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Fine root decomposition is a physio-biochemical activity that is critical to the

global carbon cycle (C) in forest ecosystems. It is crucial to investigate the

mechanisms and factors that control fine root decomposition in forest

ecosystems to understand their system-level carbon balance. This process can

be influenced by several abiotic (e.g., mean annual temperature, mean annual

precipitation, site elevation, stand age, salinity, soil pH) and biotic (e.g.,

microorganism, substrate quality) variables. Comparing decomposition rates

within sites reveals positive impacts of nitrogen and phosphorus

concentrations and negative effects of lignin concentration. Nevertheless,

estimating the actual fine root breakdown is difficult due to inadequate

methods, anthropogenic activities, and the impact of climate change. Herein,

we propose that how fine root substrate and soil physiochemical characteristics

interact with soil microorganisms to influence fine root decomposition. This

review summarized the elements that influence this process, as well as the

research methods used to investigate it. There is also need to study the influence

of annual and seasonal changes affecting fine root decomposition. This

cumulative evidence will provide information on temporal and spatial

dynamics of forest ecosystems, and will determine how logging and

reforestation affect fine root decomposition.

KEYWORDS

climatic factors, decomposition, forest ecosystem, fine root, microorganism, physio-
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1 Introduction

While plant litter decomposition in terrestrial systems is one of

the largest annual fluxes in global carbon (C) and nutrient cycling,

the role of fine root traits relative to above-ground litter is

inadequately understood (See et al., 2019). Every year, a massive

amount of organic matter enters the decomposition cycle, mostly in

the form of dead plant matter. When a plant loses its leaves,

branches, or small roots, organic debris builds up on the forest

floor, where these materials becomes a vital resource for soil

organisms (Findlay, 2021). Because of foliar litters abundance and

its relatively high nutrient content, it has received disproportionate

attention in forest litter decomposition studies (Zhou et al., 2020).

In contrast, while researchers initially paid little attention to fine

roots (which make most underground litter), research is now

clarifying the important of these roots to terrestrial ecosystems

(Cheng et al., 2022). Fine roots are essential to the below-ground

forest biomass and contribute substantially to the soils organic

matter (Hayashi et al., 2023). Understanding fine root

characteristics is necessary to describe forest ecosystem C and

nitrogen (N) cycles (Zhu et al., 2021). Responses by a terrestrial

ecosystem to changes in its surrounding environment can be seen in

the decay dynamics of fine roots, which also carry water and

nutrients and perform tasks below the ground level (Cheng et al.,

2022). However, in fine root decomposition research, their chemical

makeup, turnover rates, and interactions with decomposer species

have not been fully examined.

Fine root turnover contributes from 14-27% of net primary

production (NPP) globally (Mccormack et al., 2015) and is thought

to account for 33% of annual forest litter inputs and 48% of the

inputs in grasslands (Freschet et al., 2017). Historically, root

diameter has been used to categorize it as ‘fine’ or ‘coarse,’, with

the former having a diameter of ≤2mm and the latter having a

diameter >2mm (Berg and Mcclaugherty, 2020). Root litter input is

highly variable across ecosystems, but in at least some it contributes

the same amount of organic matter and nutrients to the soil as does

foliar litter (Prescott and Grayston, 2023). Rine root death and

decomposition represent a major C cost to plants, and is a potential

soil C sink (Chou et al., 2022).

Fine root biomass, and its nutrient contents and rate of

decomposition, can be influenced by a number of abiotic and

biotic variables (Zhang et al., 2021). When organic matter is

decomposed by biotic microorganisms like bacteria and fungi,

more complex molecules are converted into simpler forms (Islam

et al., 2022). Due to their recalcitrant character, roots with high

levels of lignin (L) and secondary chemicals degrade more slowly

(Phillips et al., 2023). By decomposing root tissues and promoting

microbial activity in the microenvironment they create, mycorrhizal

fungi and soil-dwelling biota also have an impact on decomposition

(Wu et al., 2023). Microbial activity, enzyme function, and

decomposition rates are affected by abiotic factors such as

temperature, moisture, oxygen, N, phosphorus (P), and soil

texture (Lull et al., 2023). While nutrient-rich soils promote faster

decomposition due to higher biomass, well-aerated soils promote

effective decomposition (Abdul Rahman et al . , 2021).

Understanding these factors is essential for forecasting how land
Frontiers in Plant Science 02
use and environmental changes will affect C and nutrients cycles in

terrestrial ecosystems.

In forests, tree species and functional groups differ greatly in

their root characteristics (Herzog et al., 2019). The fine root biomass

of boreal forests has an inverse relation with soil fertility, but has a

positive association with mean annual temperature (MAT) and

mean annual precipitation (MAP), and stand age (Peng and Chen,

2021). The fine root biomass of temperate forests increases with site

elevation, and with higher MAT (Gao et al., 2021). Climate and soil

nutrients are also linked to nutrient concentrations and fine roots

contents in forest ecosystems (Pandey et al., 2023). Sometimes, the

nutrient amounts released by fine roots decays exceeds that released

by the decomposition of leaf residue, and a significant portion of the

net primary productivity is allocated to fine roots (Yuan and

Chen, 2010).

Mycorrhizal associations, which improve tree nutrition, stress

tolerance, and disease protection, also occur on the network formed

by fine roots (Tedersoo et al., 2020). Recent research on the function

and nutrition of saprophytic fungi has led to several breakthroughs.

However, how and why saprophytic fungi help break down fine

roots has been infrequently addressed (Gray and Kernaghan, 2020).

Recent research has revealed that, in addition to substrate quality,

soil microorganisms have a significant impact on fine root

decomposition (Fu et al., 2021). Additionally, the nutrient quality

of litter substrate affects the growth status of saprophytic fungi,

which in turn affects their abundance and diversity (Dai

et al., 2021).

Moreover, the most important factor in determining how fine

roots decompose depends on the root’s initial chemical

characteristics (Jing et al., 2019). Thinner fine roots (0.5-1.0 mm

diameter) decompose more quickly than thicker fine roots (1.0 mm

diameter), possibly because the former have higher N concentration

and lower C to N (C/N) ratio, which are favorable for

microorganism decomposition and utilization (Lin et al., 2011).

The rate of fine root breakdown may also depend on the

concentrations of structural carbohydrates and non-structural

carbohydrates (Zhai et al., 2023). Small molecules like glucose

and starch are easy for microorganisms to break down, while

macromolecules like L and cellulose can only be broken down by

certain types of bacteria (Hemati et al., 2022).

For instance, microorganisms like white rot fungi (WRF) and

brown rot fungi (BRF) produce ligninolytic enzymes that break

down L (Theradimani and Ramamoorthy, 2022). Additionally, by

altering plant histochemistry, the effect of soil nutrient availability

on decomposition is more likely to indirectly (rather than directly)

affect root decomposition rate (Jiang and Liang, 2022). Fertilizers

applied only for a short periods can boost root detritus

decomposition (thereby encouraging N release in soils for plant

uptake) and contribute to long-term soil C accumulation through

either additional C inputs from manures or N-induced effects on

microbial activity (Fornara et al., 2020).

Furthermore, fine roots turnovers is a significant route for the

transport of C and nutrients from plants to soils (Wang et al.,

2020a). However, current difficulties with measuring fine root

decomposition rate prevents us from precisely quantifying the

scale of this activity (Sun et al., 2021). The most common
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approaches to assessing fine root decomposition rates use litterbags

or intact cores, through their methodological efficacies have not

been critically assessed (Li et al., 2022a). Litterbags and soil cores

may affect the rate of decomposition and microbial activity because

they separate litter from its ecosystem and may thus give misleading

results about decomposition dynamics (Dornbush et al., 2002; Wu

et al., 2022). Accurate total fine root decomposition measurements

provide insight into subsurface C cycling processes and reduces

uncertainty in soil C flux estimates. Specifically in global budgets

and climate change mitigation efforts, fine root decomposition

processes offer a comprehensive perspective of below-ground C

dynamics, boosting soil C flow projections and enhancing C cycle

management in terrestrial ecosystems (Huang et al., 2022).

Fine roots, which make up the vast majority of underground

litter, are essential to terrestrial ecosystems due to their roles in

redistributing water and nutrients, performing important below-

ground functions, and making considerable contributions to forest

ecosystem C and N cycles. Understanding fine root properties is

crucial to describing forest environment C and N cycles. The

biomass, nutritional content, and decomposition rate of fine roots

are influenced by a variety of abiotic and biotic variables.

Forecasting how changes in land use and the environment will

affect cycling of C and nutrients in terrestrial ecosystems requires

understanding these factors. The availability of soil nutrients can

indirectly influence decomposition rates, and sparingly supplied

fertilizers may hasten root debris decomposition and increase soil C

levels. Accurate measurements of total fine root decomposition

reduce uncertainty in soil C flux estimations and shed light on

subsurface C cycling processes. Herein, we highlight the fine root

decomposition process and the elements influencing that process

reference for below-ground C cycle research.
2 Fine roots

Fine roots (≤2 mm diameter) are the plants major water and

nutrient uptake channels (Finér et al., 2019). They actively interface

with the environment play key roles in terrestrial ecosystem

processes, and make up 33% of the world’s annual NPP (Li et al.,

2019). Fine roots components can be divided into long-lived

transport fine roots (TFRs) and short-lived absorptive fine roots

(AFRs) (Figure 1) (Huang et al., 2023). TFRs (root orders 4 and 5)

help with long-distance transport and hydraulic conductivity by

moving water and nutrients from the soil to above-ground plant

components. The surface area for nutrient absorption and nutrient

uptake efficiency are increased by AFRs (root orders 1-3), which are

finely branched and coated in root hairs (Mccormack et al., 2015;

Kou et al., 2018). Plant growth and survival are guaranteed by this

division of labor, which enables plants to efficiently acquire

nutrients and water while preserving structural integrity (Kou

et al., 2018).

Fine root activity has the potential to alter soil physical,

chemical, and biological characteristics, which can impact both

individual plants and entire ecosystems (Mccormack et al., 2015).

For example, as fine roots grow and proliferate, they create

macropores and pathways that improve the soil’s structure and
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ability to hold air. These changes facilitate soil microbial mobility,

enhance water infiltration, and reduce soil compaction (Wendel

et al., 2022). Exudation of organic substances by fine roots (e.g.,

sugars, organic acids) also affects soil pH, availability of nutrients,

and microbial activity. These modifications can improve N cycle

processes and provide a more favorable environment for helpful soil

bacteria (Keiluweit et al., 2015).

In addition, fine roots are essential to the soil C sequestration

process and play crucial roles in nutrient cycling (Pandey et al.,

2023). Because of the high turnover rate, the quantity of C and

nutrients that are returned to the soil through fine roots is

comparable to or even greater than, that which is returned

through litter (Hu et al., 2020). Fine roots create a matrix that

captures and stabilizes organic matter, lowering its susceptibility to

quick decomposition, and thus offering physical protection for soil

organic C (Waring et al., 2020).

Forest succession is likely to influence fine root decomposition,

which is an important process for nutrient intake and C exchange in

terrestrial ecosystems (Fu et al., 2021). Lower L contents and

nutrient concentrations in early forest successional phases leads

to increased decomposition rates (Morffi-Mestre et al., 2023).

Slower decomposition rates are caused by changes in the fine root

characteristics of old forests. Rapid decomposition releases

nutrients for ecosystem productivity, but also alters nutrient cycle

dynamics. Slower decomposition in mature forests helps retain

nutrients, fostering conservation and long-term stability (Bhattarai

et al., 2022). The world’s fine root P pool is 4.4×107 Mg and its fine

root N pool is one-seventh of the total terrestrial vegetation

(Jackson et al., 1997). Thus, as a significant source of root

bioenergy, small, quickly decomposing plant fine roots (<2 mm

diameter) are crucial to forest nutrients cycling (Rodtassana and

Tanner, 2018). Understanding these processes is crucial for

sustaining and restoring forest health, while controlling nutrient

cycling in shifting landscapes, through ecosystem management

(Rai, 2022).
3 Fine root decomposition

Fine-root decomposition is a material exchange process with

the environment that involves soil biological metabolism and the

absorption and release of chemical elements as a result of soil

leaching and breakdown (He et al., 2019). Fine root decomposition

regulates nutrient release, carbon dioxide (CO2) emission, and soil

organic matter (SOM) synthesis in forest ecosystems (Jacobs et al.,

2018; Babur and Dindarolu, 2020). In the initial phase of

decomposition, environmental factors, such as soil temperature,

soil moisture content, and substrate breakdown cause rapid

eluviation of carbohydrates and other soluble compounds (He

et al., 2019).

Later, biological action dominates the decomposition process,

breaking down the soluble components and leaving insoluble

molecules (such as L and cellulose) for sluggish microbiological

degradation (He et al., 2019). Both bacteria and fungi, which carry

out distinct tasks within their respective groups, are

microorganisms engaged in the breakdown process (Zhao et al.,
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2021a). As early decomposers, bacteria use enzymatic activities to

reduce complex organic matter to simpler molecules. In the initial

decomposition stages, they serve a crucial role in making organic

matter accessible to other organisms. Later decomposition phases

are aided by fungi, which are effective at dissolving complex

substances like L and cellulose (Bonfante and Genre, 2010).

Decomposition dynamics are further influenced by mycorrhizal

fungi, which create symbiotic connections with plants and aid

nutrient intake (Schädler et al., 2010).

Fine root decomposition may differ at the species level

depending on traits related to aspects of the plant economics

spectrum like growth form (e.g., woody vs. herbaceous, broadleaf

vs. conifer), nutrient acquisition strategy (i.e. mycorrhizal

association), leaf lifespan of woody plants (i.e. deciduous vs.

evergreen), and herbaceous life cycle (i.e. annual vs. perennial)

(See et al., 2019). The main factors affecting fine root decomposition

include substrate quality and soil environmental parameters,

including soil temperature, humidity, pH, bulk density, and soil

microorganisms (Zhang et al., 2019a; Zhang et al., 2019b; Tanikawa

et al., 2023). The dynamic structure and function of the microbial

community will adapt to the degradation process (Yan et al., 2022).

Indeed, through underground root decomposition and nutrient

humidification, soil microbial communities enzyme systems

contributes to about 90% of forest ecosystem biological cycle

(Finzi et al., 2006).

However, significant variation remains unexplained, both

worldwide and regionally, as plant tissue breakdown rates are

positively associated with MAT and MAP (Santos and Herndon,

2023). Higher precipitation provides moisture, while warmer

temperatures increases microbial activity (Wahid et al., 2020).

These correlations might differ among environments due to

variables like soil quality and litter quality (Hermans et al., 2020).

Understanding these relations emphasizes the significance of

considering MAT and MAP as significant drivers in C and
Frontiers in Plant Science 04
nutrient cycl ing, and may aids forecast ing fine root

decomposition’s responses to climate and environmental changes.

In temperate and boreal woodlands, changes in fine root

biomass have a considerable impact on N cycling and ecosystem

function (Cornejo et al., 2023). Fine root biomass is inversely

associated with soil fertility in boreal forests, but positively

correlated with MAT, MAP, and stand age (Yuan and Chen,

2010). Fine root biomass increased with site elevation in

temperate forests, but declines with MAT (Esser et al., 2012). Fine

root biomass changes impact both the ability of boreal forests to

store C, and nutrient cycling and availability in temperate

woodlands (Meena et al., 2023). Higher fine root biomass can

make it easier for plants to get the nutrients they need, which can

help them grow and produce more (Gao et al., 2021). However, too

much biomass can cause nutrients to become immobile, which can

slow plant growth and production (Li et al., 2021). To maintain

ecosystem function and nutrient cycling in these forest types, it is

essential to understand and manage fine root biomass changes. Fine

root degradation processes are shown in Figure 2.
4 Factors affecting fine
root decomposition

Terrestrial environments nutrient cycles rely heavily on fine

root decomposition (Zhao et al., 2023b). The two primary variables

affecting decomposition are climate (Table 1) and fine root chemical

properties (Guo et al., 2021). Root decomposition rate is positively

associated with both global MAT and MAP (See et al., 2019). How

roots’ chemical properties affect the decomposition rate also

depends, in turn, on root factors. Increases in root N and

decreases in root L concentrations both enhance the fine root

decomposition rate (Bonanomi et al., 2021). Mycorrhizal

symbioses can be formed between more than 90% of all woody
FIGURE 1

Overview of fine-root classification according to McCormack et al. (2015).
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plants (Chen et al., 2016). Root morphological features and

chemical composition may influence the pace of fine root

degradation in trees that have either arbuscular mycorrhizal (AM)

or ectomycorrhizal (ECM) relations (Chen et al., 2018).
4.1 Climatic factors

Given that temperature and precipitation are key influences of

plant growth and decomposer activity, root decomposition is likely

to be highly responsive to variations in these two parameters

(Bonato et al., 2023; Semeraro et al., 2023). In addition, the

availability of nutrients and C sources influences the response of

microorganisms to climate change (Sullivan et al., 2019). It is

important to consider the general reactions of C stocks in

terrestrial ecosystems to changes in climatic condition changes,

especially temperature and precipitation, as well as the

consequences of synergies of these factors (Fanin et al., 2022b). If

the nutrients and effective C sources required for microbial activity

are lacking, microorganisms will not sensitive to temperature

changes, and their effect on decomposition will be weak (Baldrian

et al., 2023). Soil temperature and humidity can alter microbial

activities such as fungal hyphae expansion, fruiting body formation,

spore germination, and release, and subsurface ecological processes
Frontiers in Plant Science 05
such as root decomposition (Kvasko et al., 2022). However, annual

air temperature is also linked to the root decomposition rate

globally (Guo et al., 2021). At all sites assessed, the rate of C

mineralization decreases with soil depth and time, and increases

with temperature (Jia et al., 2022). Fine roots vitality’s is reduced by

90% for every 10°C increase in annual average temperature

(Eissenstat and Yanai, 2002). The primary causes of this

phenomenon are: (1) As temperature rises, root respiration

increases (Wang et al., 2021a); (2) Soil N mineralization speeds

up (Lakshmi et al., 2020); and (3) Bacterial activity is improved in

warm soil (Nottingham et al., 2019).

A primary causes of fine roots concentrations in the surface

layer is thought to be the quick decrease in soil temperature of

descending layers; the higher surface layer temperature also

encourages decomposition and increases soil nutrients, favoring

fine root growth (Sihui et al., 2022). Higher soil temperatures not

only increases fine root biomass, it leads to their distribution in

deeper soil (Jarvi and Burton, 2020). With decreased or increased

precipitation, fine root biomass, production, and decomposition

increase, decrease, or remain unaltered across plant types and soil

depths (Wang et al., 2020b). A plant’s capacity for water absorption

and transmission is influenced by its fine root diameter and length.

Reduced precipitation slows root growth due to nutrient deficits

(Yan et al., 2019).
FIGURE 2

Diagrammatic representation of factors affecting fine root decomposition in forest ecosystem.
TABLE 1 A comparative table on root decomposition in different climatic zones.

Climatic
Zone

Average
Temperature (°C)

Moisture
Levels

Decomposition
Rate

Main Factors Reference

Tropical 25-30 High Rapid Warm temperature, Enough rainfall,
Abundant litter input, Microbial diversity, and

mycorrhizal association

(Powers et al., 2009;
Guerrero-Ramıŕez et al.,
2016; Zhao et al., 2023b)

Temperate 5-20 Moderate to
High

Moderate Seasonal climatic conditions, Coniferous litter,
mycorrhizal fungi, Soil invertebrates

(Solly et al., 2014; Zhao et al.,
2023a; Zhao et al., 2023b)

Mediterranean 15-25 Moderate to
low

Moderate to slow Dry summer, Mild winter, Root chemistry,
and Root order, Specific microbial community

(Zhang and Wang, 2015; Sun
et al., 2016; Bonanomi et al.,

2021)
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According to resource economics theory, fine roots may display

a strategy that increases resource acquisition in areas with ample

precipitation by lengthening their total root length, specific root

length, and specific root area (Weemstra et al., 2017). Reduced

precipitation greatly boosts fine root decomposition but has no

impact on root production (Zhang et al., 2018b). Additionally, pulse

precipitation mechanics encourage microbes to rapidly decompose

SOM over short periods, causing significant CO2 release into the

atmosphere (Xu et al., 2020).

After precipitation, the rate of microbial mineralization might

rise by a factor of several to 10, leading to increased ecosystem

nutrient availability and enhanced microbial activity (Sponseller,

2007). Soil microbial activity peaks as rainwater enters the ground,

and because it remains elevated for a longer time, more CO2 is

produced. After reaching peak activity levels, soil bacteria quickly

degrade abundant organic substrates, releasing CO2 in much greater

quantities compared with that of tropical forests (Zhaoxia et al.,

2021). Increase CO2 emissions brought on by rainfall is responsible

for about 20% of total annual soil CO2 emissions (Austin et al.,

2004). This occurs rainwater introducing new organic matter (e.g.,

plant remains, litter) to soil, effectively promoting microorganisms

activity’s (Javed et al., 2022). This increased microbe metabolic

activity following entry of fresh organic material increases, the rate

at which organic matter decomposes; thus increased microbial

activity causes emission of more CO2 from the soil into the

atmosphere (Mehmood et al., 2020). The precipitation-induced

priming effect , which also emphasizes how transient

environmental events like rainfall can significantly impact annual

C emissions from terrestrial settings, demonstrates the dynamic,

interrelated nature of ecosystem C cycles.
4.2 Substrate quality

Root substrate quality is among the most important factors of

root nutrient cycling (Jing et al., 2019). Different root diameter sizes

exhibit notable variations in morphology, physical-chemical

characteristics, and stoichiometric ratios as a result of the root

branching hierarchy (Han et al., 2019). The rate of element release

or immobilization during the root decomposition process may

therefore be mediated by diameter-associated variations in root

substrate chemistry (Wang et al., 2014). However, previous studies

have demonstrated that initial quality primarily mediates root

decomposition (See et al., 2019). While fine roots are often

nonwoody and ephemeral absorptive roots, coarser roots function

as conduits, storage sites, and physical anchors for nutrients. Thus,

the breakdown patterns may change based on their functional

differences (Guo et al. , 2008). Furthermore, fine root

decomposi t ion is typical ly largely s lowed by high L

concentrations (Da et al., 2017). Early studies comparing root and

leaf chemical features showed that roots have higher concentrations

of L, and the lower L content in leaves is frequently cited as the main

factor for their rapid decomposition (Fujimaki et al., 2008).

Other initial litter substrate qualities, such as N, P, calcium (Ca),

and L/N ratios, have been identified as regulators of mass loss and

nutrient cycling rates in comparisons of composition among
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various tree species (e.g., broadleaves vs. conifers, N-fixing vs.

non-fixing) (Aponte et al., 2012; Li et al., 2014). These initial

traits support the theory, expressed in multiple studies of various

ecosystems, that the L: N ratio control litter decomposition alone or

in combination with other factors (Berg, 2014). Leaf litter with a low

initial L: N ratio produces a higher fraction of slowly dissolving

organic matter in late decomposition stages, while N is negatively

linked with species-specific decomposition limit values (Berg, 2014;

Hobbie, 2015). Thus, higher decomposition rates can be expected

from plant litter with lower C/N or L/N ratios.
4.3 Roles of soil properties

Roots can die and disintegrate at any time of year, continually

supplying soil nutrients and playing an important role in the

biogeochemical cycle (Sardar et al., 2023). Root exudation,

mortality, and shedding are other important contributors to soil

C pool replenishment (Liu and Liao, 2022). Root decay thus

becomes a primary source of subterranean nutrients and organic

materials. Root decomposition releases significant volumes of

organic matter and nutrients into the soil, where they serve an

essential part in reviving and boosting soil fertility, enhancing forest

productivity, and ensuring continued, sustainable growth of forest

ecosystems (Gulati and Kaur, 2023). Root activities significantly

impact both the rate at which organic C is accumulated in the soil

and overall C circulation throughout the biosphere (Kowalska et al.,

2020). Through interpenetration, entanglement, and cementation,

roots can effectively enhance soil structure and stabilize organic C in

soils (Dijkstra et al., 2021). The initial phase of fine root

decomposition is rapid due to high root quantities of soluble

carbohydrates, which are easily lost by leaching and then used by

soil microbes, which further speed up root decomposition (Ahmed

et al., 2022). Furthermore, accumulation of L and other difficult-to-

decompose compounds in fine roots during the late decomposition

stage results in a lower root decomposition rate (Wambsganss et al.,

2021; Li et al., 2022b). Soil pH also impacts plant enzyme activity’s,

with mean soil acidity reducing soil microorganism numbers, which

slows the organic matter decomposition rate, and thus prevents

litter decomposition (Fu et al., 2021; Fanin et al., 2022a; Li

et al., 2022b).

The root N-release technique is more complicated. The various

stages of root decomposition either release N into the soil or

increase its availability. After plant decomposition, soil N

concentration increases to 120–150% of its original value (Zhao

et al., 2021b). There is also an enrichment-release pattern of soil

nutrients, with total soil N concentration lower in the summer and

higher in autumn, during fine root decomposition periods (Jiang

and Liang, 2022). Others have asserted that during plant litter

breakdown, dynamics of N, P, and heavy metal elements (e.g., Fe,

Al, Mn, Pb, Cu, and Zn) typically demonstrated enrichment-release

mechanisms (Gong et al., 2020; Alon et al., 2021; Bhattarai et al.,

2022). N is released during the initial root decomposition stage,

slightly increasing soil nitrate nitrogen levels. However, rises in

warmth and rainfall have led to more modest increase in

ammonium nitrogen content. Temperature and moisture
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variations across seasons have major impact on organic N

mineralization, nitrification, and denitrification processes, as well

as accessible N quantities (Dong et al., 2020; Jiang and Liang, 2022).

Application of N or P fertilizer has been shown to increase and

develop decomposition rates of fine roots at longer-term treatment

sites, whereas the rates of thin roots at the shortest-term sites did

not respond significantly; this may be related to soil microbial

activity after fertilization, in which N and P limit C sources rather

than the opposite (Table 2) (Titus and Malcolm, 1987).

Moreover, Ca2+ plays a unique role in the decomposition

process. It is not only an essential metabolic component for

microorganism growth, Ca2+ in the root can also be used by fungi

and heterotrophic bacteria to form oxalate, which provides

nutrients for microorganism metabolisms in conditions that

would be otherwise unfavorable (Grabovich et al., 1995).

Although Ca2+ concentration influences how quickly root

decompose, its role in how quickly fine roots decompose

remain unclear.
Frontiers in Plant Science 07
4.4 Mycorrhizal association

Mycorrhiza plays a significant part in soil C and N cycle, and in

root formation in the plant-soil system (Hawkins et al., 2023). AMF

colonization is thought to improve aboveground litter

decomposition but has little influence on root litter (Figure 3)

(Schädler et al., 2010). N is regarded as a key component in the

mycorrhizal influence on breakdown processes. Through the

effective utilization of decomposition byproducts, AMF can

accelerate the pace of litter decomposition and acquire inorganic

N produced from the litter during its breakdown (Urcelay

et al., 2011).

However, by altering the proportions of soil ammonium-N and

nitrate-N, AMF can speed up the process of litter decomposition

(Liu et al., 2021). Conifer fine roots deteriorate more slowly than

those of broadleaved plants, whereas the fine roots of non-woody

plants decay more slowly than those of woody plants (Phillips et al.,

2023). In addition, the discovery that fine root of woody ECM and
TABLE 2 Effects of nitrogen deposition on fine root decomposition in forest ecosystems.

Fine root Research sites Nitrogen
deposition

Nitrogen
application
frequency

(a)

Major finding Reference

Decomposition Northern hardwood forest
stands, Michigan, USA

N deposition (n = 3);
ambient N + 30 kg N

ha−1 year−1 as
NaNO3 pellets in six
equal applications

20 Decomposition of fine root litter is impeded by
N deposition, and SOM contributions from
lignin-derived fine root chemicals are raised.

(Argiroff et al.,
2019)

Erguna River Basin, in the
northeastern part of Inner

Mongolia, China

Control, 10: 0, 7: 3, 5:
5, 3: 7, and 0: 10

(IN: NH4NO3, ON:CO
(NH2)2, and C2H5NO2)

2 Decomposition rates for fine roots of all species
were increased after being exposed to exogenous

N in either IN or ON forms.

(Dong et al.,
2020)

In Heilongjiang Province,
Northeast China, National

nature reserve called
Liangshui.

Control, Low-N,
Medium-N, and High-
N (0, 20, 40, 80 kgNha-
1yr-1)

3 Root decomposition was slowed down by
nitrogen deposition, which also improved soil
retention of nutrients and carbon.

(Geng and Jin,
2022)

Shaanxi Tielongwan Forest
Farm Oil pine

0, 30, 60, 90
kg·hm−2·a−1

(CO(NH2)2)

3 It has a certain stage, and the rate size presents
the characteristics of first fast and then slow.

(Gu and
Wang, 2017)

Decomposition Songyugou watershed in the
Loess Plateau region, Shaanxi

Province, China

0, 3, 6, and 9 g N m−2

y−1

(NH4NO3)

2 The decomposition of fine roots, which is
influenced by N deposition, alters the
biogeochemical processes of forest ecosystems.

(Jing et al.,
2019)

Jiangxi Tropical Wetland Pine
Forest

0, 40, 120 kg·hm−2·a−1

(NH4Cl and NaNO3)
6 It promotes the absorption of fine root turnover

rate but does not accelerate the transport of fine
root turnover rate.

(Kou et al.,
2018)

Heilongjiang temperate typical
forest ecological system

0, 100 kg·hm−2·a−1

(NH4NO3)
9 The quality loss of fine roots reached 30% ~

50% on day 516, and then the change in mass
residue rate was relatively flat.

(Li et al.,
2017)

Northeast Laoshan temperate
forest

0, 100
(NH4NO3)

4 The initial decomposition rate of tertiary and
quaternary roots was increased, but it had an
inhibitory effect on primary and secondary
roots.

(Sun et al.,
2015)

Northeast Daxing’an Ridge
deciduous pine forest

0, 25, 50, 75
kg·hm−2·a−1 (NH4NO3)

5 The fine root turnover rate tends to decrease,
possibly due to slower subsurface C cycling due
to nitrogen deposition.

(Yan et al.,
2017)
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ericoid species degrade more slowly than those of AM species adds

to the growing list of biogeochemical variations between these forest

types (Craig et al., 2018; Zhang et al., 2018a). Several isolates of

ECM fungi decompose much faster than fine root (P. resinosa)

seedlings. Depending on the fungus isolate, ECM colonization

either does not affect root decomposition or significantly sped

root breakdown. Tested isolates include Srobilomyces floccupus

(SC111), Cladophialophora sp. (SC052), Lactarius oculatus

(SC076), Amanita rubescens (SC009), Suillus intermedius (SC065),

Amanita pantherina (SC004), Amanita citrina (SC070), Russula sp.

(SC079), Amanita muscaria var. formosa (SC059), Tylopilus felleus

(SC121), and Amanita brunnescens (SC007 and SC040) (Koide

et al., 2011).

The primary cause of root decomposition is difference in soil

water and temperature differences during the initial decomposition

stage. Although there are slight differences between fine root

decomposition rates of A. halodendron at different starting times,

other factors, such as variability in soil moisture and its interaction

with soil temperature, are likely to have a greater impact on the root
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decomposition process overall (Luo et al., 2016; Luo et al., 2020).

Consistent with those findings, the presence of mycelia hastens fine

root decomposition (Pritsch and Garbaye, 2011). Mycelia can

increase the activity of soil bacteria by providing them with fresh

C, speeding up the breakdown of soil organic carbon (SOC),

especially the pool of inert C (Zhang et al., 2018b). Root exudates

are thought to play a significant role in litter decomposition and the

soil N cycle, with their secondary metabolites inhibiting soil

microbes to prevent SOC decomposition (Yin et al., 2014;

Zwetsloot et al., 2018).

Additionally, plant-soil feedback processes can impact

ecosystem performance because primary metabolite exudation

processes are linked to plant nutrition strategies and have

substantial effects on SOM decomposition by soil microorganisms

(Canarini et al., 2019). Thus, a mechanistic understanding of the

function that roots exudation of metabolites and plant-microbe

interactions play in nutrient intake and plant community dynamics

is essential for developing more efficient root decomposition

dynamics in forest ecosystems.
B

A

FIGURE 3

(A) Illustration root colonization structure of Ectomycorrhizal and Arbuscular mycorrhiza: While the Hartig net grows around epidermal cells (green),
the ectomycorrhizal fungus surrounds the root tip with a thick mantle of tightly packed hyphae. The root tip is often not colonised by arbuscular
mycorrhizas. A hyphopodium is produced on the root epidermis by the growth of hyphae from a spore. The formation of arbuscules, or tiny fungal
trees, inside inner cortical cells, is the result of intraradical colonisation, which takes place both intracellularly and intercellularly. (B) Diagram
showing the primary nutrient transfer pathways that take place during the EM and AM symbiosis.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1277510
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Saha et al. 10.3389/fpls.2023.1277510
4.4.1 Saprophytic fungi in fine
root decomposition

Saprophytic fungi are a crucial component of soil ecosystems; as

the primary litter decomposers, they play a key role in nutrient

cycling and plant community health (Sudharsan et al., 2023). Roots

in forests are primarily decomposed by saprophytic fungi

(Purahong et al., 2016; Baldrian, 2017), some of which (i.e.,

primarily basidiomycetes) have genes encoding enzymes (Riley

et al., 2014), which can disrupt plant cell walls during the

decomposition of forest fine roots and subsequently affect organic

matter breakdown, C fixation, and N/P conversion.

Extracellular oxidative reductionase-laccase, a peroxidase is

actively secreted by WRF, allowing it to degrade L (Kellner et al.,

2014). Manganese peroxidase (MnP) is the only peroxidase that

requires manganese (Mn2+) as a substrate; however, other

peroxidases, such as versatile peroxidase (VP), are also applicable.

Though Mn2+ is oxidized, it is not required for enzymatic activity,

such as L peroxylase, and general oxidase. The function of additional

peroxidases is unknown, however, MnP, V), and LiPs are L

breakdown enzymes (Lundell et al., 2010; Hatakka and Hammel,

2011; Riley et al., 2014); the enzyme system responsible for breaking

down cellulose in decomposition is shared by Apiforma and WRF.

Soft rot fungi (SRF) don’t have LiPs, which helps break down L by

releasing laccase. BRF extracellular carboxyl radicals break down the

woody cell wall first, releasing small molecular weight oxidants

through a Fenton-type chemical reaction called ‘random attack’,

which breaks down substrates and speeds L breakdown (Leonhardt

et al., 2019; Venkatesagowda, 2019).

During litter decomposition, WRF and BRF release many

organic acids to make an ideal environment for L decomposition

(Leonhardt et al., 2019). Copper-ion-dependent polysaccharide

monooxygenase can increase the ability of glycoside hydrolases to

break down cellulose by oxidative cleavage, increasing other

cellulases activities (Long et al., 2022).
5 Degradation patterns of biomass
materials in fine root

5.1 Cellulose and hemicellulose

In the forest subsurface, fungi play a crucial role in litter

decomposition. To prevent polysaccharides from being degraded

by microorganisms, deciduous cell walls are rich in cellulose and

hemicellulose (Liers et al., 2010), and only basidiomycetes and a few

ascomycetes fungi are capable of decomposing their cell wall

structure (Stokland et al., 2012) to separate organic materials.

Cellulose is a biopolymer polymer generated by b -1,4 glycosidic

linkages linked to glucose that is difficult to disintegrate

spontaneously (Klemm et al., 2005). To obtain the energy and

nutrients required for mycelium growth and respiratory

metabolism, saprophytic fungi ‘attack’ the cellulose microfibril

structure by releasing endoglucanase, which breaks down

particular macromolecules into small molecules and makes them

soluble substances (Edwards et al., 2008).
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The polymer known as hemicellulose is made up of xylan,

xylogcan, galactosylmannan, and other similar substances (Edwards

et al., 2008). Saprophytic fungi are most active in the early

decomposition of hemicellulose; xyloglucan decomposition requires

enzymes similar to cellulose cleavage activity, as well as xyloglucan-

specific endoglucanases and exoglucanases (Master et al., 2008);

Galactomannan is abundant in the cell wall of coniferous plants,

the skeleton of which consists of D-mannose residues linked by b-1,4
bonds (Edwards et al., 2008). Fungi can also secrete endomannanase,

b-mannosinoside enzymes such as enzymes achieve complete

decomposition of them (Master et al., 2008).
5.2 Lignin

The secondary cell wall is coated with L, the second-most

ubiquitous biopolymer after cellulose, which gives the wall its

structural stability and hydrophobicity (Sreejaya et al., 2022).

Syringyl (S), vanillyl, guaiacyl (G), and p-hydroxyphenyl are the

three monomeric units making up L. Ls are rich in G-units that

form branching Ls, which are more resistant than linear S-rich Ls, and

the L matrix in plants is a function of the proportionate abundance of

monomers (Jiang et al., 2023). Degradation of L is considered a process

that varies among the three primary categories of decomposers, or

fungi that cause white rot, soft rot, and brown rot (Floudas, 2021).

Although organisms use a wide variety of enzyme pathways for L

breakdown, only a subset has been thoroughly characterized. Only the

WRF Phanerochaete chrysosporium currently has a well-described

mechanism for L breakdown (Pandharikar et al., 2022). Several

physiological phenomena, including synthesis of the ligninolytic

enzyme P. chrysosporium system, appear to be induced by N

deprivation (Reineke and Schlömann, 2023). Almost all WRF

produce MnP, which may lead to the formation of an ecological

niche based onMn as a limiting nutrient (Baker et al., 2019). Although

our understanding of P. chrysosporium’s ligninolytic system exceeds

that of most other white-rots, it appears that the systems are species-

specific (Hatakka, 2001). In WRF Ganoderma lucidum generates MnP

in a medium containing poplar wood but not one containing pine

wood (D’souza et al., 1999).

Additionally, BRF can drastically alter the L molecule but

cannot fully mineralize substance; rather, they primarily degrade

the cellulose and hemicellulose components of wood (Devi et al.,

2023). Residual L after cellulose decomposition by BRF can resist

further breakdown, forming humus, and has been associated with

soil C pools, and play an important role in terrestrial C

sequestration (Bonner et al., 2019). WRF and BRF are thought

to have similar break-down methods. In both cases, it is important

for hydroxyl radicals to form and attack wood parts, a process

aided by high-oxygen tensions (Hatakka, 2001). Radicals

generated by BRF can remove methoxyl groups from L and

produce methanol, leaving primarily modified L as residues

(Venkatesagowda and Dekker, 2021). Brown-rotted Ls are

structurally different from the native version in that they have

more phenolic hydroxyl groups and fewer methoxyl groups (Wei

et al., 2023). Instead of breaking down L, SRF seek to soften wood
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by dissolving the cell walls central lamella. Ascomycetes and

deuteromycetes, which make up the majority of SRF, flourish in

wood with high moisture content (Philippe et al., 2022).
6 Analytical methods to study fine
root decomposition

Our current understanding of elemental fluxes through decaying

fine roots has been gleaned from the litterbag technique, which is by

far the most widely used method for monitoring fine-root decay

(Silver and Miya, 2001). However, whether fine roots are appropriate

for litterbags use has not been confirmed (Wu et al., 2022). Fine-root

decay rates recorded using litterbags appear to be too low to account

for fine-root turnover rates measured with minirhizotrons and other

in situ methods (Wu et al., 2022). The process of preparing litterbags

often includes removing roots from soil and rhizosphere communities,

washing and drying them, and frequently incorporating living root

material (Li et al., 2022a). It follows that the rates of mass loss and

nutrient turnover estimated from litterbag data may be inaccurate.

Additionally, in several significant aspects, the intact-core

technique differs from litterbag research. To begin, the initial

mass of roots that are included within each core is unknown.

This is due to the fact that cores are taken from field soils and are

preserved as whole units. Consequently mass loss estimates from

undamaged cores are derived from shifts in population means over

time, rather than from variations in individual samples, as is

possible with litterbags (Li et al., 2022a). Although fine roots

naturally senesce, the intact cores that contain both living and

dead roots represent the relative decomposition rates of freshly

removed live and dead roots (Li et al., 2022a).

Two novel ‘balanced hybrid’ modeling methods may provide

better approach to determining how much fine root decomposition

takes place in forests. In this approach, minirhizotrons and sequential

soil coring procedures are used to determine how fine root dynamics

are affected by the absence of any soil modification. Insights into the

dynamic nature of fine root systems were gained through the use of

minirhizotrons to estimate fine root turnover and mortality rates. To

obtain a more complete picture of the distribution and makeup offine

roots, sequential soil coring was also used to measure the standing

biomass and necromass of those roots. A mass balance model was

used to calculate the overall amount of fine root decomposition,

accounting for important factors like the fine root turnover rate,

mortality rate, observed fine root biomass, and necromass. This

method enabled a more complete assessment of belowground C

cycling and nutrient dynamics in the studied ecosystem by

integrating data from minirhizotrons and soil coring, providing a

more holistic understanding of fine root dynamics such as growth,

mortality, and decomposition (Kou et al., 2018; Li et al., 2020).
7 Future research perspectives

For hundreds of years, partial above ground litter has been the

research subject. In contrast, fine roots researches has a recent

history, and early studies tended to concentrate on fine root yield
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and growth distribution rather than their decomposition rate. To

fully appreciate the importance of forest ecosystems, we must

understand the function of fine roots in nutrient cycling, SOM

dynamics, and C sequestration (Wang et al., 2021b). For synthesis,

we must also collect extensive data on the variables that control fine

root breakdown at different scales. While many studies have

examined the role of biotic and abiotic factors in fine root

decomposition (Zhang et al., 2021), comparing their results is

challenging due to problems with inconsistent research methods

(Solly, 2015), like use of net bags with varying pore sizes (Table 3).

Few studies have addressed fine root decomposition around the

world (Freschet et al., 2021), though not nearly enough to construct

regional or global models and even less is known about how root

decomposition reacts to global change and anthropogenic activities

like forest conversion and forestry management.

There are differences in decomposition patterns and factors

controlling fine roots buried underground, despite the chemical

composition of fine roots being identical to that of aboveground

litter (Wang et al., 2021c). This fact makes improves our ability to

study novel research methods and research directions of aboveground

litter decomposition. We submit that future studies should priorities

the following areas: 1) Investigating fine root decomposition in various

ecosystem types to reveal their dynamic changes and the factors

influencing their decomposition (Bonanomi et al., 2021); 2) Root

decomposition pattern under anthropogenic disturbances and global

climate changes and their effects on C sequestration (Panchal et al.,

2022); 3) Function of soil organisms in fine root decomposition, as

revealed by isotope tracking of fine root decomposition products and

the fine root portions consumed by soil microorganisms (Prescott and

Vesterdal, 2021); 4) Innovative techniques, such as solid-state 13C

nuclear magnetic resonance spectroscopy (13C-NMR spectroscopy),

to study fine root decomposition at the molecular level (Chu, 2020); 5)

Model development to characterize decomposition processes and

forecast decomposition rates based on suitable data sets, and 6)

Assess how the diverse community structure of saprophytic fungi

breaks down organic matter and recycles nutrients in the forest

ecosystem (Zhao et al., 2020). To these ends, the General Unified

Nametagging for Fungi (GUNGuild), GeoChip, Network, and other

technologies can be leveraged to investigate the ecological functions

and driving factors of microbial communities in forest ecosystems, as

well as nutritional strategies, functional selections, and interspecific

relations of saprophytic fungi.
8 Conclusions

Understanding how fine roots breakdown is important, toward

explaining both how C and nutrients cycle, and ecosystem health and

sustainable management practices as a whole. The quantities of C and

N that are recycled through the development of fine roots and their

subsequent decomposition is comparable to or even larger than, the

aboveground plants component. Decomposition rate is correlated with

the residence period of soil C and, consequently, fine root

decomposition is a significant contributor to the global C budget.

The production and death offine roots, and the factors that affect them

are important for energy flow and nutrient cycling in forest
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ecosystems. Yet they are still not well understood largely because the

methods used to study them are limited. It is also difficult to

summarize this complex process because the rate of fine root

decomposition is impacted by a wide variety of variables. Climate

(such as MAT, MAP, and altitude), substrate quality, microorganisms

(such as saprophytic fungus), and soil features are all important in

affecting the rates of litter decomposition. Researchers have yet to

establishe a system that simultaneously accounts for all these variables.

However, considering the increasing anthropogenic impacts on

biogeochemical cycles, research into fine root decomposition is

essential. This research examines the elements that contribute to fine
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root degradation, the degradation pattern of biomassmaterials, and the

techniques used to investigate fine root degradation. Knowledge from

this area of inquiry will help us plan for sustainable land use and

forestry, and will contribute to our environments long-term

productivity and wellness for coming generations.
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TABLE 3 Advantages and Limitation of different root litter
decomposition methods.

Methods Advantages Limitation Reference

Litterbags It is simple and
inexpensive to use, can
determine the
decomposition rate of
specific species, and
may be used for all
forest types.

Decomposer
community
composition,
substrate
unrepresentation,
and the living
root effect are
affected by the
experimental
duration, length,
and sampling
regime.

(Bonanomi
et al., 2021; Li
et al., 2022a)

Intact core Capable of preserving
the rhizosphere’s
integrity.

Limited to
monodominant
plantation forests,
unrepresentative
substrates, altered
decomposer
community
composition, no
living roots, low
temporal
precision, and
labor-intensive.

(Freschet
et al., 2021; Li
et al., 2022a)

Mass
balance
model

Fine root
decomposition can be
estimated in detail with
the help of the mass
balance model, which
takes into account
variables such as
turnover, mortality,
biomass, and
necromass. It compares
ecosystems and
treatment conditions
using long-term
breakdown trends and
quantitative
estimations. It provides
a more detailed view of
the process by factoring
in microbial activity,
ambient variables, and
root quality. This
adaptable model may
be used in a wide range
of environments to
better understand
ecological processes.

A mass balance
model is intricate
and data-
intensive, needing
precise
measurements of
elements like
biomass and root
turnover. In
dynamic
ecosystems, it
may be
misleading to rely
on assumptions
like constant
turnover rates
and steady-state
conditions. For
successful
modeling,
especially in
remote or less-
researched
locations, precise
parameter data is
essential.

(Li and Lange,
2015; Li et al.,

2020)
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