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and Gail Taylor1*

1Department of Plant Sciences, University of California Davis, Davis, CA, United States, 2School of
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Watercress (Nasturtium officinale) is a nutrient-dense salad crop with high

antioxidant capacity and glucosinolate concentration and with the potential to

contribute to nutrient security as a locally grown outdoor aquatic crop in

northern temperate climates. However, phosphate-based fertilizers used to

support plant growth contribute to the eutrophication of aquatic habitats,

often pristine chalk streams, downstream of farms, increasing pressure to

minimize fertilizer use and develop a more phosphorus-use efficient (PUE)

crop. Here, we grew genetically distinct watercress lines selected from a bi-

parental mapping population on a commercial watercress farm either without

additional phosphorus (P−) or under a commercial phosphate-based fertilizer

regime (P+), to decipher effects on morphology, nutritional profile, and the

transcriptome. Watercress plants sustained shoot yield in P− conditions, through

enhanced root biomass, but with shorter stems and smaller leaves. Glucosinolate

concentration was not affected by P− conditions, but both antioxidant capacity

and the concentration of sugars and starch in shoot tissue were enhanced. We

identified two watercress breeding lines, with contrasting strategies for

enhanced PUE: line 60, with highly plastic root systems and increased root

growth in P−, and line 102, maintaining high yield irrespective of P supply, but less

plastic. RNA-seq analysis revealed a suite of genes involved in cell membrane

remodeling, root development, suberization, and phosphate transport as

potential future breeding targets for enhanced PUE. We identified watercress

gene targets for enhanced PUE for future biotechnological and breeding

approaches enabling less fertilizer inputs and reduced environmental damage

from watercress cultivation.
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1 Introduction

Watercress (Nasturtium officinale R. Br.) is a perennial leafy

green crop adapted to growth in aquatic environments. Found in

nature in free-flowing alkaline streams and as a crop, it is best

grown in hydroponic systems, including open water ponds,

hydroponic greenhouses, and vertical farms (Cox, 2009;

Schuchardt et al., 2019; Qian et al., 2022). Watercress is a

member of the Brassicaceae family, alongside other important

food crops such as broccoli (Brassica oleracea var. italica) and

oilseed rape (B. napus) (Kiefer et al., 2019). A distinctive

characteristic of watercress is its peppery flavor, derived from the

hydrolysis of gluconasturtiin, the primary glucosinolate (GSL) in

watercress, to phenethyl isothiocyanate (PEITC) (Boyd et al., 2006;

Payne, 2011; Jeon et al., 2017). Although the primary function of

glucosinolates is for defense against herbivory, it is the

isothiocyanates that are responsible for the anti-cancer, antibiotic,

and cardioprotective properties of watercress (Newman et al., 1992;

Cheung and Kong, 2009; Panahi Kokhdan et al., 2021). Watercress

also has high antioxidant (AO) capacity and qualifies as the most

nutrient-dense fruit/vegetable, based on the content of 17 nutrients

of public health importance (Di Noia, 2014).

Watercress is grown worldwide, including the UK, USA, Spain,

Portugal, New Zealand, and China (Li et al., 2007b; Searle, 2019;

USDA, 2019). In the UK, 58 hectares of watercress were grown in

2018, representing a total value of £15 million (DEFRA, 2020). It is

also a high-value horticultural crop, with a UK market value of

£8.90 per kg compared to £4.97 per kg for mixed baby leaf salad

bags (DEFRA, 2019). However, there is concern that watercress

production is causing environmental pollution, through the direct

addition of phosphate-based fertilizers into aquatic systems,

including chalk streams in the UK, which are of high

conservation value (Cox, 2009; Hibbert and Taylor, 2022). Chalk

streams are internationally rare and highly biodiverse environments

often referred to as “England’s rainforests”, providing a habitat for

species such as the winterbourne stonefly (Nemoura lacustris) and

brown trout (Salmo trutta), which depend on its clean low nutrient

waters—but they are under threat (White, 2020; CaBA CSRG, 2021;

Environment Agency and Natural England, 2021). In these and

other aquatic systems, phosphate pollution results in eutrophication

of water systems, where excessive flora growth limits light

penetration, leading to death of organisms below, deoxygenation

of the habitat via microbial decomposition, and ultimately the

disruption of community dynamics (Schindler et al., 2008).

Naturally, phosphate concentrations in chalk streams are

approximately 0.02 mg L−1; however, inputs of phosphorus (P)

rapidly increase these concentrations above P targets downstream

of watercress farms (Casey and Smith, 1994). Additional P inputs

into freshwater systems is predominantly through release from

sewage treatment works (STWs), leaking septic tanks, and from

excess fertilizer application (Withers et al., 2013; Richards et al.,

2016; CaBA CSRG, 2021). However, watercress farms were also

shown to contribute 5.4% of the P load in chalk streams and values

of up to 62% were reported for some streams, suggesting significant

room for improvement (Cox, 2009). Approximately 90% of

watercress farms in the UK are on, or upstream of, a Site of
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Special Scientific Interest (SSSI), increasing the pressure to

minimize Prelease. Of the 249 chalk streams in the UK, 39% fail

the standards for good ecological P status set out in the Water

Framework Directive (European Commission, 2019). Jarvie et al.

(2018) also surveyed the nutrient status of British headwater

streams and declared that reducing P concentrations in lowland-

high-alkalinity rivers (chalk streams) is one of the most important

areas to target for improved UK water quality.

P is vital for plant growth, and is used to power cells through the

release of phosphate from ATP, for the structure of protein and

carbohydrate polymers, cell membranes, and the formation of the

phosphodiester bonds that link nucleotides (Westheimer, 1987;

Schachtman et al., 1998). Nevertheless, the environmental damage

associated with phosphate fertilizer application and the finite nature

of P reserves is driving the development of crops with improved P-

use efficiency (PUE). For watercress, with commercial production

linked to chalk streams, improved PUE is a key target for crop

improvement (Hibbert and Taylor, 2022). Our recent review

identified the key traits to breed for a PUE ideotype in watercress

as (i) increased root surface area through prolific root branching,

adventitious root (free floating roots deriving from the stem)

formation, and root hair growth, and (ii) increased root

aerenchyma formation. Functional genomic traits for improved

PUE are (iii) efficacious premobilization and scavenging strategies

and (iv) the use of alternative metabolic pathways (Hibbert and

Taylor, 2022). Identifying gene-based targets central to the PUE

response in watercress is vital to increase the speed of breeding for

PUE. Key genomic targets in other species (predominantly based on

studies in the soil-grown model plant, Arabidopsis thaliana) have

previously been identified as PHT phosphate transporter genes,

global transcriptional regulators such as those of the SPX family,

and genes involved in galactolipid and sulfolipid biosynthesis such

as MGD2/3, PECP1, PSR2, PLDz1/2, and SQD2 (Hibbert and

Taylor, 2022). Although matches for these genes have been found

in watercress transcriptome data, the functional significance of

these gene targets, particularly in P-deficient growing

environments, have not yet been investigated. Other breeding

targets for consumers include further improved nutritional

quality (AO capacity and GSL concentration) and enhanced

sweetness while maintaining yield, and it is therefore important

to understand the trade-offs between fertilizer management and

nutritional profile, yield, and crop flavor.

There is limited understanding of the effects of nutrient

availability on watercress. One study utilized an experimental

stream to assess differences in watercress growth rate under

varying N:P application, with a focus on N accumulation

(Fernandez-Going et al., 2013). As expected, growth rates

increased with increasing nutrient availability. Previously,

microarray and RNA-sequencing (RNA-seq) approaches have

been used to explore differences in AO capacity and GSL

concentration, and to study molecular mechanisms underlying

contrasting growth responses to submergence in watercress

(Payne, 2011; Voutsina et al., 2016; Jeon et al., 2017; Müller et al.,

2021). Authors used orthology to A. thaliana to identify key

candidate genes involved in GSL/AO biosynthesis pathways and

hormone signaling mediating growth responses.
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There is an urgent need, therefore, to identify gene targets to

enable future breeding for PUE in this nutrient dense leafy green

crop. There is currently no relevant breeding for PUE and the

literature surrounding the effects of fertilizer on watercress growth is

limited and outdated (Austin, 1966; Howard-Williams et al., 1982;

Bennett, 1986; Fernandez-Going et al., 2013). This study aims to

investigate the genomic basis of PUE in watercress, through a study

of the effects of contrasting applications of phosphate-based

fertilizer on the growth, biochemistry, and gene expression of

selected watercress lines from a bi-parental mapping population

using RNA-seq approaches.
2 Materials and methods

2.1 Plant material

An F2 watercress mapping population was previously developed

by crossing two lines contrasting for size and nutritional content:

WX033 and WX038 (also referred to as Parent A and Parent B,

respectively, in Voutsina, 2017). WX033 is the commercialized

dwarf leafy “Boldrewood” cultivar with high AO and GSL

concentration. WX038 is an accession with a longer stem and

lower AO and GSL than WX033 in both field and controlled

conditions (Payne, 2011). F2 offspring were self-fertilized to

obtain the F3 (F2:3) generation, then multiple plants were grown

and seed harvested in bulk (F2:4) (Qian, 2021). This enabled greater

seed production for use in this field trial, with a similar

homozygosity. Nine watercress lines (referred to as 120, 102, 39,

82, 60, 225, 5, 16, and 173) from this watercress mapping

population, the two parent lines (WX033 and WX038), and two

commercial control lines (WX001 and WXVITA) were selected for

this field study. These lines were selected based on high GSL

concentration, AO capacity, vigor, and desirable morphological

traits for commercial cultivation observed in previous trials

(Qian, 2021; Qian et al., 2023).
2.2 Experimental design

F2:4 seeds were sown in peat-filled trays. Tray positioning was

randomized in the greenhouse (Vitacress Herbs; Chichester, UK)

and irrigated with potable water from an overhead sprinkler four

times a day. After 3 weeks, plants were thinned to equal density and

transplanted into prepared gravel lined beds utilizing a complete

randomized block design at a commercial watercress farm (51°

11’42.9”N, 1°32’12.9”W; Hampshire, UK). Blocks were composed of

16 0.25 m2 plots comprising 35 plants per plot. Trial areas were

located at the heads of neighboring gravel-lined beds, with a shared

flowing spring water supply at an almost constant temperature of

12°C (Figure 1). Beds were covered by an open-ended polytunnel to

reduce bird damage and buffer from environmental variation. One

bed was given no additional fertilizer (P−) during the trial period,

and the other was supplied with a standard commercial fertilizer

regime (P+) as follows: one dose of base dressing (Humber Palmer

Eco-Cress Base; details of fertilizer in Supplementary 1) on day 16,
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then one dose of top dressing (Humber Palmer Eco-Cress Plus) on

day 23 post-transplanting. The application rates were 200 kg ha−1 of

base dressing (30.4 kg ha−1 P2O5) and 100 kg ha−1 of top dressing

(12 kg ha−1 P2O5).
2.3 Measuring P concentration of
irrigation supply

To monitor P bioavailability during the trial, phosphate in the

irrigation supply was quantified using a low range handheld

phosphate photometer using an adaption of the ascorbic acid/

molybdenum blue method (HI-96713; HANNA instruments).

Samples were taken at least every 5 days within the bed

(Figure 1A), prior to harvesting plants, 24 h before, and 24 h

after each fertilizer application to increase data granularity. Eight

additional water samples were collected at the final harvest point

and were assessed for ammoniacal nitrogen, nitrate (NO3), P (total

unfiltered), and orthophosphate (PO4) concentration by ALS

(alsglobal.com) to support handheld phosphate measurements.

Though P concentrations fluctuated throughout the trial period in

this commercial watercress bed (Figure 1A), overall P concentration

was higher in the fertilized bed for the majority of measurements.

Additional analyses at the final harvest point showed that nitrogen

concentration in both beds did not significantly differ (P+ 34.48 mg/

L ± 0.15; P− 34.03 mg/L ± 0.54), increasing evidence that P is the

limiting macronutrient at the point of harvest.
2.4 Phenotyping

2.4.1 Morphological measurements
After 35 days following transplanting, four plants were sampled

per plot for morphological analyses. The following traits were

recorded: shoot/root fresh and dry weight, stem length (identified

as length of the main stem), and number of leaves. Root:shoot (R:S)

ratio was calculated from fresh weight values. Images of dissected

plants were used to quantify leaf area parameters (mean and total

leaf area) on ImageJ software (Schneider et al., 2012). One plant was

also selected from each plot every 5 days to assess morphological

changes over time. Watercress forms a densely matted root

structure under commercial growing conditions; thus, quantifying

aspects of root architecture was not possible in this study.

2.4.2 Biochemical measurements: quantifying
AO capacity, GSL, sugar, starch, P, and
K concentration

After 35 days, one plant was selected from each plot, roots were

cleaned and cut from the shoot, and both tissue portions were

frozen separately in liquid nitrogen. Frozen tissue was ground to a

fine homogeneous powder and stored at −80°C prior to

further analyses.

The AO capacity of each sample was assessed using the Ferric

Reducing Ability of Plasma (FRAP) protocol as described previously

(Benzie and Strain, 1996; Payne et al., 2013; Qian et al., 2023).

Ground frozen tissue was transferred to QIAshredder homogenizer
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tubes (Qiagen), weighed, and spun at 20,000 rpm for 5 min. Extracted

sap was transferred to 96-well plates alongside a serial dilution of iron

sulfate heptahydrate. FRAP reagent solution, containing acetate

buffer, TPTZ (2,4,6-Tri(2-pyridyl)-s-triazine), and iron chloride

hexahydrate, was added to the plate and immediately read on a

spectrophotometer (CLARIOstar Plus; BMG Labtech) at 620 nm.

Plates were run in duplicate.

GSLs were quantified by HPLC-DAD as described by

Kliebenstein et al. (2001) and used previously for watercress

(Qian et al., 2023). Briefly, 20–40 mg of ground frozen tissue

was weighed and homogenized in a paint shaker with 90%

methanol for 3 min and centrifuged. Ninety-six-well filter plates

were loaded with DEAE Sephadex A-25 and the plant

supernatants, then washed with water, 90% methanol, and water

again. Following an overnight incubation with sulfatase, the

Sephadex-bound GSLs were eluted. Desulfoglucosinolates were

separated and detected by HPLC-DAD and quantified by
Frontiers in Plant Science 04
comparison to standard curves of purified compounds and

results were normalized to fresh weight.

Soluble (sugar) and insoluble (starch) carbohydrates were

determined using a modified anthrone method (Leyva et al., 2008;

Becerra-Sanchez and Taylor, 2021). One milliliter of buffer (sodium

acetate 0.2 mol/L, pH 5.5) was added to 5–50 mg of pre-weighed

lyophilized tissue and incubated at 70°C for 15 min. Samples were

centrifuged for 10 min at 15,000 rpm, then 50 µL of supernatant was

transferred to fresh tubes containing 1 mL of ultrapure water for

sugar quantification. The remaining pellets were vortexed and

incubated at 100°C for 10 min. Enzymatic digestion was

conducted by adding 100 µL of 70 units/mL amyglucosidase and

100 µL of 7 units/mL alpha amylase and incubating pellets for 2 h at

37°C. Tubes were centrifuged at 15,000 rpm for 10 min and 50 µL of

supernatant diluted in 1 mL of ultrapure water for starch

determination. Samples were plated into 96-well plates in

duplicate, alongside glucose calibration curves. A super-standard
A B

C

FIGURE 1

Elements of the field design. (A) Phosphate concentrations within treatments (P+/P−). P+ received doses of fertilizer on days 16 and 23, P− was
untreated. Areas shaded light green represent periods where concentration was higher in the P+ treatment. (B) Field plan showing 13 different lines
within a randomized complete block design with 3 blocks. Green represents plots of guard plants and blue circles indicate P determination sampling
sites (both within and between plots). (C) Images of the field to illustrate plants grouped within 0.25 m2 plots. Neighboring beds were irrigated using
the same spring water pump and the direction of water flow across the bed is indicated by the blue arrow.
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of pooled watercress shoot samples was also run alongside each

batch of samples to standardize runs. Anthrone in sulfuric acid (150 µL;

0.1% w/v) was added per well and incubated for 20 min at 100°C.

Absorbance at 620 nm was analyzed on a Multiskan™ FC

Microplate Photometer (Thermo Scientific).

Lyophilized root and shoot tissue was also used for

quantification of P and potassium (K) by ICP-MS. Sample

digestion and ICP-MS analysis was conducted by the

Interdisciplinary Center for Plasma Mass Spectrometry at the

University of California Davis using an Agilent 8900 ICP-MS

(Agilent Technologies, Palo Alto, CA). Samples, duplicate method

blacks (50 µL of 18.2 MΩ/cm water), duplicate digestion quality

control standards (50 µL), and duplicate standards from tomato

(NIST1573a) and spinach (NIST1570a) were digested. Acid

digestion involved adding 0.75 mL of 50% HNO3 to samples in

two increments, each time allowing gas to evolve and then heating

for 35 min and 1 h at 95°C, respectively. After cooling, 50 µL of

H2O2 was added incrementally up to 500 µL as samples were

heated, then heated for 1 h after the final addition. Finally,

samples were allowed to cool and brought to a final volume of 1

mL with 18.2 MΩ/cm water, ready for analysis. ICP-MS analysis

was conducted by the Interdisciplinary Center for Plasma Mass

Spectrometry at the University of California Davis using an Agilent

8900 ICP-MS (Agilent Technologies, Palo Alto, CA).
2.5 RNA extraction

RNAwas extracted from frozen ground root and shoot tissue taken

at the final harvest point (35 days post-transplanting) using a modified

cetyltrimethylammonium bromide (CTAB) protocol used previously

for watercress (Doyle and Doyle, 1987; Payne et al., 2015; Voutsina,

2017). Tissue (200–300 mg) was weighed and incubated with 900 µL of

pre-warmed CTAB (+50 µL of 2-mercaptoethanol) at 65°C for 5 min.

CHISAM (Chloroform : Isoamyl alcohol 24:1; 800 µL) was added and

tubes were spun at 12,000 rpm for 10 min at room temperature. The

aqueous phase was transferred to a fresh tube and the CHISAM step

was repeated. A total of 180 µL of 10 M LiCl was then added to the

aqueous phase before precipitation at 4°C overnight. Samples were

spun at 4°C, then the supernatant was discarded, and the pellet was

dissolved in 700 µL of pre-warmed SSTE. Tubes were incubated at

60°C for 5 min followed by a repeat of the CHISAM step. The aqueous

phase was transferred to a fresh tube and 700 µL of 100% cold ethanol

was added. This was left to precipitate at −20°C for 10 min before

centrifugation and removal of supernatant. The remaining pellet was

washed with cold 70% ethanol, left to air dry (>45min) and redissolved

in 50 µL of RNase-free H2O.
2.6 RNA-sequencing data analysis pipeline

RNA-seq data for both roots and shoots were processed using a

pipeline adapted from that used previously for watercress (Qian, 2021).

Novogene Corporation Inc. (Sacramento) provided the eukaryotic

RNA-seq service including cDNA library preparation (250–300 bp

insert) and sequencing using the Illumina HiSeq (paired-end 150 bp)
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Farm cluster (https://www.hpc.ucdavis.edu/farm-cluster) followed by

differential gene expression analysis in R Studio. To check FASTQ file

quality, FastQC and MultiQC were conducted. The Trimmomatic

preprocessing tool designed to handle paired-end Illumina sequence

data was used to trim and remove poor-quality reads (Bolger et al.,

2014). The first whole genome sequencing and assembly of the

watercress genome has been completed by IGATech (https://

igatechnology.com) and provided to the laboratory of Prof. Gail

Taylor. Functional genome annotation was done using Interproscan

5.0. and by searching the scanned protein sequence against the UniProt

database (https://www.uniprot.org). The genome file was indexed to

improve the efficiency of searching the genome using the Hierarchical

Graph FM index (HGFM) with the alignment program HISAT2.

HISAT2 was also used to align reads to the watercress genome.

Then, StringTie was used to assemble read alignments into potential

transcripts, and the output was used to generate a count table with

featureCounts (Liao et al., 2014; Pertea et al., 2016).

Differential gene expression analysis was conducted in R using

the edgeR package using a GLM approach (Robinson et al., 2010).

Raw counts were filtered to include only genes with 1 count per

million (cpm) in at least two samples and library sizes were

normalized. Quasi-likelihood F-tests were performed to provide

more robust and reliable error rate control for smaller replicate

numbers. Significance testing was conducted using the Benjamini–

Hochberg method and differentially expressed genes (DEGs) were

selected with a cutoff at FDR < 0.05 (Benjamini and Hochberg,

1995). Finally, gene ontology (GO) enrichment analysis was

conducted on DEG lists using ShinyGO with A. thaliana as a

reference and Venn diagrams were generated using the online tool

VENNY v2.1 (Oliveros, 2015; Ge et al., 2020).
2.7 Statistical analyses of morphological
and biochemical data

SPSS (version 27, IBM Corp, 2020) and R software (R Core

Team, 2021) were used for statistical analyses. Results were

averaged per plot to get the genotypic mean per block (n = 3).

Normality of residuals was assessed using Q–Q plots and Shapiro–

Wilk tests, and homogeneity of variances was checked using

Levene’s test of equal variances. Linear mixed effect models were

generated with block as a random factor and line and treatment as

fixed main effects. Analysis of variance (ANOVA) tests were run on

these models to identify differences between treatment and line with

a significance threshold of p < 0.05.
3 Results

3.1 Effect of fertilizer application on
watercress morphology

Growing watercress in P− conditions impacted several

morphological parameters at final harvest (day 35; Table 1;

Figure 2; Supplementary 2). The removal of fertilizer application
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resulted in a 20% increase in root fresh weight (F1,49 = 7.942, p =

0.007), a 46% increase in root dry weight (F1,49 = 12.040, p = 0.001),

and a 24% increase in shoot dry weight (F1,49 = 8.819, p = 0.005).

However, shoot fresh weight was not affected by treatment (shoot:

F1,49 = 0.055, p = 0.815; total: F1,49 = 0.260, p = 0.612). Stem length

decreased by approximately 22% in P− (F1,49 = 36.803, p < 0.001).

Together, this is reflected in a ~24% increase in root:shoot ratio in

P− (F1,48 = 28.340, p < 0.001). Although, the number of leaves (F1,49
< 0.001, p = 0.981) did not change between treatments, mean leaf

area decreased by 12% (F1,49 = 5.864, p = 0.019).
3.2 P-fertilizer application alters the
biochemical profile

Plants grown without additional phosphate-based fertilizer

exhibited changes to their biochemical profile at harvest point

(Table 1; Figure 3). Shoot AO capacity increased by 13%

(F1,49 = 6.090, p = 0.017). When considering the concentration of the

primary GSL in watercress, PE-GSL (phenylethyl glucosinolate), there

was no effect of fertilizer treatment (F1,49 = 0.363, p = 0.550). The

concentration of soluble sugars increased by 10% under P−

(F1,49 = 6.957, p = 0.011) and starch increased by 67%

(F1,49 = 23.835, p < 0.001). The concentration of P and K was

assessed in selected lines (WXVITA, 102, 60; line selection is

described in the subsequent section). As expected, P concentration of

both roots and shoots increased in the P+ treatment (F1,17 = 17.586, p <

0.001): root P concentration increased from 3,274 ppm ( ± 352) to

4,333 ppm ( ± 128), and shoot P concentration increased from 2,575

ppm ( ± 160) to 3,586 ppm ( ± 366), whereas K concentration was

unaffected by treatment (F1,17 = 1.19, p = 0.34), providing further

evidence that P is the limiting macronutrient in this trial.
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3.3 Morphological and biochemical data
support significant line differences for
future selection

For each of the 13 lines studied, the following morphological

and biochemical traits were quantified: shoot dry weight, root dry

weight, shoot fresh weight, R:S, stem length, no. of leaves, individual

leaf area, AO capacity, GSL concentration, sugar concentration, and

starch concentration. Of these traits, lines varied in stem length

(F12,49 = 3.100, p = 0.003), no. of leaves (F12,49 = 4.101, p < 0.001),

and mean leaf area (F12,49 = 3.522, p < 0.001; Figure 4). Statistics and

figures showing line variation for all other traits are provided in

Supplementary 3. To quantify responsiveness to low P conditions,

percentage changes under P− conditions were calculated for traits.

Line 60 showed a 35% change across all morphology traits under

P−, including a 114% increase in mean root fresh weight, suggesting

that it is highly responsive to low nutrient conditions. This line is

also of note as it ranked highest for root dry weight and had the

third highest AO capacity. For other traits such as leaf area and

shoot fresh weight, it consistently ranked in the top half. Line 102 is

also of interest as it ranked highest for several commercially relevant

yield traits such as shoot fresh weight, second highest for no. of

leaves, and third highest for PE-GSL concentration. By contrast, this

line was far less responsive to P− conditions: there was a 15.5%

change across all morphology traits and only a 0.9% increase and

6.6% decrease in shoot dry and fresh weight, respectively. These

lines were taken forward for further analysis of P concentration and

for RNA-seq analysis. P concentration also differed between these

lines (F2,17 = 4.446, p = 0.028; Figure 5). Comparing across

treatments, shoot P concentration was 42% higher in 102

compared to the commercial control line WXVITA and line 60

had 58% increase relative to WXVITA (t6 = 3.878, p = 0.019).
TABLE 1 Effect of phosphate-based fertilizer application on morphology and biochemistry of watercress at the final harvest point.

Trait P+ P− Treatment Line T*L

Shoot dry weight (g) 0.40 (± 0.02) 0.50 (± 0.03) ** ns ns

Root dry weight (g) 0.05 (± 0.002) 0.077 (± 0.007) ** ns ns

Shoot fresh weight (g) 7.47 (± 0.35) 7.60 (± 0.45) ns ns ns

Root fresh weight (g) 1.11 (± 0.04) 1.34 (± 0.08) ** ns ns

Root:shoot 0.15 (± 0.005) 0.19 (± 0.005) *** ns ns

Stem length (mm) 120.56 (± 3.84) 94.52 (± 3.03) *** ** ns

No. of leaves 15.55 (± 0.32) 15.53 (± 0.32) ns *** ns

Individual leaf area (cm2) 4.35 (± 0.23) 3.83 (± 0.17) * *** ns

AO capacity (mmol Fe2+ per g FW) 429.41 (± 17.39) 485.49 (± 14.96) * ns ns

GSL concentration (nmol/mg FW) 0.59 (± 0.036) 0.62 (± 0.050) ns ns ns

Sugar concentration (mg/g DW) 107.27 (± 2.50) 118.43 (± 3.44) * ns ns

Starch concentration (mg/g DW) 25.86 (± 2.51) 43.07 (± 3.30) *** ns ns

Mean phosphorus concentration (ppm) 3,619 (± 196) 2,801 (± 142) *** * ns
Mean values ± SEM are given for each treatment (P+/P−) alongside main effects given at the following significance levels: *p < 0.05, **p < 0.01, ***p < 0.001, ns non-significant. Phosphorus
concentration was calculated as the mean of shoot and root values from selected lines. T*L, treatment*line interaction effect.
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3.4 RNA-seq identifies genes important
for P-regulation

Between 29 and 43 million reads per library were produced

from RNA-seq with all libraries having 70%–91% of reads mapping

uniquely to the watercress genome. A total of 44,024 transcripts

were identified, and of these, 27,149 were represented at least 1 cpm
Frontiers in Plant Science 07
in at least two shoot samples, and 27,531 were represented at least 1

cpm in at least two root samples. Eighty-eight percent of shoot and

root transcripts corresponded to annotated watercress genes. No

DEGs were detected in P− shoots compared to P+ shoots (FDR

< 0.05). However, 16 genes had an FDR < 0.15 with corresponding

p-values < 1e-5 (Supplementary 4). This list included a 0.55- and

1.7-fold upregulation in GDPD5 (AT1G74210) and GDPD1
A B
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C

FIGURE 2

Effects of phosphate-based fertilizer application (P+) on different aspects of watercress morphology (A–H), compared to plants grown without
additional phosphate-based fertilizer (P−) over the course of the field trial. Green triangles indicate when P treatments were applied. Crosses within
bars denote mean values (n = 39) and letters above bars represent different groups according to Tukey’s LSD tests conducted on data from the final
harvest point (p < 0.05).
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(AT3G02040), involved in lipid remodeling during P deficiency

(Cheng et al., 2011). Genes involved in carbohydrate metabolism,

such as CTIMC (AT3G55440) and the phosphoglucan phosphatase

SEX4 (AT3G52180), were upregulated in P− conditions (Kötting

et al., 2009). Upregulation of VTC4 (AT3G02870) is notable as it

encodes a bi-functional enzyme involved in myoinositol and

ascorbate synthesis (Torabinejad et al., 2009). Myoinositol has

roles for P signaling, storage, and stress tolerance, and ascorbate
Frontiers in Plant Science 08
regulates several abiotic stress signaling pathways and provides AO

functions (Xiao et al., 2021; Wu et al., 2023). PLAT1 (AT4G39730),

involved in a broad range of abiotic stress response pathways, was

also upregulated in P− (Hyun et al., 2014).

In roots, 33 genes were significantly downregulated and 227

genes were significantly upregulated in P− watercress roots with

respect to the P+ treatment. Of these, 173 were annotated and

almost all annotated genes corresponded to those in A. thaliana.
A B

D

E

C

FIGURE 3

Differences in biochemical traits at final harvest point, following cultivation with (P+) or without (P−) phosphate fertilizer. (A) PE-glucosinolate (PE-
GSL) concentration of shoots; (B) antioxidant capacity of shoots; (C) shoot sugar concentration; (D) shoot starch concentration; (E) phosphorus
concentration in roots (R) and shoots (S) from selected lines. Means are denoted by crosses within boxes (A–D: n = 39; E: n = 9) and letters
represent significantly different groups by Tukey’s LSD tests (p < 0.05).
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The top 50 annotated DEGs are summarized in Table 2, and the full

list of DEGs is shown in Supplementary 5. GO analysis (Figure 6)

revealed significant enrichment of pathways involved in known

responses to P deficiency. The highest enrichment was observed for

genes involved in sulfolipid metabolic and biosynthetic processes

(>158-fold enrichment) through upregulation of SQD1

(AT4G33030), SQD2 (AT5G01220), and UGP3 (AT3G56040),
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followed by a 63-fold enrichment of genes involved in

galactolipid biosynthesis including DGD1 (AT3G11670), DGD2

(AT4G00550), MGD3 (AT2G11810), PAH1 (AT3G09560), and

PLPZETA2 (AT3G05630) (Yu et al., 2002; Cruz-Ramirez et al.,

2006; Kobayashi et al., 2009). Two upregulated genes, PHT1;8 and

PHT1;4, encode high-affinity phosphate transporters in A. thaliana

(Nussaume et al., 2011). Other genes associated with a cellular
A

B
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C

FIGURE 4

Genetic variation between lines to inform line selection (A–E). Lines that were selected for RNA-seq (60, 102, and WXVITA) are highlighted in light
blue. Error bars represent SEM. Statistics for the effect of line on each trait (from ANOVA tests) are given in text boxes. Line effects are significant at
the following levels: **p < 0.01, ***p < 0.001. (F) Illustrations of representative plants from selected lines. Line 60 is P-responsive with a large
increase in root biomass in P−, whereas 102 maintains high yield under both P conditions.
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response to P starvation included RNS1 (AT2G02990) for P

remobilization, and SPX1 (AT5G20150) and SPX3 (AT2G45130),

which are essential transcriptional regulators of the P-starvation

response (Puga et al., 2014; Zhou et al., 2015).
3.5 Genetic differences underlying P-
responses between lines

Multi-dimensional scaling illustrated large transcriptomic

differences between line 102, 60, and WXVITA, as shown by

differential grouping in Figure 7. To assess responses to P-

deficiency unique to the selected lines (60 and 102), DEGs in

these lines compared to the commercial control line (WXVITA)

were identified in P− conditions (Figure 8; Supplementary 6, 7). A

total of 123 DEGs were uniquely upregulated and 130 DEGs were

uniquely downregulated in line 60 shoots in P−, relative to

WXVITA. Upregulated genes in line 60 included many genes

involved in shoot development, such as UGE4 (AT1G64440),

MYO6 (AT5G43900), and PSP (AT1G18640). By contrast, 17

were uniquely upregulated and 19 were uniquely downregulated

in 102 in P− relative to WXVITA. A total of 21 upregulated and 8

downregulated genes were common to both line 60 and 102 relative

to expression in WXVITA. GO enrichment analysis of DEGs

common to both selected lines identified that the pathway with

highest fold enrichment was phosphate ion homeostasis

(Supplementary 8; 162 fold enrichment), due to upregulation of

CAX1 (AT2G38170) and downregulation of UBC24 (aka PHO2,

AT2G33770) (Liu et al., 2011; Liu et al., 2012).
4 Discussion

Despite clear environmental issues associated with the leakage

of phosphate-based fertilizers into aquatic systems, research

targeting breeding for PUE in aquatic crops such as watercress is

limited, especially in commercial systems (Austin, 1966; Howard-

Williams et al., 1982; Bennett, 1986; Fernandez-Going et al., 2013;
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Hibbert and Taylor, 2022). In this study, we provide the first

comprehensive analysis on the effects of reduced phosphate-based

fertilizer supply on watercress morphology, biochemistry, and the

transcriptome, and identified novel candidate genes for targeting in

future breeding and also new lines with improved tolerance to a low

fertilizer cultivation system. These new lines have the potential to be

considered as future commercial releases, once these traits are

confirmed as fixed.
4.1 Watercress root morphology relies
heavily on adventitious root growth

Watercress root morphology has previously been shown to be

made up of adventitious roots and basal roots (defined as a finer

root system that anchors the plant and originates from the primary

root meristem) (Cumbus and Robinson, 1977). Of these, the

adventitious root system absorbs a greater proportion of P than

the basal system and here we found that the watercress root systems

in this commercial growth environment form a densely matted

structure composed almost completely of roots deriving from the

stem (adventitious roots; Supplementary 9) at harvest point,

suggesting that adventitious roots are most important for P

uptake in watercress commercial cultivation and for identifying

targets for future watercress selection and breeding.

Growing watercress without additional phosphate-based

fertilizer had a significant impact on morphology: mean root

biomass was increased, while shoot biomass was either

unchanged (fresh biomass) or somewhat increased (dry biomass).

Plant stems were shorter with smaller leaves, although the number

of leaves was maintained, suggesting that shoot biomass is

concentrated in a denser plant. P deprivation results in decreased

cell size and is associated with regulation of cell-wall-related genes

that cause cellulose synthesis and lignin deposition (Fu et al., 2013;

Hoehenwarter et al., 2016; Ogden et al., 2018). The resulting thick-

walled small-celled phenotype may explain the dense dwarf shoot

phenotype and higher dry mass observed in P−. Most of the

evidence for low P-induced cell wall thickening has been

investigated only in roots; however, studies in rice have found

that plants impaired in the OsGLU3 gene (associated with cellulose

content) exhibit reduced shoot cell growth that is P-dependent

(Zhou et al., 2006; Zhang et al., 2012). Three endoglucanases

involved in hydrolysis of cellulose (AT1G64390, AT1G75680, and

AT2G32990) were downregulated in line 60, P− shoots (compared

to WXVITA) in our study, suggesting that this cell-wall thickening

response is stronger in this line (Libertini et al., 2004). Although it is

surprising that watercress was able to maintain shoot fresh biomass,

given the lower availability of P, the increase in root biomass

suggests that watercress compensates for reduced nutrient

availability by investing more in root growth, particularly for line

60, reflected in the increased R:S ratio in P−, which is a common

phenomenon observed in low P conditions (Cogliatti and Clarkson,

1983; Yang et al., 2011; Shen et al., 2018; de Souza Campos et al.,

2019; Duan et al., 2020; Irfan et al., 2020).

To ensure our study remained commercially relevant,

contrasting applications of commercial watercress fertilizer were
FIGURE 5

Total phosphorus (P) concentration in dried shoot tissue of selected
watercress lines (60, 102, and WXVITA) at final harvest. Error bars are
representative of SEM (n = 3).
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TABLE 2 List of the top 50 annotated DEGs in P− roots relative to P+ roots.

Transcript
ID

logFC p-
value

FDR Annotation At iden-
tifier

Function Reference

MSTRG.23989 0.95 4.9E-08 9.20E-
04

ARFI_ARATH AT4G23980 Transcription factor. (Ulmasov et al.,
1997)

MSTRG.14858 1.92 1E-07 9.20E-
04

SPX3_ARATH AT2G45130 Positive role in plant adaptation to P starvation. (Duan et al., 2008)

MSTRG.14179 1.01 2.48E-
07

1.71E-
03

PER20_ARATH AT2G35380 Suberization, response to oxidative stress. (Welinder et al.,
2002; Wan et al.,
2021)

MSTRG.35586 0.94 1E-06 2.59E-
03

BDG3_ARATH AT4G24140 Involved in cuticle development and morphogenesis
(based on protein similarity).

(Kurdyukov et al.,
2006)

MSTRG.16022 1.12 1.03E-
06

2.59E-
03

CSPLW_ARATH AT5G44550 Uncharacterized protein family. Highly expressed in
root (Casparian strip).

(Roppolo et al.,
2014)

MSTRG.28218 0.96 1.03E-
06

2.59E-
03

PHT18_ARATH AT1G20860 PHT1;8 High-affinity P transporter. (Remy et al., 2012;
Lapis-Gaza et al.,
2014)

MSTRG.32112 2.78 9.26E-
07

2.59E-
03

PPSP2_ARATH AT1G17710 PECP1; phospholipid hydrolysis (May et al., 2012;
Hanchi et al., 2018;
Tannert et al., 2018)

MSTRG.22076 0.65 1.01E-
06

2.59E-
03

STY8_ARATH AT2G17700 Serine/threonine protein kinase (Martin et al., 2006)

MSTRG.7113 1.10 1.8E-
06

3.82E-
03

MGDG3_ARATH AT2G11810 Membrane lipid remodeling in P-starved roots. (Kobayashi et al.,
2009)

MSTRG.16576 0.56 3E-06 3.85E-
03

ADH1_ARATH AT1G77120 Alcohol dehydrogenase, response to hypoxia (Ismond et al.,
2003)

MSTRG.20017 1.13 3E-06 3.85E-
03

GDL38_ARATH AT2G23540 May catalyze acyltransfer or hydrolase reactions. (Akoh et al., 2004)

MSTRG.33131 0.64 2.73E-
06

3.85E-
03

KCS1_ARATH AT1G01120 Contributes to cuticular wax and suberin
biosynthesis.

(Todd et al., 1999)

MSTRG.10623 1.06 3.21E-
06

3.85E-
03

LTG13_ARATH AT2G44290 Non-specific lipid transfer protein GPI-anchored 13 (Borner et al., 2003;
Edstam et al., 2013)

MSTRG.15471 1.22 2.66E-
06

3.85E-
03

NAT4_ARATH AT1G49960 Xanthine/uracil permease family protein (Maurino et al.,
2006)

MSTRG.30965 0.98 2.83E-
06

3.85E-
03

SQD2_ARATH AT5G01220 Sulfolipid biosynthesis. For substitute of
phospholipids under P-deficiency.

(Yu et al., 2002)

MSTRG.9588 0.61 3.65E-
06

4.18E-
03

DGDG1_ARATH AT3G11670 Involved in the synthesis of diacylglycerol
galactolipids, part of P-starvation response.

(Dörmann et al.,
1999)

MSTRG.32990 0.90 4.81E-
06

4.76E-
03

ATL1_ARATH AT1G04360 RING/U-box superfamily protein (Serrano et al., 2014;
Jiménez-López et al.,
2018)

MSTRG.8205 1.15 4.84E-
06

4.76E-
03

GPAT5_ARATH AT3G11430 Involved in suberin and phospholipid metabolism (Beisson et al.,
2007)

MSTRG.26237 0.56 4.72E-
06

4.76E-
03

PAS1_ARATH AT3G54010 Essential protein regulating cell division, adhesion,
and elongation.

(Faure et al., 1998;
Harrar et al., 2003;
Smyczynski et al.,
2006)

MSTRG.18843 0.96 4.5E-06 4.76E-
03

PER11_ARATH AT1G68850 Biosynthesis and degradation of lignin, suberization,
auxin catabolism, and response to environmental
stresses.

(Tognolli et al.,
2002; Yu et al.,
2016)

MSTRG.12851 1.08 5.85E-
06

5.55E-
03

C86A1_ARATH AT5G58860 CYP86A1; Catalyzes the omega-hydroxylation of
fatty acids.

(Benveniste et al.,
1998; Duan and
Schuler, 2005)
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TABLE 2 Continued

Transcript
ID

logFC p-
value

FDR Annotation At iden-
tifier

Function Reference

MSTRG.34984 1.01 7.18E-
06

6.37E-
03

SQD1_ARATH AT4G33030 Sulfolipid biosynthesis. Can function as a
substitute of phospholipids under P-deficiency

(Essigmann et al.,
1998; Sanda et al.,
2001)

MSTRG.15440 0.53 7.88E-
06

6.58E-
03

LACS2_ARATH AT1G49430 Lipid metabolism, required for repression of lateral
root formation.

(Schnurr et al.,
2004; MacGregor
et al., 2008)

MSTRG.34535 1.09 8.93E-
06

7.23E-
03

CP18C_ARATH AT4G38740 Involved in hypersensitive response and plant
defense.

(Romano et al.,
2004; Coaker et al.,
2005)

MSTRG.3173 0.89 9.84E-
06

7.32E-
03

AB6G_ARATH AT5G13580 ABCG6; transporter that is required for synthesis of
an effective suberin barrier in roots

(Verrier et al., 2008;
Yadav et al., 2014)

MSTRG.35761 0.48 9.62E-
06

7.32E-
03

FHYRK_ARATH AT4G21470 Enzyme that catalyzes the hydrolysis of flavin-
mononucleotide (FMN) to riboflavin, and the
phosphorylation of riboflavin to FMN.

(Sandoval and Roje,
2005)

MSTRG.35999 0.50 9.46E-
06

7.32E-
03

FLZ2_ARATH AT4G17670 Involved in response to sugars, response to
starvation.

(Jamsheer K and
Laxmi, 2015)

MSTRG.29846 0.70 1.19E-
05

8.04E-
03

TSJT1_TOBAC NA Function unknown N/A

MSTRG.18544 1.43 1.24E-
05

8.15E-
03

OCT1_ARATH AT1G73220 High-affinity carnitine uptake transporter.
Regulates lateral root development. P-starvation
inducible.

(Lelandais-Brière
et al., 2007; Lan
et al., 2015)

MSTRG.16770 1.09 1.35E-
05

8.65E-
03

GDL31_ARATH AT1G74460 GDSL-motif esterase/acyltransferase/lipase. (Akoh et al., 2004)

MSTRG.21670 0.39 1.42E-
05

8.87E-
03

HIS1A_ARATH AT1G58080 ATP phosphoribosyl transferase, catalyzes first step
of histidine biosynthesis

(Ohta et al., 2000)

MSTRG.8570 1.05 1.56E-
05

8.93E-
03

PLDZ2_ARATH AT3G05630 Hydrolyzes phospholipids to generate phosphatidic
acids (PA) for galactolipid synthesis in P-starved
roots. Involved in root elongation during P
limitation.

(Qin and Wang,
2002; Cruz-Ramirez
et al., 2006)

MSTRG.20521 −0.65 1.53E-
05

8.93E-
03

TPPF_ARATH AT4G12430 Produce free trehalose. Trehalose accumulation in
plant may improve abiotic stress tolerance (based on
sequence similarity).

(Schluepmann et al.,
2004)

MSTRG.12401 0.90 1.64E-
05

9.22E-
03

MYB53_ARATH AT5G65230 Transcription factor (by similarity) (Riechmann et al.,
2000)

MSTRG.3023 1.05 1.83E-
05

9.86E-
03

SPSA2_ARATH AT5G11110 Encodes a sucrose-phosphate synthase. Plays a role
in sucrose biosynthesis.

(Lutfiyya et al.,
2007; Volkert et al.,
2014)

MSTRG.18272 0.48 1.97E-
05

9.86E-
03

ACR3_ARATH AT1G76990 Encodes ACT domain-containing protein. (Hsieh and
Goodman, 2002)

MSTRG.33002 1.22 2.01E-
05

9.86E-
03

KCS2_ARATH AT1G04220 Involved with suberin biosynthesis pathway (Joubès et al., 2008;
Lee et al., 2009)

MSTRG.36159 0.50 1.95E-
05

9.86E-
03

WTR33_ARATH AT4G15540 Nodulin MtN21-like transporter family protein. The
mRNA is cell-to-cell mobile.

(Thieme et al.,
2015)

MSTRG.21018 0.91 2E-05 9.86E-
03

Y5285_ARATH AT5G14285 DNA-binding storekeeper (inferred) N/A

MSTRG.29610 1.26 2.08E-
05

1.00E-
02

C86B1_ARATH AT5G23190 Involved in very long chain fatty acids (VLCFA)
omega-hydroxylation.

(Compagnon et al.,
2009)

MSTRG.11422 0.55 2.18E-
05

1.02E-
02

CALSA_ARATH AT2G36850 Involved in sporophytic and gametophytic
development.

(Töller et al., 2008;
Chen et al., 2009;
Saatian et al., 2018)
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made in a commercial farm. Despite these treatments also altering

N and K application, P remained the limiting macronutrient in P−

treatment, in line with what has been reported previously (Crisp,

1970; CaBA CSRG, 2021). This was shown through (a) N

concentration remaining constant within the water supply of both

treatment beds at harvest point; (b) K concentration of plant tissue

being unaffected by treatment but P concentration of plant tissue

was lower in P− treatments; and (c) changes to biochemistry typical

of P-deficiency were observed in plants grown in P− alongside gene

expression changes observed in other species grown in P-

deficient conditions.
Frontiers in Plant Science 13
4.2 RNA-seq reveals that cell membrane
remodeling dominates genetic basis of
PUE in watercress

Mobilizing the resources to ensure continued growth with lower

P inputs appears to result from remobilization and scavenging

strategies, such as by substituting phospholipids in the cell

membrane with other lipids (Yu et al., 2002). This strategy is

evident in the DEGs of the P− roots and subsequent GO

enrichment analysis, which showed pathways with the highest

representation were for sulfolipid and galactolipid biosynthesis
TABLE 2 Continued

Transcript
ID

logFC p-
value

FDR Annotation At iden-
tifier

Function Reference

MSTRG.13894 −2.06 2.21E-
05

1.02E-
02

CLE6_ARATH AT2G31085 Extracellular signal peptide that regulates cell fate. (Strabala et al.,
2006)

MSTRG.29774 0.89 2.27E-
05

1.02E-
02

HBPL1_ARATH AT3G10130 Heme-binding-like protein (Shanmugabalaji
et al., 2020)

MSTRG.30034 0.81 2.38E-
05

1.02E-
02

GLN14_ARATH AT5G16570 Homeostatic control of glutamine synthesis in roots (Ishiyama et al.,
2004)

MSTRG.18798 0.66 2.37E-
05

1.02E-
02

PHL8_ARATH AT1G69580 Myb family transcription factor. (Riechmann et al.,
2000)

MSTRG.12418 −0.38 2.56E-
05

1.03E-
02

ANXD2_ARATH AT5G65020 ANN2; role in regulating root calcium signatures and
sugar transport. Also involved in primary root
development.

(Wang et al., 2018;
Liu et al., 2021)

MSTRG.5527 0.82 2.45E-
05

1.03E-
02

FRO8_ARATH AT5G50160 Encodes a ferric chelate reductase (Wu et al., 2005)

MSTRG.18862 0.81 2.49E-
05

1.03E-
02

HHO2_ARATH AT1G68670 Roles in lateral root development, P mobilization and
expression of genes involved in P sensing and signaling.

(Nagarajan et al.,
2016)
MSTRG transcript names from Stringtie output with corresponding annotations (UniProt identifiers) and respective locus identifiers from A. thaliana (At) are given. Those in bold have known
roles in P-starvation responses in At. N/A, none available.
FIGURE 6

Top 20 enriched biological processes of DEGs in roots of watercress grown without additional phosphate-based fertilizer. Fold enrichment is
defined as the percentage of expressed sequences of known annotation belonging to a pathway, divided by the corresponding percentage in the
background. Developed using the ShinyGO platform with A. thaliana as a reference.
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(e.g., SQD1/2, DGDG1/2, MGDG3, PLPZETA2, and UGP3).

Previous RNA-seq and microarray studies in A. thaliana

identified genes related to galactolipid biosynthesis as the largest

group within a core subset of P-starvation response (PSR) genes,

and here we have shown that these genes were most strongly

induced in P− watercress (Lan et al., 2015). These genes function

to free P from phospholipids, which accounts for 20% of plant P

content (Veneklaas et al., 2012). SQD1/2, DGDG1/2, MGDG3,
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PLPZETA2, and PECP1 were confirmed here to be primary

functional genomic targets for developing more P-use efficient

watercress (Hibbert and Taylor, 2022).

Other gene homologs important for watercress PUE include

those for P transport, such as high-affinity P transporters PHT1;4

and PHT1;8, which were both upregulated in P− roots. The high

affinity carnitine uptake transporter OCT1 was not previously

predicted to be important for PUE in watercress; however, it was

found as inducible here. This P-inducibility has been shown in

other studies and OCT1 is known to regulate lateral root

development (Lelandais-Brière et al., 2007; Lan et al., 2015). One

study also found its expression to be affected by PHO2, which

regulates translocation of P from shoots to roots (Bari et al., 2006).

SPX1 and SPX3, transcription factors with multi-functional roles in

the PSR, were both upregulated in P-starved roots. SPX-domain-

containing genes are part of a core subset of PSR genes in A.

thaliana and were predicted to be candidates for PUE in watercress,

which is confirmed in this study (Lan et al., 2015; Hibbert and

Taylor, 2022). Both are upregulated in A. thaliana under P

starvation and play positive roles in adaptation to P−, with SPX3

exerting negative feedback regulation of SPX1 (Duan et al., 2008).

Suberization of roots may also have contributed to the increase

in root biomass. Suberization is the deposition of suberin polymers

within the root exodermis and endodermis to form hydrophobic

barriers (Baxter et al., 2009). GO analysis found that DEGs involved

in suberin biosynthesis contributed to a 57-fold enrichment of this

pathway in watercress. Suberin has been shown to play a pivotal role

in drought, waterlogging, and nutrient homeostasis by providing an

apoplastic barrier within the root (Barberon et al., 2016). Studies on

effects of P-starvation have found no increase in suberization in P-

deficient barley (Hordeum vulgare) and lower suberization in A.

thaliana, in contrast to the suggestion of enhanced suberin

biosynthesis in this study, suggesting possible fundamental
FIGURE 7

Multidimensional scaling (MDS) of RNA-seq shoot samples.
Distances correspond to leading log-fold changes between samples.
Circles (◍) and triangles (▲) denote P− and P+ samples,
respectively.
A B

FIGURE 8

Number of genes (A) upregulated and (B) downregulated in shoots of selected lines (102 and 60) grown with phosphate-based fertilizer (P+) or
without additional fertilizer (P−). Differentially expressed genes are respective to expression in WXVITA. Numbers in parentheses indicate the
percentage of DEGs from each group falling into each category.
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differences in mechanisms between terrestrial and aquatic plants

(Andersen et al., 2018; Grünhofer et al., 2021). Müller et al. (2021)

showed varying levels of upregulation of numerous PSR genes

following whole plant submergence, which may suggest a link

between P starvation and watercress submergence responses.

Purple acid phosphatases (PAPs) that are secreted outside roots

to mobilize P from bound sources are not relevant to watercress

cultivation systems where this free P would rapidly wash away.

However, intracellular phosphatases are of interest for PUE in

aquatic crops as these remobilize P within the plant. Our study

identified upregulation of PAP17 (AT3G17790) with dual roles in P

mobilization and ROS metabolism (del Pozo et al., 1999).

Additionally, phosphatases not previously regarded as central for

PUE were also upregulated in P− watercress. This includes DSP2

(AT2G32960), which encodes a tyrosine-specific phosphatase and

whose expression was increased 3.2-fold in one study with P-

starved A. thaliana (Müller et al., 2007). The gene for the

inorganic pyrophosphatase PPA4 (AT3G53620), which releases P

from pyrophosphate, was also upregulated in watercress here

(Navarro-De la Sancha et al., 2007). These results suggest an

increased importance for investigating alternative phosphatases

that have previously been overlooked in PUE studies. Key to all

these changes is differential gene expression of numerous

transcription factors associated with the PSR such as SPX1, SPX3,

WRKY75, and HHO2 in watercress roots (Puga et al., 2014; Zhou

et al., 2015; Wang et al., 2020).
4.3 Antioxidant capacity is increased
without loss to glucosinolate
concentration in P deficiency

AO capacity and GSL concentration are of critical importance

as nutritional traits, linked to beneficial impacts on human health

and central to the watercress nutritional profile, of relevance to the

consumer. AO capacity was increased in P− plants, and there were

no changes to the total concentration of GSLs. Increased AO

capacity could be linked to the impairment of photosynthetic rate

(via impairing electron transfer) in P deprivation, leading to ROS

generation, which is countered through increased synthesis of AOs

and activity of AO enzymes, such as peroxidase (Meng et al., 2021).

This is a widely reported response to P−, with evidence in bean

(Phaseolus vulgaris), tomato (Solanum lycopersicum), rice (Oryza

sativa), and maize (Zea mays) (Juszczuk et al., 2001; Zhang et al.,

2014; Muneer and Jeong, 2015; Veronica et al., 2017). The studies in

bean and maize also found P− decreased leaf area, as in watercress.

Leaf biomass was also higher in phosphate-treated garden sage

(Salvia officinalis) in agreement with our results, but this was

associated with increased leaf phenolic (AOs) concentration (Nell

et al., 2009). However, the P+ concentration used by Nell et al. (136

mg L−1 PO4) far exceeded those used in our field conditions (P+

~0.06 mg L−1). The increase in AO capacity of P− watercress is

supported by transcriptomic changes in our study: VTC4, involved

in ascorbate biosynthesis, was upregulated in P− shoot tissue

(Conklin et al., 2006). Interestingly, catalytic activity by VTC4

releases phosphate, so this protein may serve a dual function for
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PUE by freeing bound P and providing AO scavenging

(Torabinejad et al., 2009).

No previous studies exist on the effects of fertilizer application

on watercress GSL concentration; however, there is literature for

other species. Contrary to our results, GSL concentration of

Arabidopsis increased in P− conditions; however, the P−

conditions used in that trial (3 µM = 0.285 mg L−1 PO4) exceed

mean P concentration observed in the irrigation supply here, even

in P+ conditions in our trial, so these effects may not be relevant at

very low P concentrations (Pant et al., 2015). In rocket (Eruca

sativa), increasing P elevated total GSL concentration (Chun et al.,

2017). However, once again, even the lowest P concentration (0.5

mM = 45.49 mg L−1 PO4) far exceeded those used in this trial.

Additionally, GSLs quantified in this study were methionine-

derived, whereas gluconasturtiin (comprising >90% of GSL in

watercress) is phenylalanine-derived (Underbill, 1965; Voutsina

et al., 2016). Considering methionine is a sulfur-containing amino

acid and phenylalanine is not, it is possible that GSL concentration

not affected in watercress because there is no trade-off with sulfur

allocation between GSL biosynthesis and low P-induced cell

membrane remodeling (as sulfolipids). These GSL studies also

raise the question of how biologically relevant P-deficient

conditions are to field conditions. Although the chalk streams

supplying watercress farms naturally contain unusually low

concentration of phosphate (<0.04 mg L−1), P available in

solution within soils has been reported to be approximately 0.05

mg L−1, but this varies considerably with soil type (Havlin et al.,

2005). In several Brassica species (B. campestris and B. juncea) given

either 0.1 mM or 0.5 mM P, a similar result was found to watercress

in our study: Trejo-Téllez et al. (2019) found that there were no

differences in the concentration of alkenyl-GSLs (the primary GSL

group in the plants) and several indole-GSLs between different P

supplies in either species tested. However, responses of GSLs to

treatment varied between species. This demonstrates the variability

of GSL responses to P.

Growers are also interested in developing a sweeter watercress

crop to appeal to consumers who find its peppery taste polarizing

(Dr. H. Smith, Vitacress, 2020, personal communication).

Therefore, it is interesting that sugar and starch concentration

were also increased in P− shoots. Increases in starch and sugars is

a well-reported response to low P (Rychter and Randall, 1994;

Ciereszko and Barbachowska, 2000; Müller et al., 2007; Hammond

and White, 2011; Li et al., 2021). Sugar is critical for signaling

cascades involved in the P-starvation response and many P-

responsive genes are sugar-inducible such as PHT1;1

(Karthikeyan et al., 2007; Rouached et al., 2010). Starch

accumulation is attributed to an increase in Calvin cycle

intermediates (due to decreased exchange of triose-phosphate

with cytosolic P) from which P can be liberated (MacNeill et al.,

2017). It may also be the case in this study that sugar and starch

concentrations were higher as they were more concentrated in

dwarfed shoots. RNA-seq results also support the role of sugars in P

starvation responses. CTIMC (AT3G55440), involved in

gluconeogenesis, had a log fold-change of 0.45 (p < 0.0001) in P−

shoots compared to P+ shoots in our study (Dumont et al., 2016).

An increase in the CTIMC protein triosephosphate isomerase has
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been reported to increase in P− maize roots (Li et al., 2007a). SEX4

dephosphorylates starch granules to regulate starch accumulation,

and its gene was also upregulated here (Kötting et al., 2009). In P−

watercress roots, GWD1 (AT1G10760), which regulates the

addition of P to starch, was downregulated (Yu et al., 2001).

It is promising that there was no compromise to the nutritional

quality, but the peppery flavor of glucosinolates could be softened

by increased sugars. Taste trials are needed to quantify the effects of

enhanced sugars on consumer taste preferences. Importantly,

increased AO capacity and the maintenance of GSL concentration

for commercial crops grown with less P input provide a win–win

situation for watercress, with maintained or enhanced nutritional

characteristics and an improved environmental footprint.

Additional trials are also required to see if these effects are stable

across different environments and growing seasons.
4.4 Variation in PUE enables breeding for
PUE in watercress

To further explore the effects of P deprivation on watercress

morphology and biochemistry, an additional aim of this study was

to use variation in these responses to P to inform selections for

future breeding. Stem length, number of leaves, and individual leaf

area all varied significantly between lines and ranking of lines by

trait means, and assessing percentage change in response to low P is

valuable for making initial line selections for future breeding. This
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showed that lines 60 and 102 were valuable for quantification of P

and K concentration and differential gene expression analysis by

RNA-seq. Line 60 was P-responsive (e.g., 114% increase in mean

root fresh weight in P−) and had a relatively high AO capacity,

whereas line 102 ranked the highest for several yield traits while

exhibiting low responsiveness to P treatment. Overall, PUE was the

highest in line 60 followed by 102, as reflected by the highest P

concentration in dried shoot tissue under both conditions

compared to the commercial control. This provides further

evidence to progress these lines in breeding for PUE in watercress.

The large increase in root biomass for line 60 in P− suggests that

the PUE strategy for this line focuses on altered root morphology, or

this could be a by-product of effective P remobilization strategies,

whereas the relatively P-unresponsive yield seen in 102 suggests

enhanced uptake (e.g., higher activity of P transporters) and more

effective utilization internally. The development genes (UGE4,

MYO6, and PSP) upregulated in P− in line 60 indicate

morphology changes. However, of these, only MYO6 upregulation

was unique to line 60 (PSP and UGE4 were also upregulated in 102,

with respect to WXVITA). Line 60 has also been shown to have

consistently high GSL concentration and leaf area in previous trials

in the UK and US (Qian et al., 2023). In addition, DEGs identified in

both lines were involved in phosphate ion homeostasis (CAX1 and

UBC24, aka PHO2). The downregulation of PHO2 in lines 60 and

102 (with respect to WXVITA) in P− is especially interesting as

PHO2 downregulation results in reduced degradation of PHO1,

leading to increased P loading to the shoots (Liu et al., 2012). This
FIGURE 9

Responses to P deficiency (P−) in watercress and genetic targets identified by RNA-seq. Blue boxes illustrate morphological and biochemical
changes observed in P− conditions, with respective genes associated with these changes and identified through RNA-seq results in purple boxes. Up
(↑) arrows denote an increase, whereas ↓ arrows denote a decrease. The = icon illustrates the absence of an effect of P− on shoot fresh biomass
whereas shoot dry biomass increased. *Other unexplored phosphatases identified here but not previously recognized as PUE genes in A. thaliana
that could provide PUE roles.
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could partly explain the higher P concentration and yield of these

selected lines compared to WXVITA. These genes provide further

targets for breeding watercress with improved PUE. The

identification of PHO2 in these selected lines with improved PUE

also supports our previous review that listed PHO2 as a candidate

gene for PUE breeding in watercress (Hibbert and Taylor, 2022).
5 Conclusion

We provide the first report on the effects of contrasting

phosphate-based fertilizer treatments on the morphology,

biochemistry, and transcriptome of watercress, alongside the

identification of a suite of genes important for PUE in this

aquatic species. Taken together, this information will underpin

future watercress breeding (Figure 9). Watercress plants sustained

shoot yield without additional fertilizer treatment, partially through

enhanced root biomass, and had shorter stems and more densely

packed leaf area. Strategies (and associated genes) for improved low

P tolerance in watercress focused on cell membrane remodeling

(e.g., SQD1/2, DGDG1/2, MGDG3, PLPZETA2, UGP3, and PECP1),

also regarded as a core gene set for the PSR in A. thaliana (Lan et al.,

2015). Homologs of other known PUE genes such as P transporters

(e.g., PHT1 and PHO2), transcription factors (e.g., SPX1/3, WRK75,

and HHO2), and phosphatases (e.g., PAP17) were also identified as

important for watercress PUE. Additional genes not previously

regarded as important for their PUE function included numerous

genes for root suberization, suggesting a higher emphasis on this

strategy for PUE in aquatic crops like watercress. Overall, this study

identified new germplasm and genetic targets to assist with

advancing PUE in watercress breeding.
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