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Incorporating cover crops into cropping systems offers numerous potential

benefits, including the reduction of soil erosion, suppression of weeds,

decreased nitrogen requirements for subsequent crops, and increased

carbon sequestration. The aboveground biomass (AGB) of cover crops

strongly influences their performance in delivering these benefits. Despite

the significance of AGB, a comprehensive field-based high-throughput

phenotyping study to quantify AGB of multiple cover crops in the U.S.

Midwest has not been found. This study presents a two-year field

experiment carried out in Eastern Nebraska, USA, to estimate AGB of five

different cover crop species [canola (Brassica napus L.), rye (Secale cereale

L.), triticale (Triticale × Triticosecale L.), vetch (Vicia sativa L.), and wheat

(Triticum aestivum L.)] using high-throughput phenotyping and Machine

Learning (ML) models. Destructive AGB sampling was performed three

times during each spring season in 2022 and 2023. An array of

morphological, spectral, thermal, and environmental features from the

sensors were utilized as feature inputs of ML models. Moderately strong

linear correlations between AGB and the selected features were observed.

Four ML models, namely Random Forests Regression (RFR), Support Vector

Regression (SVR), Partial Least Squares Regression (PLSR), and Artificial

Neural Network (ANN), were investigated. Among the four models, PLSR

achieved the highest Coefficient of Determination (R2) of 0.84 and the lowest

Root Mean Squared Error (RMSE) of 892 kg/ha (Normalized RMSE (NRMSE) =

8.87%), indicating that PLSR could be the most appropriate method for

estimating AGB of multiple cover crop species. Feature importance analysis

ranked spectral features like Normalized Difference Red Edge (NDRE), Solar-

induced Fluorescence (SIF), Spectral Reflectance at 485 nm (R485), and

Normalized Difference Vegetation Index (NDVI) as top model features

using PLSR. When utilizing fewer feature inputs, ANN exhibited better

prediction performance compared to other models. Using morphological

and spectral parameters as input features alone led to a R2 of 0.80 and 0.77

for AGB prediction using ANN, respectively. This study demonstrated the
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feasibility of high-throughput phenotyping and ML techniques for accurately

estimating AGB of multiple cover crop species. Further enhancement of

model performance could be achieved through additional destructive

sampling conducted across multiple locations and years.
KEYWORDS

aboveground biomass, cover crop, plant phenotyping, machine learning, partial
least squares regression, rye
1 Introduction

Cover crops, strategically incorporated into farmland soil during

fallow periods between primary cash crop production, serve a

multitude of potential benefits. These benefits include the reduction

of soil erosion through wind and surface runoff, augmentation of

carbon sequestration through biomass accumulation, and the

contribution of nitrogen to the soil for subsequent growing seasons

(Kaye and Quemada, 2017). In the global context of regenerative and

conservation agriculture, cover crops have been identified as a key

component for ensuring long-term sustainability and ecological

resilience of agroecosystems (Marandola et al., 2019; Aiyer et al.,

2022; Inveninato Carmona et al., 2022). While cover crops can

advance sustainability goals in crop production, their improper

implementation could lead to a reduction in the yield of the

primary crop. A large-scale remote sensing study on the yield

reduction introduced by cover cropping showed an average yield

loss of 5.5% and 3.5% for corn (Zea mays L.) and soybean (Glycine

max L.) fields in the U.S. Corn Belt (Deines et al., 2023). Terminating

rye cover crop close to the planting date of cash crop was found to

increase the seedling root disease, which led to reduced yield for corn

production (Acharya et al., 2022). Planting ruzigrass cover crop was

found to reduce the soil phosphorus availability (Almeida et al.,

2019). Continuing to advance management practices as “systems”

that optimize benefits from cover crops while minimizing cash crop

yield penalty is a critical element of their success and extended use

(Basche and Roesch-McNally, 2017; Koehler-Cole et al., 2023;

Popovici et al., 2023).

The accumulation of above ground biomass (AGB) from cover

crops serves as the fundamental driving force behind these potential

benefits as well as potential negative impacts on cash crop yield (Ruis

et al., 2019; Nichols et al., 2020). Consequently, quantitatively

monitoring this process for different cover crops becomes an

essential step in assessing their performance. Furthermore, such

monitoring could empower farmers with digital tools to support

their decision-making for important applications, such as establishing

data-driven methodologies to determine optimal termination dates of

cover crops, and understanding nutrient release and recycling to cash

crops. The biomass accumulation process, however, is complex due

to the genotype by environment (GxE) interactions created by

differing geographical locations, fluctuating climatic conditions year
02
after year, and variability in farmers’ practices (Koehler-Cole et al.,

2023). As such, intensive research is ongoing to determine the

optimal types and cultivars of cover crops, the best termination

stage, and the suitable termination method for local farmers

(Adetunji et al., 2021). Conventionally, cover crop AGB has been

measured through destructive sampling of a specific subarea in the

plot. This sampling process is time-consuming and labor-intensive,

and poses a challenge in experiments constrained by plot size due to

the need to balance treatment levels and field size (O'Brien et al.,

2022; Zhang et al., 2022; Capri et al., 2023). Nevertheless,

understanding the dynamic nature of cover crop biomass

accumulation at high temporal resolution could offer insights for

researchers seeking to develop or refine predictive models for cover

crop research. However, the use of destructive sampling methods

often precludes the possibility of continuous quantification of plant

materials over the entire experimental period.

Field-based High-Throughput Plant Phenotyping (FHTPP)

systems have made significant progress in recent years, owing to

the proliferation of low-cost sensors, ground vehicles, unmanned

aerial vehicles (UAV), and high-resolution satellite Constellations

(Atefi et al., 2020; Zhang et al., 2020; Feng et al., 2021). Some of

these systems have facilitated data acquisition at sub-leaf resolution

by measuring plants from a close range (Bai et al., 2018; Bai et al.,

2019; Yuan et al., 2019). Various Machine Learning (ML) models

leverage morphological and spectral traits extracted from FHTPP

systems to quantify important agronomic traits, such as canopy

height, flowering date, maturity date, and AGB, among others

(Zhou and Nguyen, 2021). While substantial advancements have

been made in the development of data collection and processing

pipelines in FHTPP, there is a paucity of publications documenting

its application for quantifying cover crop AGB. Given the growing

popularity and potential benefits of cover crops, FHTPP emerges as

a promising tool, capable of quantifying the AGB accumulation

process in a non-destructive way with notable efficiency.

Multispectral imaging has been employed to establish a

correlation with the termination efficiency rating for various cover

crop species (Kumar et al., 2023). High-resolution satellite images

were used to estimate cover crop biomass, achieving the highest

correlation coefficient (R) of 0.74 (Kharel et al., 2023). It is worth

noting that some crop species, such as winter wheat, can be utilized

as both cash and cover crops, hence a relatively larger volume of
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literature is available for them. Multispectral images, gathered by

UAVs, have been widely used to estimate the AGB of winter wheat

with the aid of ML models (Wang et al., 2022). Similarly, Vegetation

Index–based MLmodels have been developed and compared for the

estimation of AGB of potato (Solanum tuberosum L.) canopy (Liu

et al., 2022a; Liu et al., 2022b). Both traditional ML and deep

learning models have been explored for AGB estimation, the choice

of which depends on the size of the available data (Yue et al., 2018;

Dong et al., 2020; Whitmire et al., 2021).

We undertook a two-year experiment involving five cover crop

species: canola, rye, triticale, vetch, and wheat. The objectives of this

study were: 1) to employ a FHTPP system to collect high-resolution

phenotypic datasets for the cover crops, and 2) to build and evaluate

ML models to quantify AGB of cover crops. This research aims to

fill an important gap in the application of FHTPP in cover crop

research, potentially leading to new tools for cover crop breeding

and field management.
2 Materials and methods

2.1 Experimental design and ground truth
data collection

Table 1 provides details of a two-year cover crop experiment

conducted on a research farm near Mead, Nebraska, United States

(41°08’44” N, 96°26’20” W, and an elevation of 350m). The study

spanned the growing seasons of 2022 and 2023, involving the

cultivation of five cover crop species, with no irrigation or

nitrogen application. The dominant soil types are Filbert silt loam

and Yutan silt clay loam. Figure 1 illustrates the field conditions

where data collection took place, the experimental designs

employed, and the cameras/sensors used in the study. In both

years, five cover crop species were planted, with each year having 3
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and 4 reps, respectively. In 2023, the experiment included two

different rye varieties. This gives a total of 15 plots in the first year,

and 24 plots in the second year. The dimensions of the plots were

4.6 m by 6.1 m in 2022 and 1.9 m by 6.1 m in 2023. At each plot, a

designated area of 0.5 m² was marked using flags. Cover crops and

any additional green vegetation within these areas were hand-

clipped from the soil surface (Supplementary Figure S1). The

harvested fresh biomass was oven-dried at 65°C until a constant

weight was achieved for dry AGB determination.

All crop species survived the winter of the first year, although

there was a notable reduction in canola AGB in the spring. In

contrast, triticale, vetch, and canola were winterkilled in the second

year, attributable to a uniquely dry and cold regional winter.

Destructive AGB sampling was carried out three times each year in

the spring, resulting in a total of 45 and 72 AGB samples for the

respective years (including winterkilled plots with a yield of 0 kg/ha in

2023). These samples include 36 plots with zero AGB due to winter

kill in the spring of 2023. The plot-scale HTPP data, including

multispectral images, LiDAR (Light Detection and Ranging) point

clouds, thermal images, and spectral reflectance in the visible and

near-infrared range, were collected using a cable-suspended field

phenotyping system. Additionally, an on-site weather station

recorded standard weather data at a 1-minute interval, ensuring an

accurate integration of the phenotypic and environmental data.
2.2 Data processing before
machine learning

Figure 2 outlines the data preprocessing pipeline employed for

feature extraction in the context of ML modeling. Phenotypic data,

anticipated to correlate with plant AGB, were derived from raw sensor

data following a previously developed data processing protocol (Bai

et al., 2019). Environmental data, synchronized with the phenotypic

data via timestamps, were also incorporated into the analysis. The

phenotypic and environmental features are listed in Figure 2. A set of

raw images were also presented alongside their corresponding

segmentation results. For each dataset, nadir-captured multispectral

and thermal images were obtained using the sensing platform. Green

vegetation pixels were identified as foreground through image

registration, histogram equalization, and thresholding. Green Pixel

Fraction (GPF), plot average temperature (Tp), canopy average

temperature (Tc), and soil average temperature (Ts) were computed

based on the segmentation outcomes. GPF demonstrated a strong

correlation with Normalized Difference Vegetation Index (NDVI)

throughout the growing season, suggesting its potential as a robust

estimator for quantifying canopy growth before canopy closure (Bai

et al., 2016). Tp contributed to the estimation of the Leaf Area Index

and was used to detect crop water stress (Irmak et al., 2000;Wang et al.,

2021; Cheng et al., 2023). Additionally, Growing Degree Day (GDD), a

widely adopted feature in crop growth models, was calculated as an

additional environmental feature using weather data from the first day

of the year. Two base temperatures were applied for the GDD

calculation (Winter wheat: 0°C (Slafer and Savin, 1991); Canola: 5°C

(Lawson et al., 2006); Rye: 0°C (Szuleta et al., 2022); Vetch: 5°C

(Lawson et al., 2012); Triticale: 0°C (Schwarte et al., 2006). Cover
TABLE 1 Information for the two-year cover crop field experiment.

Year Parameter Information

2022 Cover crop species
and cultivars

Vetch: Hairy vetch
Canola: Trophy canola
Wheat: Winter wheat
Triticale: Triticale
Rye: Yankee rye

Planting date Sep-26-2021

Biomass sampling dates Apr-18-2022
Apr-26-2022
May-09-2022

2023 Cover crop species
and cultivars

Vetch: Hairy vetch
Canola: Trophy canola
Wheat: Winter wheat
Triticale: Triticale
Rye: Elbon and Yankee rye

Planting date Sep-27-2022

Biomass sampling dates Apr-07-2023
Apr-27-2023
May-08-2023
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crops sharing the same base temperatures had identical GDD values

(Supplementary Equation S1). A comprehensive list of equations used

for calculating Vegetation Indices (VIs) is provided in the

Supplementary File (Supplementary Table S1), sourced from prior

publications (Rouse et al., 1974; Rondeaux et al., 1996; Gamon et al.,

1997; Barnes et al., 2000; Suárez et al., 2008;Meroni et al., 2009; Badgley

et al., 2017).
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2.3 Machine learning models for
aboveground biomass estimation

Feature reduction was carried out to mitigate strong

multicollinearity among features, as well as to exclude features

that showed a weak correlation with AGB (|R| < 0.45).

Subsequently, one-hot encoding was applied to convert the crop
FIGURE 2

Data processing pipeline for phenotypic and environmental features. The left panel visualizes the data processing of NU-Spidercam data, including
raw images and a list of phenotypic parameters; the right panel lists the raw environmental data collected from the on-site weather station and the
feature reduction process before the development of machine learning models.
A B C

D

E

FIGURE 1

Field condition, experimental layout, and instrumentation of the experiment. (A) Field photo of the data collection; (B, C) Experimental layout in 2022
and 2023 seasons, respectively; (D) Sensors onboard the NU-Spidercam platform; (E) Instrumentation of the on-site weather station.
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species into a numerical feature. Model performance was

investigated using all features first and using different categories

of features. The input features for model training were categorized

into phenotypic and environmental features. Phenotypic features

can quantify the variance among individual plots due to growth

heterogeneity caused by differences in soil, water, and nutrients.

Phenotypic features were further grouped into morphological (GPF

and Canopy Height (Hc)), spectral (VIs), and thermal (Tp) groups,

which were captured using different onboard instruments

(Figures 1, 2).

Given the small data size, we used non-deep learning models to

avoid the risk of overfitting to a certain degree. These models

include Random Forests Regression (RFR), Support Vector

Regression (SVR), Partial Least Squares Regression (PLSR), and

Artificial Neural Network (ANN). RFR is an ensemble learning

method that constructs multiple decision trees during training and

outputs the mean prediction of the individual trees for AGB

modeling. This method not only offers robustness against

overfitting but also provides an inherent feature importance

evaluation, enabling an understanding of which predictors are

most influential in the modeling process. SVR is a regression

adaptation of support vector machines, which operates by

identifying an optimal hyperplane that functions as a decision

boundary. It strives to ensure that most data points are within a

certain margin of this hyperplane, maximizing the margin while

limiting the regression errors. This method is effective in providing

robust predictions, particularly for datasets with noisy observations.

PLSR is a modeling method specializing in handling highly

correlated input features. It works by transforming the original

input features into a smaller set of uncorrelated components,

capturing the most variance in the dataset. These components are

formed from linear combinations of the original variables and are

used in building the model to efficiently deal with multicollinearity

and reducing dimensionality. ANNs are powerful computational

models that excel at capturing complex non-linear relationships.

They function by adjusting weights and biases during training to

minimize a specific loss function and improve the prediction

accuracy. This process involves multiple training cycles of forward

and backward propagation. By iteratively refining these parameters,

ANNs learn high-level patterns and correlations that are often

missed by more traditional statistical methods. During the

development of the ANN model, only two hidden layers were

used, both incorporating potential L2 regularizations to reduce

overfi t t ing. The primary parameters explored during

hyperparameter tuning are detailed in Supplementary Table S2.

The dataset was randomly split into training (80%) and test (20%)

sets. Data standardization was carried out for each feature

independently. During model training, ten-fold cross-validation

was implemented across all models. The optimized models with

the best hyperparameters were selected based on the highest R2

observed during cross validation. The chosen optimal model was

then implemented for predicting AGB in the test set, and the

predictive performance was assessed using R2, Root Mean

Squared Error (RMSE), and Normalized RMSE (NRMSE). Scikit-

learn, a Python library, was used for training and evaluating ML

models. Mean decrease impurity, coefficient magnitudes, and PLS
Frontiers in Plant Science 05
loadings were employed to evaluate feature importance in RFR,

SVR, and PLSR models, respectively.
3 Results and discussion

3.1 Aboveground biomass and data
pre-processing

Descriptive statistics of AGB for each crop type in the whole,

training, and testing data sets are illustrated in the Supplementary

Document (Supplementary Figure S2). Figure 3 shows the temporal

variations of AGB and selected sensor-based phenotypic features

(Hc, NDVI1, and GPF) on the three sampling dates in both years.

All parameters exhibited a consistent increase over time, aligning

with the observed AGB growth, thus suggesting their potential as

features to estimate cover crop AGB. In both years, rye consistently

displayed the highest biomass, surpassing other cover crops

significantly (Figures 3A, E). Notably, rye stands out as the most

widely grown cover crop species in the U.S. Midwest (Nichols et al.,

2020). The capacity to produce exceptional AGB under the local

climate has prompted the wide adoption of rye cover crop (Ruis

et al., 2019; Koehler-Cole et al., 2020). In addition, rye’s capability to

significantly suppress weed growth leads to reduced management

costs (Oliveira et al., 2019; Rosa et al., 2021). A field study found

that a minimum AGB of 5000 kg/ha was required to achieve a 75%

reduction in weed biomass (Nichols et al., 2020). Based on the

biomass data obtained in this study, it is evident that rye was the

only species consistently achieving this threshold in both years,

typically by the end of April or the beginning of May, given a

planting date at the end of September. In 2022, wheat and triticale

outperformed vetch and canola in terms of biomass production. A

substantial portion of the canola perished in the spring of 2022,

resulting in the lowest biomass yield.

Rye consistently demonstrated higher Hc values than other

cover crops, and all species exhibited increasing Hc values

throughout the experimental period (Figure 3B). At the first and

second sampling dates of 2022, rye had the highest NDVI1 and GPF

values (Figures 3C, D). Discrepancies in VIs among the cover crop

species diminished by the second date, ultimately reaching the same

level by the third sampling date in 2022. By the final sampling day of

2022, NDVI1 and GPF for different crop species were not

significantly different. However, these two parameters for vetch

and canola plots experienced a faster increase than those of others

during the investigated period. In 2023, triticale, vetch, and canola

experienced winterkill, potentially attributable to diminished snow

cover during the coldest periods. A few triticale plants survived in

2023 (Supplementary Figure S3), resulting in slightly higher NDVI1

and GFP than vetch and canola, which were essentially bare soil

(Figures 3G, H). This underscores a potential risk associated with

growing less winter-hardy crops, such as legumes and brassicas, in

the study region. Between rye and wheat, all assessed phenotypic

parameters showed higher values for rye than wheat in 2023

(Figures 3F–H). The development of additional features can be

found in the Supplementary Document (Supplementary Figures

S4, S5).
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3.2 Correlation analysis

The correlation matrix of all features and AGB before the

feature reduction for all crop species is shown in Figure 4A. We

categorized these features into four groups for further analysis:

morphological (GPF and Hc), spectral (all VIs), thermal (Tp, Tc,

and Ts), and environmental (all features from the on-site weather

station). The first feature reduction aimed to eliminate features with

strong collinearity while retaining at least one feature from each

category. Tp, the average temperature of all canopy and vegetation

pixels, was retained as the representative thermal feature for Tc and

Ts due to their strong positive correlations. Further investigation

revealed a notable temperature difference in mid April between Tc

and Ts, as opposed to early May (Supplementary Figure S6).

However, Tp consistently showed very strong correlations with

Tc and Ts. Another rationale for retaining Tp as the thermal

feature, rather than Tc or Ts, was its relatively easier

measurability without a need to distinguish between canopy and
Frontiers in Plant Science 06
soil pixels. A previous study showed that thermal parameters

improve ML-based prediction of the Leaf Area Index for maize

(Zea mays L.) (Wang et al., 2021). Therefore, we expected that

integrating Tp would improve the model’s performance in

estimating AGB. R485 (Blue) and R675 (Red) represent the

strong absorption bands by the crop canopy, while R550 (Green)

denotes the most reflected band in the visible range. Due to their

strong positive correlations, reflectance in the blue wavelength

(R485) was kept to represent spectral reflectance in the visible

wavelength range. All NDVIs, Normalized Difference Red Edge

(NDRE), and Optimized Soil Adjusted Vegetation Index (OSAVI)

exhibited strong positive correlations due to the similar wavelengths

used in their calculations. Thus, NDVI1 and NDRE were retained

for NDVI-related VIs. NDRE was also kept due to its lesser

susceptibility to saturation, as evidenced by its behavior at the

final sampling date (Supplementary Figures S4, S5). Among the ten

Solar-induced Fluorescence (SIF) features, only SIF1, SIF8, and

SIF10 were kept, as the remaining SIFs had strong positive
A B

C D

E F

G H

FIGURE 3

Aboveground biomass and selected phenotypic parameters in 2022 (A–D) and 2023 (E–H). Three phenotypic parameters include Hc, NDVI1, and
GPF. Standard errors are marked with vertical bars.
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correlations with SIF1. These strong correlations could be attributed

to similarities in their calculation equations. Notably, SIF8 uses

reflectance values from two NIR bands, which is distinct from the

equations of other SIFs. While most SIF features leverage

reflectance near an oxygen absorption band (O2-B) around 687

nm, SIF10 utilizes reflectance near another oxygen absorption band

(O2-A) around 760 nm. The results of the first feature reduction are

available in the Supplementary Document (Supplementary

Figure S7).

The second feature reduction involved the removal of features with

a weak correlation to AGB (|R| < 0.45). In this step, all environmental

features were filtered out except for GDD from the beginning of the

year (GDD_spring). This indicates that instantaneous environmental

features exerted a weaker influence on AGB than phenotypic

parameters in this study. The only accumulative parameter,

GDD_spring, demonstrated relatively stronger predictive power for

AGB (R = 0.45). SIF10 and Transformed Chlorophyll Absorption in

Reflectance (TCAR) were also excluded due to their weak correlation

with AGB. When considering crop species as a single feature, the

feature reduction process resulted in the selection of 12 features for ML

model training. Figure 4B illustrates the correlation matrix of the final

features, including an environmental feature (GDD_spring), two

morphological features (GPF and Hc), seven spectral features (seven

VIs), and a thermal feature (Tp). These features served as inputs forML

models, although strong correlations persisted among some of them.

Figure 5 presents the sorted R values between feature inputs and

AGB for all crop species (Figure 5A), as well as for each specific crop

species (Figures 5B–F). In general, the top five features with

stronger correlations were VIs calculated from spectral

reflectance. Specifically, NDRE (R = 0.8), SIF1 (R = -0.79), SIF8

(R = 0.78), PRI (R = 0.76), and NDVI1 (R = 0.75) exhibited the

highest correlations with AGB when considering all crop species.
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For individual crop species, additional features were included in the

top five features, including R485, R750, GDD_spring, and Hc. A

weighted scoring system was used to rank the overall top five

predictors, assigning decreasing scores (from 5 to 1) based on the

features’ ranks (1 to 5) for each crop species. The results reaffirmed

that VIs exhibit relatively stronger linear correlations with AGB,

with a slightly varied ranking compared to Figure 5A, where the top

five predictors were SIF1, PRI, NDRE, NDVI1, and R485.
3.3 Machine learning model performance

Figure 6 illustrates the model performance using all feature

inputs across different models. The optimal hyperparameters for

each model are listed in Supplementary Table S3. R2 and RMSE

values are also presented in the corresponding subfigures. The PLSR

model (R2 = 0.84, RMSE = 892 kg/ha, NRMSE = 9%) exhibited the

best performance when compared with models that could better

capture non-linear interrelationships between the features and

AGB. The RFR model (R2 = 0.69, RMSE = 1246 kg/ha, NRMSE =

12%) showed the poorest performance, while SVR (R2 = 0.78,

RMSE = 1037 kg/ha, NRMSE = 10%) and ANN (R2 = 0.81,

RMSE = 981 kg/ha, NRMSE = 10%) showed comparable

performance with each other. These results indicate that AGB can

be estimated using linear ML models with good performance. The

correlation analysis above also confirmed strong linear correlations

between features and AGB with feature collinearity at a certain

degree (Figures 4, 5), indicating that PLSR could be the most

suitable model for this scenario. Previous work concluded that

PLSR showed promising performance in AGB estimation for winter

wheat at different growth stages (Wang et al., 2022). Thus, our work

further establishes the promising performance of PLSR in AGB
A B

FIGURE 4

Correlation matrix of all (A) and reduced features (B), including morphological (GPF and Hc), spectral (VIs), thermal (Tp, Tc, and Ts), and
environmental features (GDD_spring, Ta, RH, U3, Solar, and Rain). The correlation coefficient is shown in the correlation matrix of reduced features.
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estimation for multiple cover crop species. Another study explored

AGB estimation for multiple oats (Avena sativa L.) cultivars at

different locations using RFR, SVR, PLSR, and ANN models. The

results showed that no single model performed best across all

locations, and PLSR outperformed other models at certain

experimental locations (Sharma et al., 2022). Furthermore, a

systematic investigation of model performance involving eight

ML models concluded that PLSR was among the best models for

ABG estimation in winter wheat (Yue et al., 2018). These studies

reconfirmed that linear-based models such as PLSR can outperform

more complex, non-linear models in AGB estimation. To the best of

our knowledge, no prior results are available for comparison with

our model performance across multiple cover crop species.

Therefore, we exclusively compared the model performance for

available crop species, such as winter wheat. Comparable model

performance was observed when using drone-based multispectral

camera systems and PLSR to estimate winter wheat AGB [R2 = 0.75,

(Wang et al., 2021)]. A higher model performance was achieved

when using VIs from a close-range field spectrometer and PLSR for

the same purpose [R2 = 0.89, (Yue et al., 2018)]. Additionally,

comparable performance was achieved for potato AGB estimation

using RFR at the tuber-growth stage [R2 = 0.68, (Liu et al., 2022a)].

Figure 7 shows the feature importance of RFR, SVR, and PLSR

models. Morphological features (Hc and GPF) ranked among the

top five important features of the RFR model. In SVR, Hc and GPF
Frontiers in Plant Science 08
ranked 9th and 6th, while in PLSR, they ranked 16th and 6th. SVR

and PLSR shared the top five features from VIs with different

ranking orders, including NDRE, NDVI1, R485, SIF1, and SIF8.

Among these five VIs, SIF1, R485, and SIF8 were also among the

top five important features of RFR. The environmental feature,

GDD_spring, ranked 7th, 8th, and 7th for RFR, SVR, and PLSR

models, respectively, indicating its significant contribution to model

performance. The thermal feature, Tp, ranked 12th, 10th, and 9th in

the three models, respectively, suggesting a slightly lesser

contribution to model performance in this study. Generally, the

crop species feature held lower importance than other features, with

average rankings at 13th, 13th, and 12th for the three

models, respectively.

Table 2 shows the model performance using different feature

categories. Firstly, only morphological features were used in the

model development. Except for the ANNmodel (R2 = 0.80, RMSE =

986 kg/ha, NRMSE = 9.81%), other models yielded the lowest R2

(0.34 - 0.50) with the highest RMSE and NRMSE (1573 - 1802 kg/ha

and 15.64% - 17.92%) compared to other conditions. ANN appears

to be the only method capable of estimating AGB for multiple cover

crop species with GPF and Hc alone. When using only spectral

parameters as feature inputs, ANN still demonstrated the highest R2

(0.77), although with a slightly reduced margin compared to other

methods (RFR: 0.66; SVR: 0.62; PLSR: 0.68). The relatively strong

performance of using spectral features alone (R2 ≥ 0.62) confirms
A B C

D E F

FIGURE 5

Pearson’s correlation coefficient (R) between all features extracted from the images and sensor data and the aboveground biomass for all crop
species (A) and each specific crop species (B–F).
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the application of aerial sensing platforms with a single

multispectral camera (e.g., drones and high-resolution satellite

imagery) for cover crop AGB estimation. The difference in model

performance between the models utilizing spectral features and

those using both morphological and spectral features was small

(DR2 = ± 0.2). This result indicates that GPF and Hc did not

improve the model performance when spectral features were

already utilized. A possible explanation is that the spectral

features already embedded the useful information of GPF and Hc.

Upon excluding the crop species feature, model performance

declined except for the ANN model. The feature importance of

crop species for RFR, SVR, and PLSR models also explains to a

certain degree why adding this feature improves the performance of

the overall model for all five crop species. The impact of the thermal

feature, Tp, on model performance was also investigated by

estimating model performance without Tp. The results indicated

that Tp contributed the least to the improvement of R2 and RMSE

for RFR, SVR, and PLSR models. Notably, including Tp led to a

higher RMSE for ANN. Therefore, the instantaneous thermal

features (e.g., Tp) may offer limited improvement in this

application. Overall, we concluded that accurate AGB estimation

for multiple cover crop species can be achieved using drone systems

or high-resolution satellite constellations, which provide spectral
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and morphological features at the plot level. Also, more accurate

prediction models can be generated from drone systems due to their

higher spatial resolution of images, while satellite systems offer

benefits in terms of higher throughput and coverage (Sankaran

et al., 2015; Zhang et al., 2020; Kharel et al., 2023). Furthermore,

accurate canopy height and thermal features could improve the

model performance to a certain extent.
3.4 Model limitation

Based on Table 2, the PLSR model built on all features yields the

highest R2 value of 0.84, with an RMSE of 892 kg/ha. Given this RMSE

value, the current model’s accuracy may require further improvement

to assist producers in predicting aboveground performance from

advanced technology. Additionally, understanding the quantitative

influence of the AGB of different cultivars of promising crops (e.g.,

various rye cultivars) on potential benefits is necessary. This effort will

help establish clear target RMSE ranges of the models. The models

developed in this study were trained and tested on multiple cover crop

types using data from two years. However, the study was limited to a

single site in Nebraska with specific soil and weather conditions. As the

models are purely data-driven, we acknowledge that their performance
FIGURE 6

Scatter plots of predicted vs. actual aboveground biomass using all features extracted from the cameras and sensors by four machine learning
techniques. Model names and performance metrics (R2 and RMSE) are shown in the corresponding subplots.
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may not be robust when predicting cover crop AGB in environments

beyond the investigated ranges, even within the U.S. Midwest and

Great Plains. Further validation of the model’s robustness and

transferability is required by testing with truly independent data sets.

For instance, a multi-location experiment across Nebraska, from west

to east, would provide a much broader range of growing environments

for candidate cover crops, aiding in testing and model improvement.
Frontiers in Plant Science 10
4 Conclusion

High-throughput plant phenotyping offers a non-destructive and

efficient approach for estimating plant AGB. This study encompassed a

two-year field experiment aiming at developing ML models for AGB

estimation of five cover crop species - rye, vetch, canola, winter wheat,

and triticale - from phenotypic and environmental data in the U.S.
FIGURE 7

Feature importance for three investigated models, including RFR, SVR, and PLSR.
TABLE 2 Comparison of model performance for cover crop aboveground biomass estimation by categorizing model inputs into morphological,
spectral, and thermal groups. The units of RMSE and NRMSE are kg/ha and %, respectively.

Model Metric Feature Selection

Morphological
(GPF, Hc)

Spectral Morphological
And Spectral

All but
crop species

All but thermal (Tp) All

RFR R2 0.34 0.66 0.67 0.65 0.68 0.69

RMSE 1802 1287 1279 13201 1253 1246

NRMSE 17.92 12.80 12.72 131.28 12.46 12.39

SVR R2 0.50 0.62 0.63 0.67 0.75 0.78

RMSE 1573 1365 1355 1273 1109 1037

NRMSE 15.64 13.57 13.48 12.66 11.03 10.31

PLSR R2 0.44 0.68 0.67 0.72 0.82 0.84

RMSE 1664 1259 1281 1176 947 892

NRMSE 16.55 12.52 12.74 11.69 9.42 8.87

ANN R2 0.80 0.77 0.79 0.84 0.81 0.81

RMSE 986 1063 1008.05 895 958 981

NRMSE 9.81 10.57 10.02 8.90 9.53 9.76
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Midwest region. The raw dataset included multispectral imagery,

LiDAR point clouds, spectral reflectance, thermal images, and

environmental data, complemented by the AGB data obtained via

destructive sampling. Consistent with prior research in similar climates,

rye outperformed other species in terms of AGB accumulation in both

years. Leveraging morphological, spectral, environmental, crop species,

and thermal features extracted from the raw dataset, we employed four

ML techniques - Random Forest Regression (RFR), Support Vector

Regression (SVR), Partial Least Squares Regression (PLSR), and

Artificial Neural Network (ANN) - to predict cover crop AGB. PLSR

emerged as the best approach (R2 = 0.84, RMSE = 892 kg/ha, NRMSE

= 8.87%) when utilizing all feature inputs. Thus, this study highlights

linear models, like PLSR, are on par with non-linear models in

capturing the fundamental relationship between features and AGB

for cover crop research, especially when dealing with feature

collinearity. All feature categories contributed to the performance of

RFR, SVR, and PLSR models, while spectral features alone exhibited

the strongest performance for RFR, SVR, and PLSR models.

Morphological features alone yielded satisfactory results when

trained with the ANN model. Instantaneous thermal features made a

marginal contribution to the model performance in this study. Despite

achieving high testing accuracy in this study, we suggest that further

training and validation of the models, using larger datasets and various

data splitting techniques, could enhance model robustness. Consistent

with challenges identified in previous research on AGB estimation for

various crops, the scarcity of ground truth data continues to be a

significant obstacle in developing more accurate and robust models,

owing to the inherent constraints of field experiments and limited

resources. Collecting more biomass data under different soil and

climate conditions could further improve the model performance.

Continuous development of more universal and robust image

processing algorithms for vegetation segmentation, especially in later

growing stages with dense vegetation canopy, could improve GPF

quantification. Convolutional neural networks could be leveraged to

replace manual feature extraction if a much larger biomass data set

is available.
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