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Deciphering the roles of
unknown/uncharacterized
genes in plant development
and stress responses

Xi Wang, Baoshan Wang* and Fang Yuan*

Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal
University, Ji’nan, Shandong, China
In recent years, numerous genes that encode proteins with specific domains that

participate in different biological processes or have different molecular functions

have been identified. A class of genes with typical domains whose function has

rarely been identified and another type of genes with no typical domains have

attracted increasing attentions. As many of these so-called as unknown/

uncharacterized (U/U) genes are involved in important processes, such as plant

growth and plant stress resistance, there is much interest in deciphering their

molecular roles. Here, we summarize our current understanding of these genes,

including their structures, classifications, and roles in plant growth and stress

resistance, summarize progress in the methods used to decipher the roles of

these genes, and provide new research perspectives. Unveiling the molecular

functions of unknown/uncharacterized genes may suggest strategies to fine-

tune important physiological processes in plants, which will enrich the functional

network system of plants and provide more possibilities for adaptive

improvement of plants.
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Introduction

The development of modern molecular biology tools has accelerated the discovery of

genes involved in various biological processes. Many genes have known functions in

regulating various physiological processes and mechanisms in plants, such as vegetative

growth that the overexpressing of Lb1G04899 from Limonium bicolor improved the salt

tolerance of transgenic Arabidopsis under NaCl environment (Liu et al., 2022a; Wang et al.,

2022b); flowering time that CYLIN - DEPENDENT KINASE G2 (CDKG2) gene affected

flowering time in Arabidopsis (Ma and Chen, 2007; Ma et al., 2015; Zhou et al., 2019);

changes in phytohormone status that the NHL family genes of wild soybeans can regulate

ABA and MeJA, laying the foundation for potential roles in signal transduction

mechanisms (Xu et al., 2020; Zhang et al., 2022b; Zhao et al., 2023a); anther and pollen
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development that BcMF19 inhibited pollen development in Chinese

cabbage-pak-choi (Huang et al., 2011) and resistance to harsh

environments including drought that TaDTG6-BDel574 regulates

the transcription of TaPIF1 to enhance drought resistance in wheat

(Mei et al., 2022); salt that CycC1 controlled salt tolerance in

Arabidopsis by regulating transcriptional regulation of SOS1 (Lu

et al., 2023; Ma et al., 2023); diseases that adult-plant resistance

(APR) genes played roles in inhibiting the occurrence of wheat rust

(Dinglasan et al., 2022) and insect pests that three genes (Cry1Ac-

Cry2Ab-EPSPS) in cotton have resistance to lepidopteran insect

(Siddiqui et al., 2022). Based on conserved structural domains in

their encoded proteins, various gene families are known to regulate

different physiological processes, including development,

reproduction, and environmental adaptation. For example,

members of the SWEET family (containing an MtN3/saliva

transmembrane domain) promote ion and sugar transport (Guan

et al., 2008; Chen et al., 2010; Slewinski, 2011; Fang et al., 2022; Liu

et al., 2022c); members of the WRKY family (containing a WRKY

domain) participate in plant defense and aging processes (Silke and

Somssich, 2001; Miao et al., 2004; Besseau et al., 2012); and

members of the MYB family (containing an MYB domain) are

widely involved in development and stress responses.

Genes with established functions are annotated based on the

domains in their encoded proteins (defined as structural

annotation) and their functions are verified by deletion or

overexpression analysis (functional annotation). Genome

annotation is primarily based on gene structure, that is, the

boundaries of exons/introns and CDS (coding sequences)/UTRs

(untranslated regions), at protein-coding loci (Zhang et al., 2022).

With the advent of high-throughput sequencing technology,

numerous genes have been sequenced and found to encode

proteins with unknown/uncharacterized domains. The

localizations of these proteins are also uncertain based on

structural annotation. Thus, these genes are defined as unknown/

uncharacterized (U/U) genes. Although the biological functions of
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proteins encoded by U/U genes are unclear, these genes occupy a

large proportion of genes reported to date (Imtiaz, 2022).

Do U/U genes matter? More and more of these genes have been

shown to play important roles in plants, such as controlling growth

and development (Wang et al., 2020) and stress resistance (Soda

et al., 2013; Qi et al., 2023). It is challenging to classify U/U genes.

Here, we focus on recent progress in our understanding U/U genes,

including their classifications, methods and functions. We also

discuss research methods used to further study U/U genes.
Classification of U/U genes

Genes with typical domains whose function has rarely been

identified and genes with no typical domains whose roles are

uncertain were named unknown/uncharacterized (U/U) genes.

Here, we classify U/U genes into two types based on the presence

or absence of conserved domains.

One type is genes with domains but functions have not been

identified. Many U/U genes have been identified in food crops and

uncultivated plants. Many genes of unknown function contain

conserved domains, allowing them to be classified into gene families

that encode proteins with known functions. The presence of conserved

domains helps researchers predict the roles of U/U genes and provides

direction for the functional research of unknown genes. Exogenously

overexpressing MbMYBC1 and MbMYB108 from Malus baccata

enhanced the cold and drought resistance of transgenic Arabidopsis

(Arabidopsis thaliana) (Yao et al., 2022; Liu et al., 2023). Exogenously

overexpressing FvMYB82 from strawberry (Fragaria vesca) and the R1-

MYB transcription factor gene LcMYB1 from sheepgrass (Leymus

chinensis (Trin.) Tzvel.) enhanced the salt tolerance of transgenic

Arabidopsis (Cheng et al., 2013; Li et al., 2022a). AgMYB5, an

unknown gene from celery (Apium graveolens L.), enhanced b-
carotene synthesis in transgenic Arabidopsis (Sun et al., 2023)

(Figure 1A). Among NAC family transcription factor genes,
B C

A

FIGURE 1

U/U genes with typical conserved domains and their roles in plants. (A) Five newly identified MYB type genes and their related functions. (B) Two
newly discovered NAC family genes and their related functions. (C) Three newly isolated WRKY genes and their related functions.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1276559
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2023.1276559
overexpressing CaNAC46 from pepper (Capsicum annuum) and

SlNAC10 from Suaeda liaotungensis enhanced the salt and drought

resistance of transgenic Arabidopsis (Ma et al., 2021; Du et al., 2022)

(Figure 1B). Among genes in the WRKY transcription factor family,

OsWRKY54 is associated with salt tolerance in rice; heterologous

expression of VvWRKY28 from grapevine (Vitis vinifera) and

PcWRKY11 from Polygonum cuspidatum in Arabidopsis enhanced

salt tolerance (Liu et al., 2022b; Wang et al., 2022a) (Figure 1C).

The other type is genes without a domain and with unknown

functions. Several unknown genes that lack typical conserved

domains also function in plant growth, development, and

resistance to stress. The U/U gene Lb1G04202 from the halophyte

Limonium bicolor, which lacks known structural domains or special

structures, encodes a protein that functions in the nucleus and

enhanced NaCl tolerance in Arabidopsis by alleviating osmotic

stress. The RNA of Lb1G04202 localizes to the salt gland (a unique

salt-secreting structure) of Limonium bicolor, suggesting that this

gene plays a role in salt gland development (Wang et al., 2022b). In

a word, U/U genes with and without conserved domains play

significant roles in plants.
Methods to study U/U genes

U/U genes are almost always discovered in non-model plants,

making functional studies quite challenging due to unstable

transformation systems. Whole genome sequencing and

comparative genomics are essential techniques for performing

functional studies of these genes (Geng et al., 2022; Liu and

Zhang, 2022; Yuan et al., 2022). U/U genes are always identified

by RNA-seq, but their assembled sequences are not always accurate.

Therefore, transcriptome sequencing techniques such as Iso-seq

that yield full-length reference sequences are recommended in

studies examining U/U function (Yuan et al., 2015; Yuan et al.,

2016; Jia et al., 2022). Iso-seq can directly obtain complete

transcripts without disrupting splicing, in order to accurately

analyze structural information such as variable splicing and

fusion genes of reference genome species. This technology

can also promote the optimization of genome annotation

and quantification of transcriptome abundance, providing

opportunities for the discovery of new genes (Rhoads and Au,

2015; Li et al., 2017; Beiki et al., 2019; Jia et al., 2022).

Map-based cloning can be used to isolate and clone plant genes

and to localize genes on chromosomes (Lee et al., 2019). This

technology is particularly suitable for situations where the

expression products of genes are unknown, functional

information for unknown genes is lacking, or no suitable

phenotypes are observed (Jin et al., 2022; Zhan et al., 2023).

However, the complete sequence of new genes cannot be fully

mastered, which undoubtedly poses difficulties for the full-length

cloning and isolation. RACE (rapid amplification of cDNA ends) is

an effective method for studying new genes, which based on PCR

and RNA reverse transcription. It rapidly amplifies the unknown

sequence regions of the 3’ or 5’ ends of cDNA through partial

known gene sequences to obtain full-length cDNA (Groot
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Kormelink and Luyten, 1997; Lindberg et al., 1997; Cheng et al.,

2006; Yeku and Frohman, 2011).

Bioinformatics analysis of candidate genes is crucial, as it

provides a rough understanding of the possible range of gene

action through domain prediction (SMART), hydrophilicity

analysis (Expasy-ProtScale) (Dong et al., 2022), transmembrane

region display (TMHMM 2.0) (Zhao et al., 2022), and subcellular

localization prediction (WoLF PSORT) (Wang et al., 2021; Song

et al., 2022). Bioinformatics analysis can lay a solid foundation for

further in-depth research of U/U genes (Chen et al., 2022).

RNA interference (RNAi) is an efficient tool for studying the

effects of gene deletions (Koeppe et al., 2023; Traber and Yu, 2023).

Gene silencing mediated by double-stranded RNA (dsRNA) is

widely used to study gene functions in various plants (Akond

et al., 2022; Bharathi et al., 2023). Another efficient method to

identify gene function is clustered regularly interspaced short

palindromic repeats (CRISPR)/CRISPR-associated nuclease 9

(Cas9)-mediated gene knockout (Hu et al., 2023). The phenotypes

obtained using these two methods can be compared to phenotypes

obtained via overexpression to analyze the biological function of the

target gene or protein (Yuan et al., 2022). Of course, it is not

sufficient to conduct research solely in the species harboring U/U

genes. The transfer of candidate genes into model plants

(Arabidopsis) or prokaryotic bacteria is extensively used for

further functional research (Leng et al., 2021; Wang et al., 2022b).

The completion of various life functions in plant cells relies on

interactions between proteins (Beihammer et al., 2023). Typically,

functional proteins combine with other proteins (known or

unknown) to form complexes and function in specific pathways

(Zhao et al., 2008). Therefore, it is necessary to identify genes that

are involved upstream or downstream of the U/U gene of interest

and validate the interactions between their encoded proteins. U/U

proteins and candidate proteins that may interact with each other

identified by screening yeast libraries can be validated by examining

in vitro and in vivo interactions using yeast-two hybrid assays (Cao

et al., 2022), bimolecular fluorescence complementation (BiFC)

(Choi et al., 2022), co-Immunoprecipitation (CoIP), and GST-

pulldown (Du et al., 2023) in order to elucidate the associated

signaling pathways (Liu et al., 2022a).
The roles of U/U genes in regulating
plant growth

U/U genes that regulate plant growth and development are

distributed across a variety of species, particularly soybean (Glycine

max), rice (Oryza sativa), and non-model plants. The functions of

reported U/U genes throughout the lifecycles of soybean and rice

are shown in Figure 2.
U/U genes in soybean

To date, many U/U genes that participate in reproductive growth

have been identified in soybean (Figure 2A). The hemoglobin gene
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U47143 from soybean shares a protein sequence similarity of only

58% with another hemoglobin gene in soybean. As soybean is a non-

symbiotic leguminous plant, hemoglobin is expressed in various

tissues of this plant, such as cotyledons, seedling stems, roots,

young leaves, and root nodules (Anderson et al., 1996).

Glyma09G02130, a new NHX (Na+/H+ antiporter gene family)

gene, was identified from the soybean genome, which is related to

root growth. Under salt stress, the expression level of

Glyma09G02130 in roots is significantly upregulated (Chen et al.,

2015). A new ferritin gene SferH-5 has been cloned from soybean

seedlings, which is related to the production of ferritin in soybean

(Dong et al., 2007). The MORN motif type gene GmMRF2 has also

been isolated from soybean. Soybean lines overexpressing GmMRF2

exhibited earlier flowering under long day (LD) conditions and

showed an increase in plant height under both LD and short day

(SD) conditions. In addition, gibberellin pathway genes which

positively regulate plant height and promote flowering, were

significantly upregulated in GmMRF2-overexpression lines (Zhang

et al., 2023a), reflecting the important roles of GmMRF2 in regulating

flowering time and plant height. In addition, E1-nl and E3-tr were

identified as related to flowering time by AmpliSeq technology

(Ogiso-Tanaka et al., 2019). By analyzing T-DNA mutant (S006)
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seeds, a gene related to seed development was discovered, namedNew

Seed Size (NSS). Seeds of the CRISPR/Cas9-generated nss1 mutant

were small with brown seed coats, which is consistent with the

phenotypes of S006 seeds (Zhang et al., 2023b). What’s more, a novel

male-stelile gene msNJ has been discovered (Nie et al., 2019). In a

word, U/U genes are distributed at various locations in soybean and

participate in different life activities.
U/U genes in rice

A gene underlying a quantitative trait locus (QTL) controlling

plant height on chromosome 1 (QTLph1) was identified in rice; this

gene encodes a protein that promotes sucrose transport to the leaves

(Ishimaru et al., 2004) (Figure 2B). Ten new MADS-box homologous

genes were identified in rice using pan-genome, all of which were

expressed in flower tissue and six were highly expressed during seed

development (Li et al., 2023a). A novel gene encoding alternating

oxidase (AOX1c) was isolated from rice, mainly expressed in leaves

and young panicles (Saika et al., 2002). The U/U gene Os08g0299000,

named FLORAL ORGAN NUMBER7 (FON7), was identified in a

mutant with altered floral organ number (generated by ethyl
B

A

FIGURE 2

U/U genes related to plant growth regulation. (A) U/U genes related to growth and development identified in soybean. (B) Newly identified genes in
rice and their functions in growth and development.
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methanesulfonate treatment of Korean japonica rice cultivar Ilpum);

this gene controls the number of floral organs. The fon7 mutant

shows an increased number of stamens and pistils. The number of

floral organs plays crucial roles in fruit development and grain

maturity (Maung et al., 2023). In rice, LARGE EMBRYO (LE), a U/

U gene that controls embryo size, was identified and characterized. In

le mutants and RNA interference lines, the embryo size is increased,

indicating that LE plays a decisive role in controlling embryo size (Lee

et al., 2019). Therefore, U/U genes in rice play a major role in growth

and reproduction.
U/U genes in other plants

Most other U/U genes have been reported in Arabidopsis,

poplar, and sweet potato (Ipomoea batatas Lam). Four

Arabidopsis mutants (rem1.2, orc1a, ppd1, and mcm4), exhibit

varying degrees of reduction rosette size, confirming the novel

role of these U/U genes in effective leaf surface area (ELSA)

(Gonzalez et al., 2020). In Arabidopsis, the line expressing

COBRA gene family showed a significant decrease in cellulose

content, and the new member was identified related to the

secondary cell wall formation (Brown et al., 2005). The protein

encoded by the U/U transcription factor gene PebHLH35 (from

Populus euphratica) enhances drought resistance by regulating

stomatal development and photosynthesis, as demonstrated in

transgenic Arabidopsis plants heterologously expressing this gene

(Dong et al., 2014). The protein encoded by the U/U sucrose

transporter gene IbSUT4 from sweet potato participates in plant

growth by intervening in the abscisic acid signaling pathway (Wang

et al., 2020). The U/U BrSCC1 gene BraA03g040800.3C identified in

Brassica rapa L has been verified to be related to the seed coat color

(Zhang et al., 2023c). The U/U gene GhMPK7 has been isolated

from cotton, whose overexpression in transgenic tobacco promoted

the transcription level of SA pathway quickly and efficiently and
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showed earlier germination compared to WT (Shi et al., 2010). It

can be seen that there are numerous U/U genes distributed in

different plants and participated in various life activities.
The roles of U/U genes in abiotic
stress resistance

Most U/U genes identified in different plant play function in

responses to different types and degrees of stress, including high salt

(Figure 3A), water scarcity (Figure 3B), and harsh temperatures

(high or low) (Figure 3C).
Salt stress

In rice, OsASR6 (a newly identified salt-induced ASR gene) is

upregulated under salt stress. OsASR6 RNAi transgenic lines

showed poorer salt tolerance and oxidative stress capacity than

the untransformed control plants, while genetically modified rice

lines with OsASR6 overexpression showed excellent performance

(Zhang et al., 2022a). A U/U SIF gene in rice might be involved in

the plant response to salinity stress (Soda et al., 2013). A new

WRKY gene named MxWRKY55 was isolated from Malus

xiaojinensis and introduced into Arabidopsis to significantly

improve its salt tolerance and biomass (Han et al., 2020). What’s

more, overexpression of MxNAS3 cloned from M. xiaojinensis in

transgenic Arabidopsis improve biomass and root length.

Importantly, the high expression of MxNAS3 in transgenic

Arabidopsis is associated with the formation of malformed

flowers (Han et al., 2018b). Also, a new gene MxCS2 encoding

citrate synthase promotes the synthesis of citrate synthase and

increases the content of CA in Arabidopsis. Overexpression of

MxCS2 also increased the fresh weight, root length, CS activity, as

well as chlorophyll and citric acid content (Han et al., 2014).
B

C
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FIGURE 3

U/U genes closely related to abiotic stress. (A) U/U genes that respond to Na+ in plants. (B) U/U genes that respond to water deficiency in plants.
(C) U/U genes that respond to extreme temperatures.
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MbCBF2, an uncharacterized gene from Malus baccata (L.) Borkh,

increased its expression in young tissues under high salt induction.

In heterologous overexpressed Arabidopsis lines, it can enhance the

adaptation to high salt environment and change physiological

indicators related to stress, including proline, malondialdehyde

(MDA) and superoxide dismutase (SOD), which reflects the

tolerance of MbCBF2 to salt stress (Li et al. , 2022b).

Overexpression of a novel WRKY gene MbWRKY4 in transgenic

tobacco enhances salt tolerance (Han et al., 2018a).

Functional analysis of the salt cress (Thellungiella halophila)

genes ST6-66 and ST225 in Arabidopsis revealed their importance

in salt resistance (Du et al., 2008). The U/U gene LcMADS9 was

significantly upregulated in sheepgrass (Leymus chinensis (Trin.)

Tzvel) under NaCl treatment, highlighting the response of this gene

to NaCl (Jia et al., 2018). LcSAIN2, another salt-induced U/U gene

from sheepgrass, enhanced salt tolerance in transgenic Arabidopsis

plants (Li et al., 2013). Transcriptome sequencing of two maize (Zea

mays) inbred lines revealed the U/U gene Zm00001d053925, whose

expression level was significantly higher in AS5 (salt tolerant line)

than in NX420 (salt intolerant l ine), indicating that

Zm00001d053925 functions in the plant response to salt stress

(Zhu et al., 2023) (Figure 3A). A U/U gene galactosyl transferase-

like (SbGalT) from Salicornia brachiata alleviates osmotic and salt

stress in transgenic tobacco (Dubey et al., 2021). Also, another new

salt induced gene SbSI-2 (Salicornia brachiata salt-inducible-2) has

been functionally identified to have the same function as SbGalT

(Pandey et al., 2014). In one word, U/U genes exercise significant

functions in response to salt stress.
Drought stress

In Populus euphratica, the transcription factor PebHLH35

confers drought resistance by regulating various developmental

and physiological processes (Dong et al., 2014). DEHYDRATION

RESPONSE ELEMENT-BINDING PROTEIN 2A (DREB2A) in apple

(Malus domestica) responds to drought stress and plants

overexpressing MhDREB2A exhibited enhanced tolerance to

drought (Li et al., 2023b). An uncharacterized KdNOVEL41

(KdN41) gene from Kalanchoe (K.) daigremontiana confers

drought resistance on K. daigremontiana and tobacco (Nicotiana

tabacum) by playing a role in clearing reactive oxygen species and

reducing osmotic damage (Wang et al., 2018). The unique proteins

with obscure features (POFs) of Arabidopsis enhance tolerance to

oxidative stress, including osmotic, salinity, and temperature stress

(Luhua et al., 2008). The U/U gene BdRFS of Brachypodium

distachyon has been identified to be functionally conserved,

together with improve the drought resistance of Brachypodium

and Arabidopsis (Ying et al., 2023). The inactivation of SIP1,

encoding an unknown protein in Arabidopsis, decreased drought

tolerance (Anderson and Kohorn, 2001). Furthermore, a novel gene

DUF569 (AT1G69890) with “domain of unknown function”

positively regulates drought stress in Arabidopsis (Nabi et al.,

2021). The HSF transcription factor gene TrHSFB2a (B-type

HSF), which was recently identified in drought-sensitive white

clover (Trifolium repens), negatively regulates drought resistance
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(Iqbal et al., 2022) (Figure 3B). Under drought stress conditions,

overexpression of the ONAC066 gene (a novel gene whose function

has been newly determined) enhances the tolerance of rice to

drought stress and sensitivity to ABA (Yuan et al., 2019).

Numerous U/U genes responding to drought stress undoubtedly

bring new possibilities for improving plant drought resistance.
Extreme temperature stress

MbCBF2, a U/U CBF transcription factor gene from Malus

baccata (L.) Borkh, shows elevated expression at low temperatures.

Exogenously overexpressing MbCBF2 enhanced the adaptability of

transgenic Arabidopsis to cold conditions (Li et al., 2022b).

MbERF12, an ERF gene, enhances its ability to scavenge reactive

oxygen species through ethylene signaling, playing a crucial role in

the response of salt and low temperature stress (Han et al., 2021).

ZINC FINGER OF ARABIDOPSIS THALIANA 10 (ZAT10), a U/U

gene in Malus domestica, is activated under low temperature stress.

Apple lines overexpressing MhZAT10 showed increased tolerance

to low temperature stress, indicating that this gene plays an

important role in cold resistance (Li et al., 2023b). Low

temperature significantly induced LcMADS1 and LcMADS2

expression in sheepgrass (Jia et al., 2018).

TrHSFB2a expression in white clover was strongly induced by

exposure to high temperature (35°C) and the encoded protein

negatively regulates heat tolerance (Iqbal et al., 2022). The POFs

in Arabidopsis enhance plant tolerance to oxidative stress under

both cold and heat stress (Luhua et al., 2008) (Figure 3C). Under

harsh temperatures, in addition to previously characterized genes,

there are also these uncharacterized genes, which enriches the large

category of genes that have resistance to extreme temperature.

Though different new genes were identified in various stress, plants

usually experience fluctuations in several key hormone levels during

their early stress response, such as ABA, SA and JA (Verma et al.,

2016). ABA is a regulatory factor for many plants under environmental

stress, including drought, low temperature, and salinity. Abiotic stress

generates osmotic signals, leading to ABA accumulation (Danquah

et al., 2014). SnRKs are involved in osmotic stress and ABA signal

transduction, and both SnRKs and ABA pathways involve MAPK

responses (Zhu, 2016). Under extreme stress conditions, ROS is

overproduced and causes oxidative damage to plants (Verma et al.,

2016). After ROS signal transduction, anthocyanins are produced,

which are used for antioxidant activities by clearing excess ROS

(Naing and Kim, 2021). In short, plants have a similar fate after

being subjected to abiotic stresses, which can trigger a series of

homologous stress tolerance activities.
The roles of U/U genes in biological
stress responses

Plant diseases such as powdery mildew, bacterial blight, and leaf

rust frequently occur in plants (especially food crops), which greatly

reduces crop quality and yields. Many U/U genes in crops are related
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to diseases responses. Here we summarize progress in identifying

genes involved in biological stress resistance. Among them, most do

not have obvious domains, except for family genes such as NAC.
Leaf rust resistance

Wheat leaf rust, a disease caused by Puccinia triticina, mainly

damages the leaves of common wheat (Triticum aestivum) and

causes serious losses in wheat production (Qi et al., 2023).

Currently, the most effective control measure involves breeding

and using resistant wheat varieties.

The U/U gene Lr68 in common wheat confers slow-rusting

resistance to wheat rust, as demonstrated in the field (Herrera-

Foessel et al., 2012). Lr46 is also associated with slow-rusting

resistance to leaf rust in wheat (Singh et al., 1998). A leaf rust

resistance gene named Lr81 was identified in wheat line PI470121,

which is a unique leaf rust resistance locus (Xu et al., 2022a). A

stable APR gene, named LrYang16G216, was detected in wheat and

identified as a new and effective gene for leaf rust resistance (Zhao

et al., 2023b). A gene Pc54 with leaf rust resistance has been

identified in oat (Avena sativa) (Admassu-Yimer et al.,

2022).These newly identified genes all have excellent activity in

inhibiting rust (Figure 4A), which could contribute to the breeding

of rust resistant wheat varieties.
Powdery mildew resistance

Powdery mildew is a crop disease induced by Blumeria graminis f.

sp. Tritici that is extremely destructive to common wheat (Mapuranga

et al., 2022). Identifying powdery mildew resistance genes could suggest

strategies to improve growth and yield in wheat and other crops.

The U/U powdery mildew resistance gene Pm40 of Elytrigia

intermedium confers resistance to this disease and has been

transferred to wheat to enhance its resistance to powdery mildew

(Luo et al., 2009). A gene Pm3 with powdery mildew resistance was
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identified in oat (Avena sativa) (Admassu-Yimer et al., 2022).

PmW6RS has been identified as a powdery mildew resistant gene

in rye (Secale cereale L., RR), providing a new gene selection for

wheat disease resistance breeding (Wang et al., 2023). Pm351817, a

new Pm65 allele in wheat, exhibits resistance to powdery mildew

(Xu et al., 2023). PmSESY in rye (Secale sylvestre) also confers

resistance to powdery mildew and can significantly improve

resistance to this disease (He et al., 2021). The U/U gene Er3,

which was identified in Pisum fulvum, markedly improves the

resistance to powdery mildew (Sara et al., 2007). The U/U allele

MlIW172 of Pm60 was shown to enhance resistance to powdery

mildew in wheat by transgenic complementation (Wu et al., 2022).

These genes provide genetic diversity for breeding wheat with

enhanced resistance to powdery mildew (Figure 4B).
Bacterial blight resistance

Bacterial blight (BB), a disease caused by Xanthomonas oryzae

pv. oryzae (Xoo), is a serious rice disease worldwide (Javed et al.,

2022). Therefore, identifying and isolating BB resistance genes from

different rice resources is of great significance. Different rice

varieties have multiple different BB resistance genes. The BB

resistance gene Xa43 was recently identified in Zhangpu wild rice

(Oryza rufipogon) (Huang et al., 2023). A new NLR disease

resistance gene Xa47 has long-term resistance to rice BB disease

(Lu et al., 2022b). Xa26(t), which was identified in rice variety

Minghui 63, has a dominant effect on the Chinese Xoo strain JL691

at both the seedling and adult stages (Yang et al., 2003) (Figure 4C).

It can be seen that the identification and utilization of U/U genes are

of great significance for resisting BB.
Resistance to other diseases

Multiple resistance genes to downy mildew exist in wild

Lactuca, 11 of which were introduced into lettuce (Lactuca sativa
B CA

FIGURE 4

U/U genes related to resistance to biological stress in plants. (A) U/U genes involved in leaf rust resistance in plants. (B) U/U genes involved in
powdery mildew resistance in plants. (C) U/U genes involved in bacterial blight resistance in plants.
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L.) to facilitate the development of multi-gene downy mildew

resistant lines (Parra et al., 2020). The resistance gene Rsg3 was

recently discovered in Chinese barley landrace PI 565676 (a

landrace from China). This gene, which provides strong

resistance to greenbug (Schizaphis graminum Rondani), should

help alleviate the major threat of this insect pest to global food

production (Xu et al., 2022b). The resistance gene bph42, which

confers resistance to brown planthopper (BPH), was identified in

wild rice line Oryza rufipogon (Griff.) and transferred to cultivated

rice (Oryza sativa), laying the foundation for the production of

high-quality rice with enhanced insect resistance (Kaur et al., 2022).

Brassica rapa shows obvious resistance to turnip mosaic virus

(TuMV). Through genetic analysis, a uncharacterized TuMV

resistance gene, BraA06g035130.3C, was recently identified,

paving the way for improving TuMV resistance and agricultural

production (Lu et al., 2022a). The U/U gene GbNAC1 from

Gossypium barbadense L. has been identified to be positively

involved in the regulation of Verticillium Wilt resistance (Wang

et al., 2016).
Perspectives

More than a quarter of genes in the genomes of both crops and

halophytes encode proteins of unknown function (Luhua et al.,

2008). Some of these genes encode at least one previously defined

domain or motif, but most lack previously defined features.

Although transcriptome, metabolome, and proteome data show

that many of these genes play important roles in plant growth,

metabolism, physiology, and other life processes, their functions

remain to be identified.

Nowadays the model organism Arabidopsis can be used to

verify the functions of these genes via heterologous transformation

and other experimental techniques, but studies of unknown genes

should focus on their functions in the species harboring these genes

and establishing genetic transformation systems for these species.

Generating overexpression and silencing lines of the target gene of

the species of interest via genetic transformation and observing the

phenotypes of the transgenic lines would enable the analysis of gene

function more directly and accurately. The functional study of

unknown genes is not limited to the genes themselves. Genes are

usually regulated by key upstream factors, and they encode proteins

that regulate downstream genes. Therefore, clarifying the functions

of the upstream and downstream factors of U/U genes and

establishing a complete gene regulatory network are important

aspects of functional studies of these genes.

U/U genes not only encode proteins that perform various

biological functions in plants, but they also play important roles

in the life activities of animals, microorganisms, and especially

humans. We can also find inspiration from the study of U/U genes

in animals. FREPs, a recently identified gene family in mussels

(Mytilus edulis), are related to immune recognition in mollusks

(Gorbushin and Iakovleva, 2011). A recently identified Ig kappa

gene in sea star (Asterias rubens) confers specific resistance to

horseradish peroxidase (Vincent et al., 2014). Previously

unidentified genes obtained from chromosome replication
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promoted the study of the Neuropeptide Y family in vertebrates

(Sundström et al., 2008). Innexin 3, a gene involved in dorsal closure

in embryos, has also been identified in Drosophila (Fanning et al.,

2013). A newly discovered gene that confers resistance to influenza

virus H5N1 was identified in duck (Anas platyrhynchos) through

transcriptome analysis (Huang et al., 2019). A new human

membrane-associated mucin of the ocular surface was recently

identified, which could contribute to the protection of human

eyes (Fini et al., 2020). The discovery of a series of new genes in

males revealed a new pathway for the production of testosterone

(Flück and Pandey, 2014). New genes that function in osmotic

stress resistance in the yeast Saccharomyces cerevisiae have also been

identified (Gonzalez et al., 2016).

The study of U/U genes faces challenges because it is often unclear

to which pathways these genes contribute. We can also uncover

the unexpected functions of U/U genes in plant development

and resistance, providing essential information to supplement

our knowledge of known functional genes and improve our

understanding of the connections between biological molecules.

In summary, numerous uncharacterized genes in living organisms

have yet to be discovered, isolated, analyzed, cloned, and functionally

identified. Some of these genes play key roles in the lifecycles of living

organisms. Exploring these genes may enrich our understanding of

existing physiological processes, metabolic pathways, and functional

networks and offer new strategies to modulate them.
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