the

models in the first two periods (1989-1994 and 1994-1999)

exhibit significantly larger prediction errors compared to the

models in the subsequent four periods.
3.2 Prediction of species abundance limit

To analyze the ultimate trend of the models in each period, the

models were subjected to limit prediction. Figure 4 displays the

predicted limit values of species abundance for each period model.

It is evident that the timeline can be divided into two distinct

phases, with 1999 as the dividing point: two periods prior to 1999
TABLE 2 The parameters of the nonlinear differential equation model in each reexamination period.

Parameter 1989-1994 1994-1999 1999-2004 2004-2009 2009-2014 2014-2019

t1 0.7220 1.0682 0.8203 1.3904 1.1641 1.5110

t2 35.8226 20.4263 32.2185 42.8872 32.1222 33.1472

t3 -2.8635 -2.7597 -2.3495 -3.1068 -2.9822 -3.3836

t4 3.5865 2.7024 3.1429 2.5992 2.8834 2.8001

t5 -6.9519 -5.7101 -5.6925 -5.8867 -5.4936 -5.5520

t6 -4.4867 -3.8109 -3.3400 -3.1080 -2.9301 -2.8888

R2
1 0.9803 0.9203 0.9123 0.9298 0.9118 0.9117

R2
2 0.9695 0.8727 0.9150 0.9070 0.9071 0.9095

R2
3 0.9516 0.8180 0.8156 0.9014 0.9387 0.9581
Note that t1 , t2 , t3 , t4 , t5, t6 are the 6 parameters of the model in six reexamination periods, and R2
1, R

2
2 R

2
3 represent the coefficients of determination of these three groups of tree species, pine, fir

and broadleaf respectively.
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(1989-1994 and 1994-1999) and four periods following 1999 (1999-

2004, 2004-2009, 2009-2014, and 2014-2019). The former phase

exhibits significant fluctuations, whereas the latter phase shows

minimal variations.
3.3 Long-term prediction of species
abundance

Based on the preceding limit analysis, it is evident that the

trends of the models in the latter four periods are similar. In other

words, over the past 20 years, the changes in species abundance

have exhibited a consistent pattern. Now, a comparative analysis of

long-term predictions is conducted based on the models from these

four periods. Each period model predicts until the year 2119, with

the shortest prediction spanning 100 years (2019-2119) and the

longest prediction spanning 115 years (2004-2119) (Figure 5).

Based on the predicted trends, there is a significant decrease in

the abundance of pines, a decrease in firs, and a noticeable increase

in broadleaves. This trend is consistent with the field CFI data. The

trend lines of species abundance share a common characteristic:

lines ① and ② are the furthest apart, while lines ③ and ④ are closest

to each other and sandwiched between lines ① and ②. This indicates

that the two models from the first 10 years exhibit greater

fluctuations compared to the two models from the latter 10 years.

The patterns of species abundance have become increasingly stable

over the past 20 years.
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3.4 Interval estimation and hypothesis
testing

The interval estimation and hypothesis testing procedures for

the limit values of each period model are identical. Take the most

recent period (2014-2019) as an example. In our study, the

predicted values of the species abundance of broad-leaved trees

fluctuated significantly with the use of model one and model two,

while the predicted curves fluctuated less between model three and

model four. In addition, the difference in the predicted species

abundance of broad-leaved trees was the lowest (gray line one)

when model one was used. The number of plots, n, is 1712. The

model parameter T can be found in the last column of Table 3.

Table 4 presents the interval estimation results of species abundance

for pines, firs, and broadleaves based on the 2014-2019 model

obtained using the truncated normal distribution method.

The limit vector hypothesis testing results obtained using Eq.

(4) are presented in Table 5. Hypothesis 1: Y0*represents the trend

of the abundance of pines approaching zero, while there is no

change in the abundance of firs; Hypothesis 2: Y0*represents the

trend of the abundance of firs approaching zero, while there is no

change in the abundance of pines; Hypothesis 3: Y0*represents the

trend of the species abundance of both pines and firs approaching

zero. The results indicate that none of these three hypotheses can be

established. This indicates that despite both pines and firs tending

toward absolute disadvantage, their species abundance cannot

approach zero (i.e., extinction).
FIGURE 4

Estimation results of the limit value of the abundance of the pine, fir, and broad-leaved groups in each reexamination period (y-axis: the limit value
of the abundance of the species groups).
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TABLE 3 Comparison of relative prediction error of abundance in different reexamination periods.

The reexami-
nation periods

Predicting
year

Abundance
of the pine

group

Abundance
of the fir
group

Abundance
of the
broad-
leaved
group

Error in
abundance
of the pine
group (%)

Error in
Abundance
of the fir
group
(%)

Error in
Abundance
of the broad-
leaved group

(%)

1989-1994

1999 0.5623 0.2770 0.1607 7.03 -10.10 -3.49

2004 0.5564 0.2801 0.1636 31.48 -12.57 -36.24

2009 0.5542 0.2810 0.1648 60.76 2.67 -56.81

2014 0.5534 0.2810 0.1656 97.64 14.98 -65.18

2019 0.5530 0.2809 0.1661 144.33 22.47 -69.48

1994-1999

2004 0.4695 0.3461 0.1845 10.95 8.03 -28.10

2009 0.4520 0.3571 0.1908 31.12 30.51 -49.99

2014 0.4402 0.3666 0.1932 57.24 49.97 -59.38

2019 0.4315 0.3747 0.1938 90.66 63.38 -64.40

1999-2004

2009 0.3537 0.3079 0.3384 2.58 12.53 -11.32

2014 0.3065 0.3011 0.3924 9.46 23.20 -17.49

2019 0.2643 0.2926 0.4431 16.79 27.58 -18.60

2004-2009
2014 0.2768 0.2487 0.4745 -1.15 1.77 -0.23

2019 0.2221 0.2250 0.5529 -1.88 -1.89 1.58

2009-2014 2019 0.2295 0.2317 0.5388 1.42 1.02 -1.02
F
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Note that the abundance data are the predicted value, and the error is the relative error between the predicted value and the actual value. A positive number means that the predicted value is larger
than the actual value, while a negative number means that the predicted value is smaller.
FIGURE 5

The prediction of abundance of species groups in different reexamination periods (model 1: model based on the reexamination period, 1999-2004;
model 2: model based on the reexamination period, 2004-2009; model 3: model based on the reexamination period, 2009-2014; model 4: model
based on the reexamination period, 2014-2019).
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4 Discussion

4.1 Through limit analysis, hidden patterns
of variation can be revealed

The NDES model is developed based on the data of repeated

measurements of permanent plots. Therefore, the variation trend in

tree species abundance during the period of data collection

determines the overall trajectory of the model. Under the

assumption that the forest continues to develop according to the

current trend, the model is expected to provide stable and reliable

predictive performance. When the forest deviates from the current

trend of development, the model’s predictions will deviate from the

actual observations. This behavior is observed in nearly all models.

A good model is capable of consistently forecasting this trend

forward during predictions without experiencing significant biases

solely due to extrapolation. From Table 2, it can be observed that for

the same prediction timeframe, the models during the first two

periods (1989-1994 and 1994-1999) exhibit significantly larger

prediction errors compared to the models during the subsequent

four periods. This indicates that there may be distinct differences in

the patterns of species abundance variation between the first two

periods and the latter four periods. Consequently, the models

developed for the first two periods are not suitable for predicting

the latter four periods. During the latter four periods, the forest

exhibits a relatively consistent pattern of variation. As a result, the

models developed for this phase all yield favorable predictive

outcomes (refer to Table 2, Figure 5).

If the forest continues to develop steadily in a certain trend and

a model can consistently reflect this developmental trend, then the

theoretical limits of the model should reasonably reflect this trend.

The following discussion addresses this issue from the perspective

of limits. From Figure 3, it can be observed that the actual species

abundance exhibits gradual changes over time. The abundance of
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pines shows an absolute dominance starting in 1989, reaching its

peak value (0.5810) in 1994 and subsequently declining to gradually

become an absolute inferiority. For firs, the abundance fluctuated

upward from 1989 to 2004, reaching its peak (0.3203) in 2004 and

then decreasing, transitioning from moderate dominance to

absolute inferiority. The abundance of broadleaves maintained a

stable growth trend and surpassed that of both pines and firs in

2009, becoming dominant and expanding its dominance thereafter.

Despite significant changes over the 30-year period, there are no

abrupt shifts observed in between.

The trend of abundance limits depicted in Figure 4 is distinct

from the actual value trend shown in Figure 3. The limits

represent the ultimate state of abundance, which differs from

the current actual values and signifies the long-term trend of

abundance. From Figure 4, it can be observed that the limit

distribution can be divided into two distinct phases, with 1999

serving as the boundary. Before 1999, the limits of the models

during the periods of 1989-1994 and 1994-1999 exhibit

fluctuations. The limit for pines shows a significant decline but

remains in clear dominance along with firs. The limit for

broadleaves shows an upward trend, while the limit for firs

demonstrates a relatively rapid increase. This indicates that

during these two periods, there are distinct differences in the

trends of species abundance, and a stable pattern of variation has

not yet been established. After 1999, the limits of species

abundance for the four periods of 1999-2004, 2004-2009, 2009-

2014, and 2014-2019 demonstrated remarkable stability.

Throughout these periods, broadleaves consistently maintain

absolute dominance, while pines and firs consistently remain in

a state of absolute inferiority. This indicates that over the course of

the subsequent 20 years, although there have been significant

changes in the actual species abundance, the trend of these

changes has become stable and relatively consistent, remaining

within the same overall pattern. It can be observed that through
TABLE 4 The interval estimation results of the abundance for a single tree species group.

Species group 0.95% 0.99%

Lower limit Upper limit Lower limit Upper limit

Pine 0.0354 0.0461 0.0337 0.0478

Fir 0.0561 0.0723 0.0536 0.0749

Broadleaf 0.8847 0.9053 0.8815 0.9086
TABLE 5 Results of hypothesis testing of the abundance in three tree species groups.

Species group Y∞ Y 0
∞ (1) Y 0

∞ (2) Y 0
∞ (3)

Pine 0.0408 0 0.0408 0

Fir 0.0642 0.0642 0 0

Broadleaf 0.8950 0.9358 0.9592 1

F 112.54 122.95 204.56

Sig 0.000000 0.000000 0.000000
fron
Note that there are three scenarios (1) (1) represents scenario one, where the abundance of the pine group tends to zero and the fir group Y0
∞ (2)does not change(2); Y0

∞ represents scenario two,

where the abundance of the fir group tends to zero and the pine group (3)does not change(3); Y0
∞ represents scenario three, where the abundances of both the pine and the fir groups tend to zero.
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limit analysis using the NDES model, certain patterns of variation

can be revealed that may not be readily apparent. The NDES

model is capable of adequately simulating the trend of variation

and maintaining this trend consistently during long-term

predictions, as long as there are no significant changes in the

trend of forest tree species abundance. Therefore, the risks

associated with long-term prediction (extrapolation) are minimal.

The limit analysis reveals the ultimate state of tree species

abundance variation, while the interval analysis of the limits

indicates the potential range of variation for this ultimate state.

Although Figure 3 indicates a decreasing trend in the actual

abundance of pines and firs, the predictive figures in Figure 5 also

demonstrate the same pattern. However, the interval analysis of the

limits suggests that the probability of their abundance approaching

zero is nearly zero. In other words, while pines and firs may

perpetually remain in a state of absolute inferiority, they are

highly unlikely to go extinct.
4.2 Comparison with existing methods

In terms of model classification, the NDES model proposed in

this study is an empirical model, which fundamentally differs from

the category of gap model and ecological process model. In the

empirical modeling approach, the model proposed in this study

possesses its own unique structure, which is entirely distinct from

the models employed by Nikolova et al. (2019); Fort and Grigera

(2021), and others.

In terms of the number of tree species (groups) that the model

can simulate, the model proposed in this study is capable of

simulating only three tree species (groups), which is significantly

fewer compared to the models employed by Nikolova et al. (2019);

Fort and Grigera (2021), and others. However, the model proposed

in this study is designed to meet the practical needs of forest

management in the subtropical forests of China. It is capable of

fulfilling the application requirements in this specific context. From

an ecological research perspective, the model’s results can provide a

macroscopic understanding of the changes in tree species

composition within a large-scale forest region. The number of

difference equations in the model proposed in this study is equal

to the number of tree species (groups) under investigation. It is

evident that the model can be expanded according to the methods

provided in Appendix A to meet the research requirements

as needed.

The predicted tree species abundances from the NDES model

are constrained to be nonnegative and cannot exceed 1. The sum of

the abundances is guaranteed to be equal to 1. Such properties

enhance the stability of the model. The limits of the NDES model

effectively capture the trend of variation in the modeling data.

Therefore, a key application of the NDES model is to predict

potential future trends and ultimate states through limit analysis.

It is a big characteristic of the proposed model. Currently, there is

scarce literature reporting on such research.
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4.3 Analysis of the driving forces behind
changes in forest tree species abundance
in Zhejiang Province

The primary forest plant community in Zhejiang Province is

characterized by evergreen broad-leaved forests. However, prolonged

anthropogenic activities have led to significant degradation of these

forests in most areas, resulting in the emergence of substantial

secondary forests, primarily dominated by Masson’s pine, and mixed

coniferous and broad-leaved secondary forests. In recent decades, the

province has experienced economic development, a reduced

dependence on forest-based economies, and an increased awareness

of forest conservation, which has facilitated rapid forest recovery. The

decrease in coniferous tree populations is attributed to the prevalence of

pine wilt disease and fluctuations in timber prices. This reduction in

coniferous trees has created ecological opportunities for the growth of

broad-leaved species. Broad-leaved trees typically exhibit greater shade

tolerance compared to conifers, leading to an increase in forest density.

Rising labor costs have resulted in reduced forest management

intensity, further contributing to increased forest density. When

forest density reaches a certain threshold, strong shade-intolerant

tree species such as pines and firs are outcompeted by broad-leaved

species, leading to increased mortality. Under these circumstances,

even in the absence of other influencing factors, the proportion of

coniferous trees is expected to decline. These factors have resulted in

the forest ecosystem of Zhejiang Province undergoing a forest

succession process that closely approximates a natural state.

Therefore, over the past 20 years, the species composition of forests

in Zhejiang Province hasmaintained a fundamentally similar trend and

has become increasingly stable. Among the four predicted curves in

Figure 5 for the most recent four periods, curve ① from 1999-2004 and

curve ② from 2004-2009 are far apart, while curve ③ from 2009-2014

and curve ④ from 2014-2019 are closer to each other, indicating a

diminishing fluctuation between the curves. These circumstances

indicate that over the past few decades, the changes in Zhejiang

Province’s forests have primarily been driven by economic

development and an increased awareness of conservation. The

spread of pine wilt disease and fluctuations in timber prices have

accelerated these changes. Once these changes reach a certain

threshold, natural succession becomes the dominant driving force.
5 Conclusions

Due to various reasons, pine and fir tree species in Zhejiang

Province have been consistently decreasing, and this trend is

expected to persist over the long term. The fir group shifted from a

relative advantage to an absolute disadvantage. They will perpetually

remain at an absolute disadvantage but will never go extinct. As the

Climax community in subtropical forests is characterized by evergreen

broad-leaved forests, the observed changes in forest tree species

composition over the past few decades conform to the natural

succession patterns of subtropical forests.
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The nonlinear difference equation system (NDES) model

proposed in this paper is suitable for simulating and predicting

the forest tree species composition in the macroscopic region of

subtropical China. It not only enables short-term, medium-term,

and even long-term predictions but also allows in-depth exploration

of currently obscure trends and their stability in forest tree species

composition through limit analysis of the model. The application of

the model can provide a basis for the development of sustainable

forest management measures.
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Pelissari, A. L., Figueiredo Filho, A., Péllico Netto, S., Ebling, A. A., Roveda, M., and
Sanquetta, C. R. (2017). Geostatistical modeling applied to spatiotemporal dynamics of
successional tree species groups in a natural Mixed Tropical Forest. Ecol. Indic. 78, 1–7.
doi: 10.1016/j.ecolind.2017.02.044

Peng, S.-L., Hou, Y.-P., and Chen, B.-M. (2010). Establishment of Markov
successional model and its application for forest restoration reference in Southern
China. Ecol. Modell. 221, 1317–1324. doi: 10.1016/j.ecolmodel.2010.01.016
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Appendix A. Derivation process of the
nonlinear difference equation model
for the abundance of the tree
species group

The base model of the abundance of the tree species groups is

set as the following exponential model:

y11 = a10e
a11y10+a12y20+a13y30

y21 = a20e
a21y10+a22y20+a23y30

y31 = a30e
a31y10+a32y20+a33y30

8>><
>>:

A� Eq: (1)

where y10, y20, and y30 represent the early abundances of the

pine, fir and broad-leaved groups, respectively; y11, y21, and y31
represent the late stage; y11 + y21 + y31 = 1; y10 + y20 + y30 = 1; and

0≤y11, y21, y31, y10, y20, y30 ≤ 1 must be satisfied. a10, a11, a12, a13,

a20, a21, a22, a23, a30, a31, a32, and   a33are the 12 parameters of the

model. Since   y11 + y21 + y31 = 1, that is:

a10e
a11y10+a12y20+a13y30 + a20e

a21y10+a22y20+a23y30 + a30e
a31y10+a32y20+a33y30

= 1 must be satisfied, and Equation A-Eq. (1) is adjusted to a

proportional model:

y11 =
a10e

a11y10+a12y20+a13y30

a10ea11y10+a12y20+a13y30 +a20ea21y10+a22y20+a23y30 +a30ea31y10+a32y20+a33y30

y12 =
a20e

a21y10+a22y20+a23y30

a10ea11y10+a12y20+a13y30 +a20ea21y10+a22y20+a23y30 +a30ea31y10+a32y20+a33y30

y13 =
a30e

a31y10+a32y20+a33y30

a10ea11y10+a12y20+a13y30 +a20ea21y10+a22y20+a23y30 +a30ea31y10+a32y20+a33y30

8>>>><
>>>>:

A� Eq: (2)

A-Eq. (2) is reduced to:

y11 =
1

1+(a20=a10)e(a21−a11)y10+(a22−a12)y20+(a23−a13)y30 +(a30=a10)e(a31−a11)y10+(a32−a12)y20+(a33−a13)y30

y21 =
1

(a10=a20)e(a11−a21)y10+(a12−a22)y20+(a13−a23)y30 +1+(a30=a20)e(a31−a21)y10+(a32−a22)y20+(a33−a23)y30

y31 =
1

(a10=a30)e(a11−a31)y10+(a12−a32)y20+(a13−a33)y30 +(a20=a30)e(a21−a31)y10+(a22−a32)y20+(a23−a33)y30 +1

8>>><
>>>:

A� Eq: (3)

Let

k1 = a20=a10,  k2 = a30=a10,  a30=a20 = k2=k1

k3 = a21 − a11,  k4 = a22 − a12,  k5 = a23 − a13,  

k6 = a31 − a11,  k7 = a32 − a12,  k8 = a33 − a13

8><
>: A� Eq: (4)
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According to Eq. (4), we can obtain:

a11 − a21 = −k3,  a12 − a22 = −k4,  a13 − a23 = −k5

a31 − a21 = (a31 − a11) − (a21 − a11) = k6 − k3

a32 − a22 = (a32 − a12) − (a22 − a12) = k7 − k4

a33 − a23 = (a33 − a13) − (a23 − a13) = k8 − k5

a11 − a31 = −k6,  a12 − a32 = −k7,  a13 − a33 = −k8

a21 − a31 = k3 − k6,  a22 − a32 = k4 − k7,  a23 − a33 = k5 − k8

8>>>>>>>>>>><
>>>>>>>>>>>:

A� Eq: (5)

Then, Eq. (3) can be rewritten as:

  y11 =
1

1+k1ek3y10+k4y20+k5y30 +k2ek6y10+k7y20+k8y30

y21 =
1

(1=k1)e−k3y10−k4y20−k5y30 +1+(k2=k1)e(k6−k3)y10+(k7−k4)y20+(k8−k5)y30

y31 =
1

(1=k2)e−k6y10−k7y20−k8y30 +(k1=k2)e(k3−k6)y10+(k4−k7)y20+(k5−k8)y30 +1

8>>><
>>>:

A� Eq: (6)

According to y10 + y20 + y30 = 1, the elimination of y30gives:

  y11 =
1

1+k1ek5+(k3−k5)y10+(k4−k5)y20 +k2ek8+(k6−k8)y10+(k7−k8)y20

y21 =
1

(1=k1)e−k5+(k5−k3)y10+(k5−k4)y20 +1+(k2=k1)e(k8−k5)+(k6−k3−k8+k5)y10+(k7−k4−k8+k5)y20

y31 =
1

(1=k2)e−k8+(k8−k6)y10+(k8−k7)y20 +(k1=k2)e(k5−k8)+(k3−k6−k5+k8)y10+(k4−k7−k5+k8)y20 +1

8>>><
>>>:

A� Eq: (7)

Let k1e
k5 = t1,  k2e

k8 = t2,  k3 − k5 = t3,  k4 − k5 = t4, k6 − k8 = t5,

 and k7 − k8 = t6; then, the final result is:

 y11 =
1

1+t1et3y10+t4y20 +t2et5y10+t6y20

y21 =
1

(1=t1)e−t3y10−t4y20 +1+(t2=t1)e(t5−t3)y10+(t6−t4)y20

y31 =
1

(1=t2)e
−t5y10−t6y20 +(t1=t2)e

(t3−t5)y10+(t4−t6)y20 +1

8>>><
>>>:

A� Eq: (8)

A-Eq. (8) is Eq. (1). The derivation shows that t1 and t2 must be

greater than zero.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1280126
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Simulation and prediction of changes in tree species composition in subtropical forests of China using a nonlinear difference equation system model
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Experimental design and data preprocessing
	2.3 Nonlinear difference equation system model
	2.4 Prediction of species abundance limits, interval analysis and hypothesis
	2.5 Long-term prediction of tree species abundance

	3 Results
	3.1 Model parameter estimation results and the actual prediction accuracy
	3.2 Prediction of species abundance limit
	3.3 Long-term prediction of species abundance
	3.4 Interval estimation and hypothesis testing

	4 Discussion
	4.1 Through limit analysis, hidden patterns of variation can be revealed
	4.2 Comparison with existing methods
	4.3 Analysis of the driving forces behind changes in forest tree species abundance in Zhejiang Province

	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	References
	Appendix A. Derivation process of the nonlinear difference equation model for the abundance of the tree species group




