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Comprehensive insights
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synergistic integration
of transcriptomic and
metabolomic analyses
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Omics techniques, including genomics, transcriptomics, proteomics, and

metabolomics have smoothed the researcher’s ability to generate hypotheses

and discover various agronomically relevant functions and mechanisms, as well

as their implications and associations. With a significant increase in the number of

cases with resistance to multiple herbicide modes of action, studies on herbicide

resistance are currently one of the predominant areas of research within the field

of weed science. High-throughput technologies have already started

revolutionizing the current molecular weed biology studies. The evolution of

herbicide resistance in weeds (particularly via non-target site resistance

mechanism) is a perfect example of a complex, multi-pathway integration-

induced response. To date, functional genomics, including transcriptomic and

metabolomic studies have been used separately in herbicide resistance research,

however there is a substantial lack of integrated approach. Hence, despite the

ability of omics technologies to provide significant insights into the molecular

functioning of weeds, using a single omics can sometimes be misleading. This

mini-review will aim to discuss the current progress of transcriptome-based and

metabolome-based approaches in herbicide resistance research, along with

their systematic integration.
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1 Introduction

Herbicide resistance among weeds has become a major reason

for food security problems since the early years of synthetic

herbicide development. Since then, there has been a continuous

increase in the frequency of herbicide resistance cases, a major plant

protection challenge encountered by farmers across the planet.

Herbicides have been used to control weeds and increase the

quality and quantity of major crops since their discovery.

However, repeated use of similar herbicidal modes of action

(MOAs) and the associated selection pressure have led to the

evolution of herbicide resistance in varieties of economically

important weedy species such as Alopecurus myosuroides (Lan

et al., 2022; Goldberg-Cavalleri et al., 2023), Amaranthus palmeri

(Manicardi et al., 2023), Apera spica venti (Kosňarová et al., 2021;

Papapanagiotou et al., 2022), Bromus sterilis (Sen et al., 2021),

Lolium spp (Tehranchian et al., 2019; Ma et al., 2020; Zhu et al.,

2023). Recent studies showed that the majority of these weeds were

also developing multiple resistances against herbicides with more

than one mode of action (Tehranchian et al., 2019; Ma et al., 2020;

Kosňarová et al., 2021; Lan et al., 2022; Papapanagiotou et al., 2022;

Zhu et al., 2023). From a molecular point of view, herbicide

resistance mechanisms might be categorized into target-site based

resistance (TSR) and non-target-site based resistance (NTSR)

(Torra and Alcántara-de la Cruz, 2022). Briefly, TSR comprises

single or multiple nucleotide polymorphisms (point mutations),

codon deletion (till date there is only one evidence in the case of

protoporphyrinogen oxidase in Amaranthus sp.) and target gene

overexpression (either via transcriptional regulatory mechanisms or

via gene amplification) (Gaines et al., 2020). On the other hand,

NTSR constitutes enhanced metabolism [via cytochrome

P450s (Cyp450s), glutathione S-transferases (GSTs) and

glycosyltransferases (GTs)], reduced uptake and translocation,

vacuolar sequestration and increased ability to deal with oxygen

radicals (Gaines et al., 2020). More details on these mechanisms can

be found in Gaines et al., 2020. Reports show that the NTSR is more

complicated and trickier to understand than the TSR (Jugulam and

Shyam, 2019). Nevertheless, irrespective of the specific resistance

mechanism, herbicide-resistant weeds, if left uncontrolled, will pose

a significant threat to the global agricultural sector.

High-throughput molecular technologies (such as genomics,

proteomics, metabolomics, transcriptomics etc.) have the potential

to offer great analytical opportunities to understand and identify the

mechanisms of herbicide resistance, thus leading to the

identification of novel herbicidal MOAs (Ravet et al., 2018).

Development of herbicide resistance in weeds is similar to that of

abiotic stress resistance development in plants and can provide

insights into the stress resistance mechanisms in plants in general

(Hamouzová et al., 2023). Even though during the last decade,

continuous progress has been made in the field of DNA, RNA, and

protein-based omics studies in herbicide resistance, substantial

research areas are yet to be explored. Additionally, to our

knowledge, inadequate initiatives have been taken to integrate

multiple omics-based studies to elucidate the mechanisms of

herbicide resistance in economically significant weeds. Hence, in
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this mini-review, we will confine our discussion to transcriptomics,

metabolomics and the need for their systematic integration to

unravel the molecular mechanisms of herbicide resistance in

weeds. The transcriptome and metabolome represent two key

layers of biological information that can provide novel insights

into how weeds develop resistance against herbicides. While

transcriptomics provides a global overview on the expression

profile of the genes, metabolomics provides a global overview on

metabolic pathways and their regulation (Maroli et al., 2018a).

2 Weeds’ response to herbicide stress:
effects of herbicide stress on weeds’
metabolic pathways and relevant
genes involved

Among the metabolic pathways, the most important ones are

carbohydrate metabolism, amino acid metabolism, polyamine

metabolism, and lipid metabolism (Arbona et al., 2013).

Carbohydrate metabolism is directly linked to photosynthetic

performance and is the primary source of energy during stressful

periods. Photosystem inhibitors such as atrazine, chlorotoluron and

metribuzin are known to be involved in the disruption of the light-

capturing reactions and electron transport chain in chloroplasts.

These herbicides inhibit the production of ATP and NADPH (via

competitive binding to the plastoquinone binding site (QB) on the

D1 protein, which is encoded by the PsbA gene), which eventually

affects carbohydrate metabolism in the weeds (Ma et al., 2020;

Kosňarová et al., 2021; Yang et al., 2022a). As of 2022 (according to

https://www.weedscience.org/Home.aspx, accessed on July 23rd,

2023), 87 cases of resistance against PSII-inhibiting herbicides

have been reported globally. Mutations in the PsbA gene and

increased target gene and/or protein expression were identified as

the mechanisms of resistance (Kosňarová et al., 2021; Yang et al.,

2022b). Besides interfering with the electron transport chain,

herbicides can also have adverse effects on starch accumulation,

sucrose transport and plant’s respiration process, which eventually

will affect carbohydrate metabolism pathways. In addition to these,

accumulation of sugars with no energetic roles (such as

oligosaccharides) has also been detected in several plant species,

as a response to abiotic stresses. These compounds are well-known

for their indirect associations with reactive oxygen species (ROS)

scavenging (Arbona et al., 2013). ROS scavenging is a vital

mechanism while preventing oxidative stress and associated

cellular damage. In the context of herbicide resistance,

metabolism of herbicides via metabolic enzymes leads to

oxidative stress within the weed. In answer to this, resistant weeds

activate enzymes such as superoxide dismutase, catalase, and

peroxidases and perform ROS scavenging, which eventually

provides them survival advantages over their susceptible

counterparts. However, very few such research on herbicide

resistant-weeds have been conducted till date. Apart from

carbohydrate metabolism, amino acid and lipid metabolism are

also significant metabolic pathways. Acetolactate synthase and 5-

enolpyruvylshikimate-3-phosphate synthase are among the most
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important enzymes involved in amino acid metabolic pathways and

targeted by commercially important herbicides (Tan et al., 2006).

Both of these enzymes are involved in the synthesis of aromatic

amino acids (phenylalanine, tyrosine, and tryptophan). These

amino acids play important roles during protein synthesis as well

as in the production of various plant defense-related secondary

metabolites. Among the important enzymes involved in fatty acid

metabolism targeted by herbicides is Acetyl-CoA carboxylase

(ACCase). ACCase plays a critical role in fatty acid synthesis

(Takano et al., 2020). During stress periods, lipids play vital roles,

which includes membrane fluidity and integrity, as signaling

molecules and oxidative stress management (Liu et al., 2019).
3 Integrated transcriptomics-
metabolomics: understanding the
adaptation, tolerance, and resistance
in plants

In the era of systems biology research, biological processes and

gene regulatory networks can be dynamic and hard to interpret.

Advanced omics technologies such as metabolomics and

transcriptomics, have contributed significantly to explicating the

molecular mechanisms of plant responses to different stresses. In

the last few decades, information derived from next-generation

sequencing technologies paired with advanced statistical and

computational approaches has allowed for the characterization of

genes involved in plant abiotic stress (Mehta et al., 2019; Sahoo

et al., 2020; Aruna Kumara and Thiruchchelvan, 2021). Previously,

thorough characterization of genes involved in stress responses was

limited to crops and model systems because of the requisite

genomic resources, but recent advancements permit the study of

non-model species such as weeds. Despite challenges like the

development of suitable methods and pipelines, RNA-seq

transcriptome sequencing has been extensively used for the

identification of gene families involved in herbicide resistance,

particularly the NTSR (Zhao et al., 2017; Bai et al., 2020; Chen

et al., 2021). Till date, there are many evidence of the use of

transcriptomics and metabolomics in herbicide-resistance

research. While transcriptomics can identify the differentially

expressed genes, the metabolites are the ultimate result of

controlled gene transcription and hence the metabolome can be

considered the basis of the system’s observed phenotype. In the

study conducted by Wrzesińska-Krupa et al., the authors used a de

novo transcriptome of Apera spica-venti to perform RNA-

sequencing analysis of pinoxaden-resistant and susceptible plants.

They identified several important genes responsible for herbicide

resistance, such as isoforms of UDP-GTs and GSTs (along with

others) as the prime candidate genes (Wrzesińska-Krupa et al.,

2023). In another study, the authors used a comparative RNA-seq

transcriptomic approach to understand how florpyrauxifen-benzyl

treatment can affect phytohormone biosynthesis and signal

transduction in resistant and susceptible Echinochloa crus-galli

(L.) P. Beauv (Jin et al., 2023). Zhao et al., used transcriptome

profiling and identified twenty-four contigs (including isoforms of
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CytP450s, GSTs, GTs, ABC-transporters, and others) involved in

mesosulfuron-methyl resistance in Alopecurus aequalis (Zhao

et al., 2017).

In addition to the RNA-seq studies, metabolomics has also been

used in herbicide-resistance studies. The metabolome refers to the

complete set of metabolites present within a biological sample. Even

though the metabolome represents the smallest domain (among

genome, transcriptome, proteome, and metabolome), it is more

chemically complex and diverse than its counterparts (Kumar et al.,

2017). In the context of understanding herbicide resistance in

weeds, the metabolome can provide additional information since

it represents additional levels of regulation as well as the end

products of regulatory processes (Boonchaisri et al., 2020). For

example, in the study conducted by Zulet-Gonzalez et al., the

authors used non-targeted gas chromatography-mass

spectrometry (GC-MS) and liquid chromatography–mass

spectrometry (LC–MS) metabolomic profiling and examined the

phytotoxic effects of glyphosate on sensitive and resistant

populations of Amaranthus palmeri S. Wats. They didn’t find any

differences in the metabolic profiles in the absence of herbicide

treatment. However, upon treatment with glyphosate, they detected

reduced concentrations of quercetin and its derivatives only in the

resistant plants (Zulet-Gonzalez et al., 2023). In another study

conducted by Tafoya-Razo et al., the authors conducted metabolic

fingerprinting of susceptible and resistant common Avena fatua L.

populations using Desorption Electrospray Ionization-Mass

Spectrometry (DIESI-MS). The authors found that metabolomic

fingerprinting can be successfully used to study the diversities of

herbicide-resistance mechanisms, which can be used to study the

“geographic mosaic of resistance” (Tafoya-Razo et al., 2022). From

the perspective of NTSR mechanisms, metabolites can regulate the

constitutive and induced expression of Cyp450s, GSTs, and GTs,

thus leading to modulation of their activities during herbicide stress.

In a different way, metabolites can also regulate the expression of

the NTSR genes by altering the chromatin structure of the gene’s

regulatory regions. To date, such studies are yet to be conducted.

Comparative metabolomics among the treated and untreated

resistant and susceptible plants will enable us to discover the

detailed metabolites that are involved in herbicide detoxification,

along with determining their relative abundance and activities.

Table 1 summarizes the list of transcriptomics and metabolomics-

based research works related to herbicide sensitivities.

It is a well-known fact that, within a biological system,

transcript abundance does not always translate to protein

abundance due to several biological and technical factors. These

factors might include post-transcriptional and translational

regulatory factors, mRNA stability, protein degradation and

turnover, etc. Additionally, even if a protein is formed, it may not

inevitably be functional (Liu et al., 2016; Manavella et al., 2023). In

this context, correlating the transcriptome and the proteome might

be misleading. Therefore, we strongly advise systematically

integrating the transcriptome and metabolome data instead.

However, it is important to note that post-translational

modifications (such as phosphorylation and acetylation) cannot

be identified through transcriptomics and metabolomics alone. In

such cases, mounting up more data (from other omics such as
frontiersin.org
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TABLE 1 Some important transcriptomics and metabolomics-related research works identified in major weedy species.

Approach
Herbicide
active

ingredients

Weed
species

Short description Reference

Transcriptomics

Clodinafop-
propargyl Polypogon

fugax

The present study compared ACCase-resistant to ACCase-sensitive P. fugax by
transcriptomics. The authors found differentially expressed unigenes related to ACCase-
resistant in P. fugax.

Zhou et al.,
2017

Fenoxaprop-P-
ethyl

Transcriptomic profiling identified 28 detoxifying enzyme genes which are herbicide-
induced upregulated in the resistant biotype than the susceptible biotype.

Zhao et al.,
2022a

Cyhalofop-butyl
Leptochloa
chinensis

Transcriptome analysis has been employed to identify candidate genes that may be involved
in cyhalofop-butyl tolerance. This analysis identified three cytochrome P450 genes and three
ATP-binding cassette transporter genes.

Chen et al.,
2021

2,4-D
dimethylamine
salt, dicamba
diglycolamine
salt, halauxifen-

methyl

Erigeron
canadensis

The study of transcriptomics used in Erigeron canadensis to auxin herbicide application
revealed that auxin herbicide application enhanced the expression of the key abscisic acid
biosynthetic gene which led to a rapid biosynthesis of abscisic acid (ABA) causing plant
death.

McCauley
et al., 2020

Fenoxaprop-P-
ethyl,

chlorotoluron, Alopecurus
myosuroides

From the transcriptome data of the present study two AmGSTF1 variants were identified
which were functionally linked to NTSR and enhanced herbicide metabolism.

Franco-Ortega
et al., 2021

Fenoxaprop,
pendimethalin

Transcriptomics study has been used to investigate the evolution of MHR in populations of
the weed blackgrass. The results found over 4500 genes showed perturbation in their
expression in MHR versus herbicide-sensitive (HS) plants.

Tétard-Jones
et al., 2018

Florpyrauxifen-
Benzyl

Echinochloa
crus-galli

Comparative transcriptomic analysis of florpyrauxifen-benzyl treatment on phytohormone
transduction between resistant and susceptible plants found a stronger auxin response and
higher expression of related genes involved in ethylene and abscisic acid biosynthesis in S
biotypes and signal transduction after herbicide treatment and also brassinolide receptor
gene was upregulated and higher expressed in S biotype.

Jin et al., 2023

Flucarbazone Avena fatua

Transcriptome has been used to compare constitutive changes in multiple-herbicide
resistance and herbicide-susceptible Avena fatua associated with non-target site resistance.
The findings promote that intensive use of the herbicide has been selected for MHR
populations with altered, constitutively regulated patterns of gene expression that are similar
to abiotic stress-tolerant plants.

Keith et al.,
2017

Glufosinate
Amaranthus
palmeri

Transcriptome analysis of A. palmeri plants have been done with differential tolerance to
glufosinate herbicide. The results identified 567 differential expressed genes between
sensitive and treated biotypes. 210 genes were highly induced in the treated T biotype than
in the S biotype.

Salas-Perez
et al., 2018

Glyphosate

Eleusine indica

RNA-seq study was performed to investigate the glyphosate resistance mechanism in
Eleusine indica. Research findings confirmed that two UniGenes (PFK, EPSPS) were strongly
associated with target-site resistance, and two GST-annotated UniGenes may play a role in
metabolic glyphosate resistance in goosegrass.

Chen et al.,
2017

Conyza
bonariensis

The present RNA-Seq study was performed with the goal of identifying differentially
expressed candidate genes related to non-target site glyphosate resistance in C. bonariensis.
The present study revealed 41 new candidate NTSR genes in addition to two genes coding
for antioxidant enzyme catalase, peroxidase, and superoxide dismutase.

Piasecki et al.,
2019

Mesosulfuron-
Methyl

Alopecurus
aequalis

This is the first large-scale transcriptome-sequencing study to identify NTSR genes in A.
aequalis that uses the Illumina platform. This work demonstrates that NTSR is likely driven
by the differences in the expression patterns of a set of genes.

Zhao et al.,
2017

Researchers identified four potential herbicide metabolism-related genes (CYP709C56,
CYP71R18, CYP94C117, and CYP94E14) by transcriptional analysis which have higher
expressions in the resistant plant.

Zhao et al.,
2022b

Aegilops
tauschii

Transcriptomics has been used to investigate non-target-site resistance. The result showed
that cytochrome P450s and GSTs involved in enhanced mesosulfuron-methyl metabolism in
A. tauschii.

Zhang et al.,
2022a

Beckmannia
syzigachne

Two ATP-binding cassette (ABC) transporter genes (ABCB25 and ABCC14) were found
upregulated in the R population by RNA-sequencing.

Wang et al.,
2021

Mesotrione

(Continued)
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proteomics and genomics) can boost our understanding of

biological complexities and minimize bias. To date, even though

there is a lack of research on using the transcriptome and

metabolome data for integrated analysis in herbicide resistance

research, a few such studies have been conducted in other plants.

For example, in a study conducted by Xu et al. (2023a), the authors
Frontiers in Plant Science 05
combined transcriptome and metabolome data from two

contrasting apple species (cold-resistant vs cold-sensitive

cultivars) to identify the key metabolic pathways involved in

response to cold stress. They identified differentially expressed

genes (DEGs) and differentially expressed metabolites (DEMs),

which provided novel insights into the mechanisms of cold
TABLE 1 Continued

Approach
Herbicide
active

ingredients

Weed
species

Short description Reference

Amaranthus
tuberculatus

RNA-sequence analysis indicated that the response of HPPD-herbicide against resistant and
susceptible genotypes is rapid and established as soon as 3 hours after herbicide treatment.

Kohlhase
et al., 2019

Pinoxaden
Apera spica-

venti

The results obtained from RNA-sequencing analysis showed the prime candidate genes
responsible for herbicide resistance such as those encoding 3-ketoacyl-CoA synthase 12-like,
UGT75K6, UGT75E2, UGT83A1-like, GSTU1, and GSTU6.

Wrzesińska-
Krupa et al.,

2023

Tribenuron-
methyl

Myosoton
aquaticum

Transcriptome analysis was performed to identify candidate genes involved in the metabolic
resistance of Myosoton aquaticum. Four genes CYP734A1, CYP76C1, CYP86B1, and
ABCC10 were identified which could play an essential role in the metabolic resistance of the
NTSR mechanism.

Liu et al., 2018

Trifloxysulfuron Poa annua
The present transcriptomic study revealed differential gene expression associated with
transmembrane transport and oxidation–reduction activities responsible for non-target site
resistance in Poa annua.

Laforest et al.,
2021

Metabolomics

Clodinafop–
propargyl

Avena fatua

Metabolic fingerprinting analysis was used to examine the changes in the metabolome of
Avena fatua L. exposed to a gradient of the recommended dose of clodinafop-propargyl,
which shows that even a 10,000-fold dilution of the recommended dose could induce a
significant change in the plant’s metabolism and this change is permanent over the
biological cycle

Tafoya-Razo
et al., 2019

Metabolic fingerprinting has been done using DIESI-MS to determine the metabolic
expression of the populations. Researchers found four different metabolic expression
patterns.

Tafoya-Razo
et al., 2022

Pinoxaden,
mesosulfuron-

methyl

The metabolic fingerprint of double herbicide resistant Avena fatua showed that the biotype
had a markedly different metabolic pattern under control conditions and that this difference
was accentuated after herbicide treatment.

Torres-Garcıá
et al., 2018

Glufosinate
Stenotaphrum
secundatum

GC–MS based untargeted metabolomics study has been done to assess the delayed response
of glufosinate treatment of transgenic herbicide-resistant buffalo grasses. The authors found
significant metabolic alterations in the sensitive wild type, with the up-regulation of several
amino acids due to glufosinate-induced senescence.

Boonchaisri
et al., 2020

Glyphosate

Amaranthus
palmeri

The specificity of metabolic perturbations induced by glyphosate has been investigated on
resistant and susceptible Amaranthus palmeri. The study found that the phytochemical
responses are stress-specific rather than biotype-specific.

Sandhu et al.,
2023

Non-targeted GC–MS and LC–MS metabolomic profiling was conducted to examine the
innate physiology and the glyphosate-induced perturbations in sensitive and resistant
biotypes. The results found that the lethality associated with an amino acid pool imbalance
and accumulation of the metabolites of the shikimate pathway upstream from 5-
enolpyruvylshikimate-3-phosphate synthase.

Zulet-
Gonzalez
et al., 2023

Ipomoea
lacunosa

Metabolomic profiling was conducted to examine the innate physiology and the glyphosate
induced perturbations in two biotypes of I. lacunosa that had contrasting glyphosate
tolerance. They found that abundance of transport-sugar and amino acid is playing major
role for glyphosate sensitivity.

Maroli et al.,
2018b

Pyraclonil,
fentrazamide,
benzobicyclon,
propyrisulfuron,
imazosulfuron

Schoenoplectus
juncoides

Non-targeted and targeted metabolomics was performed using ALS inhibitor treated
Schoenoplectus juncoides and they identified internal metabolite markers for ALS inhibition,
with excellent selectivity for ALS inhibitors and herbicides with different MOAs in various
weed species.

Hikosaka
et al., 2021

Syncarpic acid-3
Amaranthus
tuberculatus

A LC-MS-based untargeted metabolomics was conducted in Amaranthus tuberculatus and
authors found that Phase I metabolite, generated by cytochrome P450-mediated alkyl
hydroxylation, was detected but was not associated with resistance. A Phase II glutathione–
SA3 conjugate was associated with resistance.

Concepcion
et al., 2021
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resistance in apple trees in response to cold stress during dormancy

(Xu et al., 2023a). In another study conducted in 2023, the authors

used integrated transcriptomic-metabolomic analysis to investigate

the possible roles of flavonoids involved in resistance to powdery

mildew in wheat. They identified DEGs and differentially

accumulated flavonoids and validated them using qRT-PCR and

biochemical analyses (flavonoids and malondialdehyde content

measurements, antioxidant enzyme activities), respectively (Xu

et al., 2023b).

Similarly, among the herbicide resistance mechanisms, NTSRs

are always believed to be a cumulative effect of several gene families

(Ghanizadeh and Harrington, 2017). Hence, the transcriptome can

only identify the expression of the important genes, which is often

inadequate when studying the weeds as a system. Additionally, the

relationship between metabolite and transcript levels might go

beyond merely the fact that gene expression affects the global

metabolite levels. Alternatively, gene expression might also be

regulated by the metabolites, indicating an interconnection

between the two (Anjali et al., 2023). Apart from the functional

prediction of genes and coexpression analyses, integrated

transcriptome-metabolome can also be used to analyze the

organizational principle of the whole system (such as systems

characterization of pathways) (Xue et al., 2021). In the current

scenario, correlating the transcriptome and the metabolome data

might allow us to discover the key genes and the metabolic

pathways associated with the herbicide resistance in the system.

Parallel analysis of transcript and metabolite profiling can expose

novel gene-to-metabolite networks and hence can realistically

screen candidate genes involve in herbicide resistance (for

example, exactly which isoforms of Cyp450s or GSTs or GTs)

(Fukushima et al., 2009; Nakabayashi and Saito, 2015). Currently,

there are quite a few comprehensible gene-coexpression tools that

are specifically designed for plant genomics research. Some of them

include Arabidopsis Coexpression Tool (ACT), Arabidopsis

thaliana transcription factor and protein interaction database

(ATTED-II), Genevestigator, Co-expression Platform (CoP),

PlantPAN 3.0 and GENEVESTIGATOR V4 (Nakabayashi and

Saito, 2015; Zogopoulos et al., 2021). Apart from the mentioned

comprehensible gene-coexpression tools, there are also several

publicly available tools and software platforms that could assist in

the parallel analysis of transcriptome and metabolome data. Such

tools include MetaboAnalyst (current version: MetaboAnalyst 5.0),

GEMINI (Gene Expression and Metabolism Integrated for Network

Inference), Plant MetGenMAP, mixOmics, etc. MetaboAnalyst

(https://www.metaboanalyst.ca/MetaboAnalyst/home.xhtml) is a

user-friendly web-based platform designed exclusively for

metabolomics data analysis that offers a wide range of

capabilities, from raw MS spectra processing to comprehensive

data normalization and integration with other omics data (Pang

et al., 2022). Plant MetGenMAP (http://bioinfo.bti.cornell.edu/cgi-

bin/MetGenMAP/home.cgi) is a web-based system that allows the

user to identify the changed pathways from gene expression and/or

metabolite profile data. This system enables data visualization in a

biochemical pathway context (Joung et al., 2009). GEMINI is a

software tool designed to infer regulatory networks that connect

genes and metabolites, and hence can be considered as an important
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tool for the integrated analysis of transcriptomics and

metabolomics data (Chandrasekaran, 2019). mixOmics is a

collaborative R package-based project (between Australia, France,

and Canada) that focuses on multi-omics data integration. This tool

can be used for integrative analysis of transcriptomics and

metabolomics data, with a special emphasis on dimension

reduction (Rohart et al., 2017). Figure 1 describes a schematic

framework of the experimental design based on integrated

transcriptomics and metabolomics in weeds. Following the

analysis of individual transcriptome and metabolome data,

statistical and bioinformatic techniques, such as correlation

analysis, can be used to integrate them. The coexpression of genes

and the production of metabolites can be measured by different

types of correlation coefficients such as Pearson correlation

coefficient (r), Spearman rank correlation (r), Kendall’s Tau (t)
and weighted gene coexpression network analysis (WGCNA). For

example, in a study conducted by Yang et al., the authors had used

Pearson correlation coefficients and their corresponding p-values to

discover metabolites and related genes from a combined

metabolomic and transcriptomic analysis (Yang et al., 2022b). In

another study conducted by Zhang et al., the authors had

successfully identified key structural genes responsible for

anthocyanin biosynthesis mechanisms in Vaccinium corymbosum

L. using integrated transcriptome and metabolome analysis. They

had also used Pearson correlation coefficient values for screening

out the genes of interest (Zhang et al., 2022b). In the context of

herbicide resistance mechanism discovery, these tools can be used

to assess how changes in gene expression levels correspond to

variations in metabolite abundances, and vice versa. Based on the

integration results, the genes showing significant correlations with

specific metabolites can be identified. Prior knowledge of metabolic

pathways in combination with the metabolome result can be used to

assess the possible biological relevance of these identified genes to

herbicide resistance.
4 Summary and outlook: current
challenges and way forward

Individually, both metabolomics and transcriptomics are

powerful tools for understanding the molecular basis of herbicide

resistance. However, determining whether expression of a particular

gene or increased concentration of a particular metabolite is the

cause or consequence of herbicide adaptation is a difficult task. Such

questions can be answered by integrated transcriptome-

metabolome studies. Despite significant advances in omics-based

studies of herbicide resistance, to the best of our knowledge, to date

there have been inadequate efforts made to investigate the power

and potential of transcriptome-metabolome correlation analysis in

herbicide resistance. This can likely be attributed to the limited

availability of genomic and metabolome resources in weeds. Even

though RNA-seq studies have been successfully used to study

evolutionary processes in weeds, they have their own challenges.

The main issue to address is the proportion of mismatches,

especially when genetic differences between species are high. In

such cases, the portion of the reads mapping ambiguously to more
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than one contig increases, which might lead to erroneous result

interpretation and further downstream processes (Fukushima et al.,

2009). Hence, high-resolution genomic analyses of weedy plants

will be needed in the future. Alongside transcriptome studies,

metabolome studies on weeds also have numerous challenges,

which might range from constrained genomic resources and

reference databases to the complexity of the metabolite profiles.

In weeds, the lack of reference databases can make it difficult to

identify and annotate all the metabolites. Furthermore, there might

be many anonymous metabolites, which can also impede precise
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result interpretations and hence make biomarker discovery difficult

in weeds.

Besides individual omics, the application of integrated omics

approaches to weeds can also be challenging and requires careful

consideration. One of the most important data integration

challenges is that the transcriptome and metabolite information

do not correlate for some of the genes and metabolites. This might

be due to complicated regulatory networks ranging from feedback

loops to co-regulation and compensatory mechanisms (Stelling

et al., 2002; Vemuri and Aristidou, 2005). Additionally,
FIGURE 1

A simplified framework showing the possible experimental design based on integrated transcriptomics and metabolomics in weeds. The RNA-Seq
transcriptome analysis will help to identify the differentially expressed genes under herbicide stress (such as genes encoding cytochrome P450s,
GSTs, GTs, transporter proteins, oxidases, peroxidases etc.). Thereafter, the metabolite profiling using metabolomics [using Gas Chromatography/
Mass Spectrometry (GC/MS) or Liquid Chromatography/Mass Spectrometry (LC/MS)] will further confirm the involvement of these differentially
produced metabolic enzymes. Following the analysis of individual omics data, statistical and bioinformatic techniques, such as correlation analysis
using Pearson correlation coefficient, Spearman rank correlation (r), kendall’s Tau (t) and weighted gene coexpression network analysis (WGCNA).,
can be used to integrate them. Suitable significance thresholds can be set to identify the significant associations between gene expression and
metabolite abundance. The integration of these omics approaches can establish a link between phenotypic outcome to genotypic expression and
hence can provide a system-level understanding of herbicide resistance mechanisms in weeds.
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metabolites within cells can have varying turnover rates. Hence,

even if gene expression remains constant, that does not imply that

metabolite levels will also remain constant (Li et al., 2022). Hence,

in these cases, gene-metabolite correlations may not be evident

from short time scale experiments. Also, there can be some

technical factors and threshold effects involved, which can initiate

weak correlations. For example, minor changes in gene expression

might not lead to measurable changes in metabolite levels until a

certain threshold is reached, or there might be some abnormalities

regarding the normalization methods and data preprocessing

choices that might obscure the true correlations. Addressing these

challenges might require sophisticated and refined statistical

analysis methods, and weeds might have unknown statistical

challenges that need to be addressed (Kumar et al., 2017).

Another challenge might be the huge diversity among the weed

species, resulting in substantial physiological and genetic

heterogeneity even within a single species. Due to species

diversity, each might have its own unique genetic makeup and

biological characteristics, and hence the resistance mechanisms

might also vary significantly (Owen, 2016). High species diversity

might also limit the broader applicability of research findings from

multi-omics data since the perceptions gained from one

environment may not apply directly to another. This scenario

might demand more advanced bioinformatics pipelines to

accommodate the unique genomic features of each species. This

will require specialized expertise. However, the most crucial

challenge in integrated transcriptomic-metabolomic analyses is

based on the fact that there is no direct connection between

metabolite and transcript. The differentially expressed transcripts

cannot be mapped to a single metabolome database. Hence, the data

analysis becomes more complicated; however, this impasse can be

overcome by reducing the number of metabolites. Comparative

metabolomic analyses, such as comparison between herbicide-

resistant and susceptible weeds and identification of the specific

features, can be implied to reduce the undesirable metabolites.

Nevertheless, despite the challenges, transcriptomic-metabolomic

integration is a powerful combination and a fascinating field of

research that undeniably requires additional exploration and the

involvement of more geneticists and weed scientists.
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