
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Ahmad Fakhoury,
Southern Illinois University Carbondale,
United States

REVIEWED BY

Yang Yu,
Southwest University, China
Nazanin Zamani-Noor,
Julius Kühn-Institute, Germany
Begoña Pérez Vich,
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Genetic breakthroughs in the
Brassica napus–Sclerotinia
sclerotiorum interactions

Rong-Shi Chen, Ji-Yi Wang, Rehman Sarwar and Xiao-Li Tan*

School of Life Sciences, Jiangsu University, Zhenjiang, China
Sclerotinia sclerotiorum (Lib.) de Bary is a highly destructive fungal pathogen that

seriously damages the yield and quality of Brassica napus worldwide. The

complex interaction between the B. napus and S. sclerotiorum system has

presented significant challenges in researching rapeseed defense strategies.

Here, we focus on the infection process of S. sclerotiorum, the defense

mechanisms of rapeseed, and recent research progress in this system. The

response of rapeseed to S. sclerotiorum is multifaceted; this review aims to

provide a theoretical basis for rapeseed defense strategies.
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Introduction

Rapeseed (Brassica napus) is an allopolyploidy (AACC) resulting from the natural

hybridization of Brassica rapa (AA) and Brassica oleracea (CC) (Chalhoub et al., 2014). It is

an important and widely grown oil crop rich in oil and protein content (Chen et al., 2015;

Chew, 2020). Rapeseed can be classified into three types based on its growth requirements:

annual spring type, biennial winter type, and semi-winter type (Wang et al., 2011). Winter

types necessitate an extended period of low-temperature vernalization before flowering,

while spring types do not require this phase. Semi-winter types exhibit limited cold

tolerance and are suitable for regions with moderately cold winter temperatures (>0°C)

(Wang et al., 2011; Leijten et al., 2018; Matar et al., 2021). Rapeseed, oil palm, and soybean

are the three primary sources of edible plant oil. “Double-low” rapeseed oil, also known as

canola oil quality (glucosinolates <30 mmol/g, erucic acid <2%), is rich in unsaturated fatty

acids (oleic acid, linoleic acid, linolenic acid, etc.) and various nutrients (phenols,

phytosterols, vitamins, etc.). Consequently, the market share of rapeseed oil is

consistently on the rise (Beyzi et al., 2019; Ye and Liu, 2023). Rapeseed is also used in

animal feed and biofuel production, with high economic value and market potential (Jiang

et al., 2019).

Sclerotinia sclerotiorum (Lib.) de Bary is the ascomycetes’ highly destructive fungal

pathogen. It is widespread and infects over 700 plant species, including many economically

important crops like rapeseed, sunflower (Helianthus annuus), peanut (Arachis hypogaea),
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soybean (Glycine max), garden lettuce (Lactuca sativa), and sugar

beet (Beta vulgaris) (Boland and Hall, 1994; Uloth et al., 2013; Xia

et al., 2019; Zhang et al., 2021). Sclerotinia stem rot (SSR) is the

primary disease caused by S. sclerotiorum, resulting in the necrosis

of stems and leaves in rapeseed, which can lead to yield losses of up

to 80% in severe cases (Li et al., 2006a). S. sclerotiorum exists in the

form of resting bodies known as sclerotia, which can withstand

harsh environmental conditions. When the environment becomes

suitable for growth, these sclerotia germinate, adopting either a

myceliogenic or carpogenic form, producing hyphae or apothecia.

These apothecia release ascospores that infect plant tissue (Bolton

et al., 2006). Ascospores land on plant tissues, germinate as

mycelium, and secrete oxalic acid (OA), cell wall degrading

enzymes (CWDEs), and other substances to facilitate colonization

(Kabbage et al., 2015; Xia et al., 2019). Previous studies have shown

the critical role of OA synthesis and secretion in the pathogenesis of

S. sclerotiorum, with fungal mutants deficient in OA production

being non-pathogenic. The pathogen elevates the level of reactive

oxygen species (ROS), and it induces a hypersensitive response

(HR) in plant cells by secreting OA into plant tissues, ultimately

leading to programmed cell death (PCD) (Godoy et al., 1990; Kim

et al., 2008). No varieties with complete resistance to SSR have been

reported in rapeseed. Disease control primarily relies on field

management and fungicide application. However, this requires

growers to predict the timing of S. sclerotiorum infection, which

may also result in environmental pollution and presents several

limitations due to the lack of effective prediction methods (Bolton

et al., 2006).

In recent years, the increasing global demand for rapeseed has

led to intensified cultivation practices, increasing the urgency for

effective strategies against S. sclerotiorum. Developments in various

tools, techniques, and expanded research on S. sclerotiorum have

generated valuable insights into defense strategies for rapeseed.

Here, we introduce the infection process of S. sclerotiorum, the

defense strategies of rapeseed, recent research on the identification

of defense-related genes in rapeseed, and the resistance strategies of

transgenic rapeseed. The B. napus–S. sclerotiorum system has a

complex regulatory network, and this review aims to provide a

reference for future studies on S. sclerotiorum resistance strategies

in rapeseed.
The infection process of
S. sclerotiorum

S. sclerotiorum is a typical necrotrophic pathogen, and recent

studies have revealed that it undergoes a transient biotrophic phase

after initially colonizing plant tissues before transitioning into a

necrotrophic pathogen (Kabbage et al., 2015; Liang and Rollins,

2018). The sclerotia present in the soil exhibit two states in relatively

high-humidity conditions: myceliogenic germination, which

produces hyphae to infect plant roots, and carpogenic

germination, leading to the production of apothecia from which

ascospores are released into the air (Clarkson et al., 2003; Hegedus

and Rimmer, 2005). Typically, ascospores colonize senescent
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tissues, primarily petals, rather than healthy tissues. Under

suitable conditions, they will generate hyphae (Turkington et al.,

1991; Jamaux et al., 1995). Subsequently, infection cushions are

formed to breach the host cuticle, entering a brief biotrophic phase

in the apoplast. During this phase, OA and some hydrolytic

enzymes are synthesized and secreted to inhibit the oxidative

burst of host cells and host defense, degrade the cell wall, and the

composite effect of infection cushions enhances penetration and

expedites pathogen colonization. After penetrating the plant’s

cuticle, S. sclerotiorum generates subcuticular vesicles and

subcuticular infection hyphae that spread below the cuticle,

indicating the beginning of the biotrophic phase, accumulate

nutrients needed for hyphal growth, and serve as the foundation

for colonization by S. sclerotiorum. The branches of subcuticular

infection hyphae will produce ramifying hyphae, and they will

penetrate anticlinal cell wall junctions, which will reduce the

stability of the epidermal cell wall (Jamaux et al., 1995; Huang

et al., 2008). Finally, the pathogen enters the necrotrophic phase

(Garg et al., 2010; Kabbage et al., 2015; Derbyshire and Denton-

Giles, 2016). As the petals fall, the hyphae spread to other healthy

plant parts, such as leaves or stems, and may also extend to adjacent

plants, causing stem rot and severe yield losses (Figure 1).

OA plays a multifaceted role in the pathogenesis of S.

sclerotiorum. In the early stages of infection, OA accumulation in

infected tissues significantly impacts the host’s redox environment.

This effect leads to the suppression of the oxidative burst, the

inhibition of callose deposition, and a reduction in ROS production.

Consequently, it hampers the plant defense response. OA also

contributes to the chelation of Ca2+, influencing Ca2+ signal

transduction and pectin structure, and it leads to a decrease in

environmental pH, enhancing the activity of CWDEs (Favaron

et al., 2004; Williams et al., 2011; Fagundes-Nacarath et al., 2018). In

the later stages of infection, the induction of ROS production leads

to HR or PCD in host cells (Liang et al., 2009). OA-deficient

mutants of S. sclerotiorum are nonpathogenic because they cannot

alter the host’s redox environment; the strain cannot colonize but

can induce strong HR-like plant defense (Williams et al., 2011).

Most hosts of S. sclerotiorum are dicotyledons, which may be

associated with OA preference (Derbyshire et al., 2022). Germin-

like proteins (GLPs) were found in cereals with oxalate oxidase

(OXO) activity and can break down OA into CO2 and H2O2 (Lane

et al., 1993; Woo et al., 2000; Davidson et al., 2009). Rapeseed

overexpressing the OXO gene showed higher tolerance to OA and

stronger resistance to S. sclerotiorum (Zou et al., 2007; Dong et al.,

2008; Liu et al., 2015). This may explain why S. sclerotiorum is

unable to infect many monocotyledons.

Pathogens secrete effectors that play an essential role in the

pathogenesis process, and these small secreted proteins can either

promote or inhibit host cell death according to the pathogens

(Hogenhout et al., 2009; Lyu et al., 2016). A previous study based

on whole genome sequencing estimated the presence of

approximately 70 putative effector genes in S. sclerotiorum

(Derbyshire et al., 2017). Some effectors have been identified in S.

sclerotiorum. PGIP-INactivating Effector 1 (SsPINE1) can inactivate

plant polygalacturonase-inhibiting proteins (PGIPs), promoting the

dissociation of polygalacturonases (PG)-PGIP and enhancing
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necrotrophic virulence (Wei et al., 2022). Necrosis and ethylene‐

inducing peptides 1 and 2 (SsNep1, SsNep2) caused necrosis by

transient expression in tobacco leaves (Dallal Bashi et al., 2010).

Integrin alpha N-terminal domain superfamily member SsITL

inhibits the expression of PLANT DEFENSIN1.2 (PDF1.2) in A.

thaliana, affecting the plant defense response (Zhu et al., 2013). A

cutinase, SsCut, causes cell death in some host plants, including B.

napus, G. max, and Oryza sativa (Zhang et al., 2014a). SsSSVP1

affects the plants’ energy metabolism and promotes infection (Lyu

et al., 2016). Intracellular necrosis‐inducing effector 1 (SsINE1) can

enter host cells by the RxLR‐like motif, and SsINE5 causes necrosis

by nucleotide‐binding leucine‐rich repeat (NLR) proteins (Newman

et al., 2023). Cerato-platanin protein 1 (SsCP1) can target plant PR1

and cause host cell death (Yang et al., 2018). YML079-like cupin

protein (SsYCP1) can promote pathogen infection and play an

essential role in the pathogenesis of S. sclerotiorum (Fan et al.,

2021a). These effectors are crucial elements in the study of

interactions between plants and S. sclerotiorum, providing insights

into the mechanisms underlying the pathogenic process.
Rapeseed defense response to S.
sclerotiorum infection

Plant immunity against pathogens comprises two main

branches: pattern-triggered immunity (PTI) and effector-triggered

immunity (ETI). PTI relies on transmembrane pattern recognition
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receptors (PRRs) that recognize pathogen-associated molecular

patterns (PAMPs), while ETI involves the use of proteins encoded

by intracellular resistance (R) genes. These mechanisms contribute

to plant defense together (Jones and Dangl, 2006). The involvement

of the PTI has been demonstrated in plants–S. sclerotiorum system

(Zhang et al., 2013). Several receptor-like protein (RLP)

genes, including candidates such as BnaA02g16770D and

BnaC02g22760D, have been identified in B. napus in response to

S. sclerotiorum (Li et al., 2022). Various endogenous hormones

regulate the downstream immune responses in plants against

pathogens through a series of signal transduction pathways.

Signal pathways mediated by salicylic acid (SA), jasmonic acid

(JA), and ethylene (ET) play significant roles in regulating plant

defense responses (Thomma et al., 2001; Pieterse et al., 2012).

Studies in Arabidopsis thaliana have revealed that SA can induce

PCD and HR reactions at the infection site, providing resistance to

biotrophic pathogens. The JA/ET signaling pathway, independent

of the SA pathway, confers resistance to necrotic pathogens

(Glazebrook, 2005; Li et al., 2019). These signaling pathways have

essential roles in the defense of rapeseed against S. sclerotiorum, and

in particular, the SA pathway was shown to be involved in the

defense response against necrotrophic pathogens (Nováková et al.,

2014). SA and JA pathways often exhibit antagonistic interactions.

Positive regulatory genes in the SA pathway, such as WRKY70,

negatively regulate the JA pathway, while MPK4 plays an opposite

role. During S. sclerotiorum infection, SA and JA levels peak at 12

hours post-infection (hpi) and 24 hpi, respectively. The expression
FIGURE 1

Sclerotinia sclerotiorum invasion model. Sclerotinia sclerotiorum can germinate under suitable conditions, myceliogenic germination produces
hyphae to infect plant roots; carpogenic germination produces apothecia, and ascospores are released into the air by apothecia. Ascospores land on
petals, which tend to gather in the leaf axils when they fall off. Sclerotinia sclerotiorum will colonize by aerial hyphae and invasive hyphae; invasive
hyphae thicken after entering the apoplast and associate with early biotrophic growth, and finally produce sclerotia in the stem leading to hollow
and rot.
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changes of SA–JA crosstalk genes such as BnWRKY70, BnNPR1,

BnMPK4, and BnEDS1 suggest the importance of the orderly

expression of SA and JA pathways (Wang et al., 2012).

Additionally, a study in Brassica carinata showed a higher

tolerance to S. sclerotiorum infection compared to B. napus,

suggesting that differences in the timing of SA and JA pathways

may be the contributing factor while indicating the potential

importance of the ET pathway in plant defense (Yang et al.,

2010). The hormone-mediated complex defense network is

essential to the plant immune system. While synergistic and

antagonistic effects of SA, JA, and ET pathways are relatively

well-understood, research on the ET pathway in the context of

the B. napus–S. sclerotiorum system remains somewhat limited,

warranting further exploration in future studies.
B. napus–S. sclerotiorum
system analysis

Transcriptome analysis of the B. napus–S. sclerotiorum

interaction provides a comprehensive understanding of the

molecular events during S. sclerotiorum infection and the defense

strategies in rapeseed. Illumina sequencing was conducted at

various time points following S. sclerotiorum infection, leading to

the categorization of differentially expressed genes (DEGs) into

several major groups, including hydrolytic enzymes, secondary

metabolites, detoxification processes, signaling pathways,

developmental processes, secreted effectors, OA regulation, and

the production of ROS. The results revealed a noteworthy

increase in the expression of genes related to nucleic acid binding

during the brief biotrophic phase (12–24 hpi), coinciding with the

upregulation of genes such as the pathogen-induced cutinase A

gene SsCuta and lipid degradation-related genes SS1G_09557,

SS1G_01953, and SS1G_11930; these lipolytic enzymes also seem

to be involved in cuticle penetration facilitated by the mechanical

pressure applied by infection cushions during the same period

(Bashi et al., 2012). Additionally, genes associated with biotrophic

interactions exhibited heightened expression during this phase

(Lumsden and Wergin, 1980). Plant tissue necrosis typically

occurs at 24 hpi, indicating the beginning of the necrotic phase;

during this stage, the expression of multiple genes encoding

hydrolases and related to secondary metabolite syntheses and

toxin increases, such as nonaspartyl acid protease (SsACP1),

polyketide synthase (SsPKS), and non-ribosomal peptide synthase

(SsNRPS), and genes encoding subtilisin-like serine proteases

(SS1G_07655, SS1G_02423, and SS1G_032820) can degrade cell

wall glycoproteins and may play an essential role in fungal

customization (Olivieri et al., 2002). In late infection, the

expression of genes encoding PGs, cellulases, b-1,4-glucanases,
arabinogalactan-degrading enzymes, mannosidases, laccases, and

necrosis and ET-inducing peptides increased (Dallal Bashi et al.,

2010). Genes such as SsOAH encoding oxaloacetate acetylhydrolase

showed consistent expression during infection. Still, they exhibited

heightened expression in the middle and late stages, paralleling

similar trends in the gene encoding oxalate decarboxylase. The
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dynamic accumulation of OA seems to play an important role in

pathogen infection. Detoxification is essential for pathogen

resistance against host defenses, involving the modification or

degradation of host-produced antitoxins or their removal from

host cells. Genes encoding cytochrome P450 enzymes

(SS1G_02340) and eburicol 14 alpha-demethylase (CYP51 and

SS1G_04805) were upregulated in the early stages of infection

(Seifbarghi et al., 2017). The expression of multiple genes

encoding membrane transporters, such as significant facilitator

superfamily (MFS) and ATP-binding cassette (ABC) transporters,

increased in the late stage of infection. Some genes encoding

cyanide hydratases/cyanate hydrolases and 2-nitropropane

dioxygenases exhibited varying levels of upregulation at different

stages of infection (Seifbarghi et al., 2017; Xu et al., 2021).

Furthermore, Brassicales plants can produce chemicals for

defense, such as isothiocyanates (ITCs), nitriles, and flavonols

(Wittstock and Gershenzon, 2002; Cartea et al., 2010). ITCs and

nitrile are produced from glucosinolates (GLs) via b-thioglucoside
glucohydrolase enzymes (myrosinases) (Rask et al., 2000).

Flavonols, including quercetin, kaempferol, isorhamnetin, and

other polyphenolic compounds, are also part of this defense

system (Cartea et al., 2010). Chen et al. (2019); Chen et al. (2020)

identified two detoxification-related genes in S. sclerotiorum,

SsQDO (quercetin dioxygenase gene), and Ss12040 (ITC

hydrolases gene). SsQDO deletion lines showed decreased

pathogenicity and increased sensitivity to flavonols. Ss12040, a

homolog of SaxA from Pseudomonas syringae, was essential for

pathogenicity on ITC-defended plants. Together, these genes

constitute the defense network of S. sclerotiorum against the

antitoxins produced by rapeseed. Furthermore, salicylate

hydroxylase and specific extracellular effectors, such as SsLysM

and SsPINE1, are very important in inhibiting plant defense

pathways (Ambrose et al., 2015; Peng et al., 2017; Seifbarghi

et al., 2017; Xu et al., 2021). Table 1 contains a list of

pathogenicity-related genes in S. sclerotiorum.

Transcriptome analysis revealed the activation of the mitogen-

activated protein kinase (MAPK) signaling pathway during the

early stages of S. sclerotiorum infection. Multiple MAPKKK, MKK,

and MPK genes were induced by S. sclerotiorum. The response of

transcription factors (TFs) was intricate, with most TFs in families

such as WRKY, MYB, NAC, and others being downregulated. The

critical gene ICS1 in SA biosynthesis showed an initial increase in

expression followed by a decrease during the infection period

(Zheng et al., 2015). Conversely, critical genes in JA biosynthesis,

AOS, and LOX2 exhibited increased expression over time

(Wasternack, 2007). However, the accumulation of JA could not

impede the infection’s progression due to the downregulation of

COI1. This downregulation led to an increased abundance of the

jasmonate zinc finger inflorescence meristem (ZIM) domain

protein (JAZ) (Chini et al., 2007; Ruan et al., 2019). JAZ inhibited

the JA signaling pathway and caused the downregulation of MYC2,

preventing the activation of downstream genes of JA-related

genes (Kazan and Manners, 2013). The ET pathway regulates

plant growth development and participates in plant stress

response. ETHYLENE RESPONSE FACTOR 1 (ERF1) and

OCTADECANOID-RESPONSIVE ARABIDOPSIS ETHYLENE/
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TABLE 1 Pathogenicity-related genes of S. sclerotiorum.

Gene Protein Function
Transgenic
method

Pathogenicity Citations

SsAGM1
N-acetylglucosamine-
phosphate mutase

Involved in growth, development, and pathogenicity RNAi Reduce
(Zhang

et al., 2022a)

Ssams2
GATA-type

transcription factor
Involved in chromosome segregation and cell division RNAi Reduce

(Liu
et al., 2018b)

SsBi1
Putative BAX inhibitor-

1 protein
Involved in pathogenesis and stress response RNAi Reduce

(Qu
et al., 2014)

SsCak1 CDK-activating kinase Essential for both growth and pathogenicity regulation HIGS Reduce
(Qin

et al., 2023)

SsCat2 Catalase Regulate oxidative stress Knockout Reduce
(Huang

et al., 2021)

Sscnd1
Magnaporthe appressoria-

specific (MAS)
protein homolog

Involved in hyphal growth and compound
appressorium formation

RNAi/host‐induced
gene

silencing (HIGS)
Reduce

(Ding
et al., 2021b)

SsCox17
Mitochondrial

copper metallochaperone
Transport copper ions to cytochrome c oxidase RNAi Reduce

(Ding
et al., 2022)

SsCP1 Cerato-platanin protein Target plant PR1 Knockout Reduce
(Yang

et al., 2018)

SsCut1 Cutinase Break down plant cuticles Knockout Reduce
(Gong

et al., 2022)

SsEmp24/
SsErv25

p24 family protein Involved in modulating morphogenesis and pathogenicity Knockout Reduce
(Xie

et al., 2021)

SsERP1
Ethylene pathway
repressor protein

Inhibit plant ethylene signaling pathway RNAi Reduce
(Fan

et al., 2021b)

SsFkh1
Forkhead-box (FOX)-
containing protein

Regulate sclerotium and compound
appressorium development

Knockout Reduce
(Cong

et al., 2022)

SsFoxE3
Forkhead‐box family
transcription factors

Involved in compound appressorium formation Knockout Reduce
(Jiao

et al., 2022)

SsITL
Integrin alpha N-terminal

domain superfamily
Inhibit plant defense RNAi Reduce

(Zhu
et al., 2013)

SsMADS
MADS-box

transcription factor
Involved in fungal growth and disease RNAi Reduce

(Qu
et al., 2014)

SsNEP2
Necrosis and ethylene-

inducible peptide
Induce ROS production in plant cells Knockout Reduce

(Yang
et al., 2022)

SsOah
Oxaloacetate

acetylhydrolase
Involved in OA accumulation, pH‐responsive growth,

morphogenesis, and virulence
Knockout Reduce

(Liang
et al., 2015a)

Ssodc2 Oxalate decarboxylase Involved in compound appressorium formation and function Knockout Reduce
(Liang

et al., 2015b)

Sspac1
Zinc finger

transcription factor
Involved in sclerotial development and virulence Knockout Reduce

(Rollins,
2003)

SsPemG1
Elicitor-

homologous protein
Associated with infection cushions RNAi Enhance

(Pan
et al., 2015)

SsQDO Quercetin dioxygenase Cleavage of the flavonol carbon skeleton Knockout Reduce
(Chen

et al., 2019)

SsRhs1
Rhs repeat‐

containing protein
Play an important role in virulence RNAi Reduce

(Yu
et al., 2017)

SsSaxA ITCase Degrade ITCs Knockout Reduce
(Chen

et al., 2020)

SsShk1 Histidine kinase
Control stress response, sclerotial formation, and

fungicide resistance
Knockout –

(Duan
et al., 2013)

(Continued)
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ERF 59 (ORA59) are considered to be key signaling molecules in the

JA-ET pathway (van Loon et al., 2006; Pré et al., 2008). Following S.

sclerotiorum infection, the expression of ETHYLENE RESPONSE

SENSOR (ERS), ERF, and ORA59 increased, and the activation of

the JA/ET pathway resulted in elevated expression of genes

responsible for chitinase and pathogenesis-related (PR) genes

such as PDF1.2, PR2, PR3, and PR4. This underlines the

significance of the JA/ET pathway in defense against S.

sclerotiorum. Additionally, the upregulation of PGIPs serves to

inhibit PG in the cell wall, preventing cell wall degradation (De

Lorenzo and Ferrari, 2002; Joshi et al., 2016b; Wei et al., 2016; Wu

et al., 2016; Girard et al., 2017; Jian et al., 2018; Xu et al., 2021). Long

non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are

essential in regulating the expression of plant genes in response to

stress. While the expression of various lncRNAs and miRNAs

changes following S. sclerotiorum infection, further research is

needed to elucidate their precise roles in the defense response of

rapeseed (Cao et al., 2016; Joshi et al., 2016a; Jian et al., 2018).
Defense-related genes in rapeseed

Identifying essential defense genes in rapeseed is a necessary

strategy for managing SSR, and it holds significant importance for

molecular breeding. The MAPK signaling pathway is the

foundation for plant responses to pathogens (Meng and Zhang,

2013; Zhang and Zhang, 2022). Activation of the MEKK1-MKK4/

MKK5-MPK3/MPK6 pathway has been established as conferring

resistance to fungal pathogens in A. thaliana (Asai et al., 2002). In

rapeseed, BnMPK3 and BnMPK6 exhibit heightened responsiveness

to S. sclerotiorum infection. BnMPK3-OE and BnMPK6-OE plants

showed enhanced resistance to S. sclerotiorum, while their RNA

interference (RNAi) plants were more susceptible. Importantly,

BnMPK3 and BnMPK6 confer resistance to rapeseed by positively

regulating critical genes of the ET pathway, BnACS and BnEIN3
Frontiers in Plant Science 06
(Alonso et al., 2003; Lin et al., 2009; Wang et al., 2019a; Wang et al.,

2020c). Another MAPK pathway, MEKK1–MKK1/MKK2–MPK4/

MPK11, is implicated in defense responses in A. thaliana (Zhang

and Zhang, 2022). Rapeseeds that overexpress BnMPK4 have been

shown to inhibit S. sclerotiorum infection. This overexpression leads

to the sustained activation of the expression PDF1.2 but concurrent

inhibition of PR1 expression (Wang et al., 2009).

WRKY transcription factors constitute one of the largest TF

families in higher plants, participating extensively in regulating

plant growth, development, plant hormone signal transduction, and

various stress responses. They are characterized by a highly

conserved WRKY domain, which recognizes and binds to the

TTGAC (C/T) W box region in promoters to inhibit or activate

downstream gene expression (Rushton et al., 2010; Jiang et al., 2017;

Wani et al., 2021). WRKY33 can be induced by pathogens and

regulated by MPK3/MPK6, and WRKY33 can bind to its promoter

to regulate expression and induce the synthesis of A. thaliana

phytoalexin camalexin (Mao et al., 2011). In rapeseed,

BnWRKY33 displays heightened sensitivity to S. sclerotiorum, and

the enhanced resistance of BnWRKY33-OE plants to pathogens is

likely linked to the activation of both the SA and JA pathways, as

well as redox control (Wang et al., 2014b; Liu et al., 2018a).

Conversely, BnWRKY15-OE and BnWRKY28-OE plants showed

increased susceptibility to S. sclerotiorum, and the negative

regulation of BnWRKY15 and BnWRKY28 against pathogen

resistance was closely related to the expression of BnWRKY33

and downstream genes (Liu et al., 2018a; Zhang et al., 2022b).

WRKY70 is an activator of the SA pathway and an inhibitor of the

JA pathway, BnWRKY70-OE plants showed increased susceptibility

to S. sclerotiorum, while the Bnwrky70 mutants edited by CRISPR/

Cas9 showed stronger resistance to S. sclerotiorum (Li et al., 2006b;

Sun et al., 2018). Plant mediators (MEDs) interact with RNA

polymerase II (RNAP II) and TFs to regulate gene transcription;

AtMED16 regulates the JA/ET pathway and is critical for the

recruitment of RNAP II by WRKY33 target genes PDF1.2 and
TABLE 1 Continued

Gene Protein Function
Transgenic
method

Pathogenicity Citations

SsSSVP1 Secreted protein Manipulate plant energy metabolism and promote infection RNAi Reduce
(Lyu

et al., 2016)

SsSte12 Transcription factor
Involved in vegetative mycelial growth, sclerotia

development, appressoria formation, and penetration-
dependent pathogenicity

RNAi Reduce
(Xu

et al., 2018)

SsSvf1 Survival factor
Response to oxidative stress and involved in

appressoria formation
RNAi Reduce

(Yu
et al., 2019)

SsTOR Ser/Thr protein kinase Regulate cell growth and metabolism Knockout Reduce
(Jiao

et al., 2023)

SsTrx1 Thioredoxin Involved in S. sclerotiorum development, oxidative stress HIGS Reduce
(Rana

et al., 2021)

SsXyl1 Endo-b-1, 4-xylanase Involved in growth and virulence Knockout Reduce
(Yu

et al., 2016)

SsYCP1 YML079-like cupin protein Promote infection RNAi Reduce
(Fan

et al., 2021a)
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ORA59 (Wang et al., 2015). In rapeseed, the expression of

BnMED16 increased following S. sclerotiorum infection,

BnMED16 interacted with BnMED25 and BnWRKY33, and

BnMED25 was closely related to the JA/ET pathway; BNMED16-

OE plants showed increased resistance to S. sclerotiorum (Hu et al.,

2021). Heat shock proteins (HSPs) are a class of evolutionarily

conserved stress proteins plants produce in response to stress.

HSP90, in particular, acts as a molecular chaperone and is

essential for the defense response mediated by R proteins

(Schulze-Lefert, 2004; Wegele et al., 2004; Sangster and Queitsch,

2005). In rapeseed, 35 HSP90 genes have been identified, with 6

BnHSP90 genes exhibiting altered expression induced by S.

sclerotiorum (Wang et al., 2022a). Since HSP90s interact with

many proteins, they may be the key to rapeseed defense response

(Tichá et al., 2020).

The SA pathway receptor , NONEXPRESSOR OF

PATHOGENESIS-RELATED GENES1 (NPR1), is important for

plant systemic acquired resistance (SAR). NPR1 is responsible for

promoting the expression of downstream defense genes (Silva et al.,

2018; Chen et al., 2021). In rapeseed, 19 NPR1-like genes have been

identified, and the expression of BnNPR1 significantly decreased

following S. sclerotiorum infection. BnNPR1-RNAi plants showed

increased sensitivity to S. sclerotiorum, resulting in the

accumulation of ROS and the suppression of the SA pathway.

However, the expression of JA/ET pathway-related genes increased,

and this increased sensitivity may be attributed to the early stage

role of the SA pathway (Wang et al., 2020b).

GLPs were initially discovered in Triticum aestivum and are

typically characterized by a cupin domain. Various GLP isoforms

exhibit diverse enzymatic activities, including OXO (true germins),

superoxide dismutase (SOD), polyphenol oxidase (PPO), and ADP

glucose pyrophosphatase/phosphodiesterase (AGPPase) (Lane

et al., 1993; Breen and Bellgard, 2010; Barman and Banerjee,

2015). In rapeseed, 14 GLP genes have been identified, with

BnGLP3 and BnGLP12 playing key roles in plant defense and

showed SOD activity in the early stages of S. sclerotiorum

infection (Rietz et al., 2012).

Ca2+ is very important in HR and PCD, and they are closely

associated with ROS in various plant immune responses (Moeder

et al., 2019). Calmodulin-binding activators (CAMTAs) interact

with calmodulins (CaMs) to respond to calcium signals, and

CAMTA3 has been identified as a participant in plant defense

against pathogens in plants (Koo et al., 2009; Zhang et al., 2014b).

Eighteen CAMTA genes were identified in the rapeseed genome,

and promoter analysis showed that the promoter region of

BnCAMTA contained many cis-acting elements, and the

expression of BnCAMTA3 was induced by S. sclerotiorum.

Atcamta3 mutants of A. thaliana showed increased expression of

BAK1 and JIN1 genes, which are important for plant PTI in

response to S. sclerotiorum. It appears that CAMTA plays a role

in regulating plant immunity to pathogens by negatively regulating

PTI and inhibiting the JA pathway (Rahman et al., 2016). Cyclic

nucleotide-gated ion channel (CNGC) proteins are known to

participate in calcium signal transduction induced by PTI in

plants (Tian et al., 2019). In rapeseed, 61 putative BnCNGC genes

have been classified into five groups (I, II, III, IV-A, and IV-B). Six
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of these BnCNGC genes (four in group I and two in group IV-A)

were strongly induced by SA and S. sclerotiorum. Susceptible B.

oleracea displayed increased calcium signaling during S.

sclerotiorum infection, which might be linked to cell death (Mei

et al., 2016; Liu et al., 2021b). However, further studies are required

to elucidate the precise function of calcium signal transduction in

the B. napus–S. sclerotiorum system.

Resistance to S. sclerotiorum in rapeseed is a complex trait

controlled by multiple genes’ quantitative (additive) effects. Recent

research has identified several quantitative trait loci (QTLs)

associated with S. sclerotiorum resistance in rapeseed, with some

of these QTLs showing links to flowering time (FT) and yield (Zhao

and Meng, 2003; Wei et al., 2014; Li et al., 2015). Doubled-haploid

(DH) lines are widely used in QTL mapping studies because they

can be consistently identified across different years and experiments

(Ding et al., 2021a). Zhao and Meng (2003) used 107 molecular

markers to identify six QTLs across various developmental phases.

Three QTLs were related to the resistance during the seedling stage.

In contrast, the other three were related to resistance during the

mature plant stage, and they suggested that different resistance sites

may work in different stages or plant organs. The study also

observed various epistatic interactions, including dominance ×

dominance digenic epistasis, in the inheritance of cotyledon

resistance (Khan et al., 2020a; Khan et al., 2020b). Wu et al.

(2013) mapped 10 QTLs related to stem resistance (SR) during

the mature plant stage and 3 QTLs related to leaf resistance (LR)

during the seedling stage, SRC6 on the C6 link explained 29.01% to

32.61% of the phenotypic variation, and the study indicated that

BnaC.IGMT5.a could be the main candidate gene for this QTL. Yin

et al. (2010) used 252 molecular markers and identified a total of 10,

1, and 10 QTLs through mycelial toothpick inoculation (MTI),

mycelial plug inoculation (MPI), and infected petal inoculation

(IPI), respectively. QTLs on the linkage groups N3, N12, and N17

were detected over 2 years. Zhao et al. (2006) used the petiole

inoculation technique to detect 8 QTLs in the HUA population by

evaluating days to wilt (DW) and stem lesion length (SLL); four of

these QTLs were contributed by resistant parents, and four were

contributed by susceptible parents; these results indicated that

resistance alleles could be present not only in resistant lines but

also in susceptible lines, potentially benefiting breeding efforts.

Genome-wide association studies (GWAS) based on linkage

disequilibrium (LD) have become a primary tool for identifying

gene loci (Wang et al., 2019b). Wei et al. (2016) identified 17 single-

nucleotide polymorphisms (SNPs) on A8 and C6 chromosomes by

GWAS in different rapeseed accessions with SR to S. sclerotiorum.

These C6 SNPs were consistent with findings from previous QTL

mapping studies. The integration of QTL information is crucial for

the molecular breeding of highly resistant rapeseed. Most known R

genes typically contain nucleotide-binding site (NBS) and leucine-

rich repeat (LRR) domain (Jia et al., 2015). Li et al. (2015) integrated

35 QTLs on 10 chromosomes and identified two conserved SR QTL

regions on chromosomes A9 and C6 with several putative NBS-LRR

genes clustering at 22.8 and 33.6 Mb, respectively. Furthermore,

Wei et al. (2014) found a weak association between rapeseed

resistance to S. sclerotiorum and FT. They detected common QTL

regions, suggesting that early FT and high resistance to S.
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sclerotiorum in rapeseed could benefit future breeding efforts. These

findings provide valuable insights into rapeseed resistance to

S. sclerotiorum.
Rapeseed transgenic strategy

Rapeseed lacks cultivars with complete resistance to S.

sclerotiorum; genetic engineering is an effective way to improve

rapeseed resistance. Since the degradation of rapeseed cell walls is

significant for S. sclerotiorum colonization, a promising strategy is

to impede pathogen colonization as the first line of plant defense.

Overexpressing PGIPs typically inhibits pathogen-produced PG

and affects pathogen colonization (Federici et al., 2006; Kalunke

et al., 2015). Overexpressing O. sativa OsPGIP2 and OsPGIP6 in

rapeseed has enhanced resistance to S. sclerotiorum (Wang et al.,

2018; Yin et al., 2022). Chitinase can catalyze the hydrolysis of

chitin in fungal cell walls, and co-expressing the chitinase gene

Chit42 from Trichoderma atroviride with PGIP2 from Phaseolus

vulgaris significantly restricts pathogen growth and delays the

disease progression (Cletus et al., 2013; Ziaei et al., 2016).

Thaumatin-like proteins (TLPs) belong to the PR5 protein family

and play an important role in plant defense (Liu et al., 2010; de

Jesús-Pires et al., 2020). Co-expressing chimeric chitinase and

OsTLP genes have also enhanced rapeseed resistance to S.

sclerotiorum (Aghazadeh et al., 2016).

Owing to the significant role of OA in S. sclerotiorum infection,

the overexpression of wheat OXO in rapeseed resulted in a

remarkable disease reduction rate of up to 90.2% in the sixth-

generation lines compared to the parent lines. This breakthrough

holds great promise for the development of resistant rapeseed

varieties in the future (Dong et al., 2008). However, it is worth

noting that while the OXO gene shows substantial potential for

enhancing resistance to S. sclerotiorum, it is essential to consider

that germin and GLPs have been identified as a class of plant

allergens. Further research should be conducted to evaluate any

potential allergenic effects carefully (Jensen-Jarolim et al., 2002).

Lignin is a polymer composed of p-hydroxyphenyl (H), guaiacyl

(G), and syringyl (S) units. It serves to reinforce the mechanical

strength of the cell wall and plays a positive role in supporting plant

growth and development, and has various functions in mitigating

biotic and abiotic stresses (Cesarino, 2019; Dong and Lin, 2021).

Ferulate-5-hydroxylase (F5H) is responsible for catalyzing the

conversion of G-type units into S-type units within lignin.

Knocking out BnF5H using CRISPR/Cas9 has been shown to

increase the ratio of G-type/S-type units, resulting in enhanced

stem strength and improved resistance of stems and leaves to S.

sclerotiorum (Cao et al., 2022). Strengthening plant tissue

mechanically appears to be a viable auxiliary strategy to reduce

the impact of SSR. Furthermore, the plant’s surface is covered by a

cuticle layer composed of cutin and wax. Research has indicated

that changes in cuticular wax composition can influence resistance

to S. sclerotiorum, in addition to the well-documented role of

cutinase in cutin degradation (Wang et al., 2020a; Liu et al., 2021a).

GDSL esterase/lipase has been shown to positively affect

pathogen defense responses in A. thaliana (Lee et al., 2009). The
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rapeseed lines overexpressing AtGDSL1 exhibited reduced JA levels,

elevated ROS and SA levels, and increased resistance following S.

sclerotiorum infection. However, it is worth mentioning that

BnGDSL1-OE line did not show any changes in resistance; based

on the analysis of candidate genes associated with AtGDSL1

homologs, it was revealed that BnGLIP1 might be a key gene

contributing to rapeseed resistance (Tan et al., 2014; Ding

et al., 2020).

Petals play a significant role in S. sclerotiorum colonization, and

the peptide inflorescence deficient in abscission (IDA) is a key

regulator of floral organ abscission (Stø et al., 2015; Shi et al., 2019).

An interesting study showed that IDA mutants failed to shed their

floral organs properly. When S. sclerotiorum was inoculated into the

petals of these mutants, although the petals themselves withered

and died, the infection did not spread to the leaves as they could not

shed normally. This prevented the pathogen from moving between

the petals and leaves, thus restricting its transmission (Geng et al.,

2022). While most current research focuses on enhancing resistance

to S. sclerotiorum, typically resulting in disease reduction or delay, it

is important to note that ascospores of S. sclerotiorum seldom

colonize healthy leaves. Therefore, a promising strategy might

involve preventing the pathogen’s movement from the heavily

colonized petals to healthy leaves or stems, offering an effective

means of disease prevention.

Antimicrobial peptides (AMPs) are a class of small cationic

peptides known for their wide-ranging antibacterial effects,

achieved through mechanisms such as the inhibition of protein

transport, cell membrane penetration, and binding to DNA/RNA

(Nawrot et al., 2014; Sinha and Shukla, 2019; Bakare et al., 2022). In

rapeseed, the identification and validation of the first plant proline-

rich antimicrobial peptide (PR-AMP) suggested its potential role in

the defense responses of rapeseed (Cao et al., 2015). LjAMP2, a

heat-stable antibacterial protein derived from Leonurus japonicus,

has exhibited the ability to inhibit a range of plant pathogens, and

rapeseed that expresses LjAMP2 showed increased resistance to S.

sclerotiorum (Yang et al., 2006; Jiang et al., 2013). Similarly,

overexpression of PmAMP1 from Pinus monticola, LTP from O.

sativa, and recombinant pathogen-specific antibodies (scFv) in

rapeseed also showed increased tolerance to S. sclerotiorum

(Yajima et al., 2010; Verma et al., 2012; Fan et al., 2013).

Gene editing technology based on the CRISPR/Cas system has

emerged as a powerful tool for investigating plant gene

functionality, enhancing crop traits, facilitating breeding efforts,

and bolstering plant disease resistance (Cardi et al., 2023; Erdoğan

et al., 2023; Li et al., 2023). The knockout of susceptibility (S) genes

responsible for susceptibility to powdery mildew and stripe rust in

wheat has led to enhanced resistance against these two diseases

(Wang et al., 2014a; Wang et al., 2022b). SsSSVP1, a small secreted

protein from S. sclerotiorum, has been found to exert an influence

on the subcellular localization of QCR8 (the subunit of the

cytochrome b-c1 complex) in Nicotiana benthamiana ,

consequently impairing its biological functions (Lyu et al., 2016).

Zhang et al. (2021) identified a homolog of SsSSVP1 in Botrytis

cinerea and used CRISPR/Cas9 to reduce the copy number of

BnQCR8. The mutants showed strong resistance against not only

S. sclerotiorum but also B. cinerea, all without compromising vital
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agronomic traits in rapeseed. This study provided a novel, effective,

and very important strategy for conferring strong resistance in

crops against multiple pathogens by editing one gene that encodes a

common target of pathogen effectors.

The balance between disease resistance, crop yield, and quality

is crucial in agriculture. The discovery of S. sclerotiorum-induced

promoters is particularly important, and overexpression of

resistance genes can enhance plant resistance and cause energy

loss (Ding et al., 2021a). The promoter of glycosyl hydrolase 17 gene

(pBnGH17) in rapeseed was shown to be induced by S. sclerotiorum;

5′-deletions and promoter activity analysis showed that a 189-bp

region was essential for S. sclerotiorum to induce responses, and the

promoter pBnGH17D7, which connects this region to the core

promoter region, was induced after S. sclerotiorum infection, but

it was less active under normal growth conditions (Lin et al., 2022).

This provides an important reference for future work. Because of

the particularity of transgenic plants, it is necessary to carefully

evaluate the biological safety and other aspects in subsequent work.
Conclusion

In recent years, significant progress in studies of the B. napus–S.

sclerotiorum system has been made, and the transcriptomic and

bioinformatics analyses have contributed to the search for potential

defense-related genes in rapeseed; genetic engineering and CRISPR/

Cas9 also provide new approaches for future research. However,

there are still some problems in the current studies. First, although

transgenic rapeseed (overexpression/knockout) improved the

resistance to S. sclerotiorum and delayed disease, no strategy of

complete immunity to S. sclerotiorum has been reported. Second,

the current studies mainly stay in the laboratory stage and lack field

experiments, which will be limited to molecular breeding and

application. The relationship between yield, quality, and disease

resistance should also be balanced. Third, in addition to the search

for R genes, the search and development of S genes are equally

important; inactivation of the S genes usually induces long and
Frontiers in Plant Science 09
broad-spectrum resistance with little adverse effect on crop growth

and yield (Pavan et al., 2010; Zhang et al., 2017; Wang et al., 2022b).

In addition, small RNA (sRNA) and host-mediated pathogen gene

silencing (cross-kingdom RNAi) have shown great effects in plant

defense against pathogens (Wang et al., 2017; Cai et al., 2018), and

may be important directions for future studies.
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