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Long term impacts of
endozoochory and salinity
on germination of wetland
plants after entering
simulated seed banks

José L. Espinar 1, Jordi Figuerola 2 and Andy J. Green 2*

1Tragsatec, Seville, Spain, 2Department of Conservation Biology and Global Change, Estación
Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
Migratory waterbirds disperse a broad range of angiosperms by endozoochory

(seed dispersal via gut passage), especially plants in coastal wetlands. However,

there is no previous information about the capacity of seeds to remain in the seed

bank after waterbird endozoochory, and very little about how wetland salinity can

influence the effect of gut passage on germination. We collected seeds of Juncus

subulatus (Juncaceae), Bolboschoenus maritimus, and Schoenoplectus litoralis

(Cyperaceae) from Doñana marshes in Spain. All three species are considered to

have physiological dormancy. After gut passage following ingestion by ducks,

seeds were stored in darkness in solutions with six different conductivities (1, 2, 4, 8,

16, and 32 dSm-1), for periods of 1, 6, or 12 months to simulate presence in a seed

bank. After storage, 1800 seeds of each plant species assigned to these treatments

were subjected to germination tests in demineralized water, together with 1800

control seeds that had not been ingested before storage. All species germinated

readily after storage, with or without gut passage beforehand. Storage time and

salinity both had important effects on germinability and time to germination, which

differed between control and ingested seeds, and between plant species. After ≥6

months, germinability of Cyperaceae was enhanced by gut passage (≤25% higher

than control seeds) at some salinities. Only J. subulatus showed consistently lower

germinability after passage (≤30%). Only B. maritimus showed consistently slower

germination after passage (≤33%). Salinity effects were more complex after

passage, but increasing salinity did not generally have a negative impact on

germination of ingested seeds. When compared to additional seeds that had not

been stored before germination tests, storage reduced germinability in J. subulatus

(≤39% reduction), but increased it in B. maritimus (≤17%) and S. litoralis (≤46%).

Seeds dispersed by waterbird endozoochory may be easily incorporated into

wetland seed banks, where they can remain halotolerant and delay germination

until conditions become suitable. This can benefit wetland plants by increasing

rates of long-distance dispersal, gene flow, and establishment of new populations.

Avian gut passage can have positive and species-specific effects on germination in

plants with persistent seed banks and/or physiological dormancy.

KEYWORDS

Anatidae, dormancy, endozoochory, germination, salinity, seed banks, seed
dispersal, waterbirds
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Introduction

Vertebrates are key vectors for seed dispersal, and provide

greater dispersal distances than abiotic mechanisms, including

wind (Bullock et al., 2017). The dominant paradigm in the

literature assumes that only fleshy-fruited plants disperse

regularly by endozoochory, i.e. the internal transport of

propagules within the animal gut (Costea et al., 2019; Green

et al., 2022). Hence, such plants are typically assigned to an

“endozoochory syndrome”, whereas all other angiosperms are

assigned to a range of other syndromes according to the

interpretation of diaspore morphology. For example, despite early

recognition of their regular dispersal by migratory waterbirds

(Ridley, 1930; de Vlaming and Proctor, 1968), sedges

(Cyperaceae) and rushes (Juncaceae) are variously assigned to

abiotic syndromes such as hydrochory, anemochory, or barochory

(Julve, 1998; Vargas et al., 2023). As a result, the role of

endozoochory in seed dispersal has largely been overlooked for

such plants (Green et al., 2022). The endozoochory of plants lacking

a fleshy fruit can be considered “non-classical endozoochory”

(Green et al., 2019).

Like many other plants with dry fruits, sedges and rushes are

regularly dispersed between habitat patches such as wetlands inside

the guts of migratory waterbirds, including ducks, geese, shorebirds,

or gulls (Martıń-Vélez et al., 2021a; Green et al., 2023; Lovas-Kiss

et al., 2023a; Urgyán et al., 2023). Their seeds can be just as well

adapted to survive gut passage as can those inside fleshy-fruits (de

Vlaming and Proctor, 1968; Costea et al., 2019). Although many

waterbirds have muscular gizzards containing grit that can break up

seeds, experimental feeding studies have shown seeds of

Cyperaceae, Juncaceae and other families to have high rates of

seed survival, and to retain germinability during gut passage

(Figuerola et al., 2010; Lovas-Kiss et al., 2020; Lovas-Kiss et al.,

2023b; van Leeuwen et al., 2023). Modelling studies show seeds are

readily dispersed by endozoochory over hundreds (or even

thousands) of km during migratory flights, or over tens of km

during daily movements outside migratory periods (Viana et al.,

2013; Kleyheeg et al., 2017; Martıń-Vélez et al., 2021b; Lovas-Kiss

et al., 2023a). Field studies have confirmed the presence of seeds in

the guts of birds during migratory flights (Fridriksson and

Sigurdsson, 1968; Viana et al., 2016).

Seed dispersal by avian vectors may be central to

metapopulation dynamics and gene flow in wetland plant

populations. It can be vital for dispersal between hydrological

catchments, for colonization of new habitats created by human

activities, and to allow plants to keep pace with climate change

(Green et al., 2023; Lovas-Kiss et al., 2023a; Nuñez et al., 2023).

However, there is almost no research on how the potential

establishment of plants after dispersal is influenced by

endozoochory by waterbirds. Research on pondweeds (Figuerola

and Green, 2004; Figuerola et al., 2005) showed that gut passage by

ducks can accelerate germination and growth in the field or in

mesocosms, although this may have a cost of increasing exposure to

herbivory. There is far more research into establishment success

following classical endozoochory (i.e. by frugivores, Schupp et al.,

2017; Spennemann, 2020). Fleshy-fruited plants generally lack a
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persistent seed bank (Hulme, 2002), so their establishment must

occur soon after a seed dispersal event.

In contrast, sedges, rushes, and other wetland plants typically

form persistent seed banks that provide resilience to environmental

variation, e.g. from annual and seasonal variation in depth or

salinity (Clevering, 1995; Leck and Schutz, 2005; Nielsen et al.,

2018), and which are regularly replenished by seed dispersal events

(Polo-Ávila et al., 2019; Infante-Izquierdo et al., 2023). Salinity can

have an important immediate effect on germination of wetland

plants, even for halotolerant plants (Nielsen et al., 2003; Hroudova

et al., 2014; Muñoz-Rodrıǵuez et al., 2017; Castillo et al., 2021). The

seed storage conditions in the soil seed bank (flooding and salinity)

may also determine the subsequent seed response when conditions

later become suitable for germination (Espinar et al., 2005a; Muñoz-

Rodrıǵuez et al., 2017; Castillo et al., 2021). In addition, the

dormancy strategies of a given plant species are also expected to

determine the germination response to environmental variables

(Clevering, 1995), as well as to gut passage (Soltani et al., 2018).

A key question therefore, as yet unresolved, is if seeds dispersed

by waterbirds to a new site have the potential to survive for weeks or

months in a seed bank until conditions become suitable for

germination. Seeds that have undergone endozoochory may often

have to compete with others dispersed only locally by abiotic means

such as hydrochory (Soomers et al., 2013; Carthey et al., 2016;

Tomowski et al., 2023), so it is important to separate the effects of

gut passage and time spent in a seed bank on their germinability and

germination speed. How subsequent germination is influenced by

seed bank salinity is another important question. The salinity

gradient is central to the composition of plant communities in

coastal wetlands (Muñoz-Rodrıǵuez et al., 2017), and ongoing

salinization of freshwaters is a major threat to biodiversity, and an

important topic for further research (Cunillera-Montcusı ́ et al.,

2022). When seeds of sedges and rushes are placed for germination

without first entering a seed bank, the effect of avian gut passage on

seed germinability and germination time has already been found to

depend on salinity (Espinar et al., 2004; Espinar et al., 2006).

In this study, we test the ability of two sedges (sea club-rush

Bolboschoenus maritimus (L.) Palla, and shore club-rush

Schoenoplectus litoralis Scharader) and a rush (Somerset rush

Juncus subulatus Forsskal) to persist in seed banks for up to a

year between endozoochory and germination. These helophytes

occur in brackish to saline coastal wetlands in the Mediterranean

region and elsewhere, which have intermittent flooding and

continuous variation in depth and salinity (Espinar et al.,

2005b). These species have previously been shown to have high

rates of seed survival and germinability immediately after passage

through ducks (Espinar et al., 2004; Espinar et al., 2006; Urgyán

et al., 2023). Here, we compare seeds that have undergone gut

passage and those which have not, after simulating their presence

in the sediments of an inundated wetland of variable salinity. We

consider how gut passage interacts with the time spent in a

simulated seed bank, and its salinity, in determining the

germinability and germination time for the three plant species.

Given that all three species are considered to have physiological

dormancy and not physical dormancy (Baskin and Baskin, 2004),

our initial hypothesis was that gut passage would invariably
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reduce seed germinability and prolong their germination time,

when compared to control seeds.
Methods

Study area and species

The three plant species studied, J. subulatus, Bolboschoenus

(Scirpus) maritimus, and Schoenoplectus (Scirpus) litoralis, are

rhizomatous emergent macrophytes, and are the major

components of the perennial vegetation in the seasonal marsh

within Doñana National Park, which lies within the delta of the

Guadalquivir river in south-west Spain (37° 00’ N, 06° 38’ W,

Espinar et al., 2005b; Lumbierres et al., 2017; Green et al., 2018).

This is a senescent marsh largely isolated from tidal influence, and

subject to seasonal flooding under the effect of precipitation, and

storm and groundwater discharge via several streams (which has

been reduced by pumping for agriculture, Camacho et al., 2022).

There is a general trend for increasing salinity in the marsh due to a

reduction of freshwater inputs and increased temperatures (Green

et al., 2017; Paredes et al., 2021). There is a Mediterranean climate

and a marked seasonality in water availability, with a clear

differentiation between a dry season (June–November) and a wet

one (October–April). Juncus subulatus inhabits shallow brackish

waters in coastal areas of the Mediterranean and Irano-Turacic

regions. The Cyperaceae Schoenoplectus litoralis and B. maritimus

are widely distributed in shallow brackish water bodies of Europe,

Asia and Africa. B. maritimus has a wider latitudinal range and also

occurs in the Americas (Valdés et al., 2007; POWO, 2023). In the

study area, these species have a persistent and high density seed

bank, with seeds distributed at different soil depths and at least up to

16-20 cm (Espinar et al., 2005b). Viable seed density (estimated by

germination and recovery tests), depends on species identity and

soil depth, with peak values in top soil of around 3500 seeds/m2 for

S. litoralis, 2900 seeds/m2 for J. subulatus, and 2200 seeds/m2 for B.

maritimus (Espinar et al., 2005b).

The Doñana wetlands represent the most important wintering

site for migratory Anatidae (ducks and geese) in Europe, and are

also of importance for a range of other waterbirds (Rendon et al.,

2008; Green et al., 2018), many of which ingest Cyperaceae and

Juncaceae seeds (Martıń-Vélez et al., 2021a; Almeida et al., 2022).
Seed collection and pre-treatment

During August 2001, for each of the studied species ten sites

holding populations were selected at random from an area of 6,000

ha in the southern part of the marshes of Doñana National Park

(details in Espinar et al., 2004). From each site, the inflorescences

were collected at random from 60 shoots separated from each other

by at least 10 m. Achenes (hereafter “seeds”) were separated from

the spikes, and different populations were mixed to produce a

homogeneous sample representative of the study area. The seeds

were initially stored dry in darkness at 4°C (after Clevering, 1995)

for seven months, until the experiment began. These stratification
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conditions would be expected to break dormancy, at least for a

fraction of the seeds, and therefore increase germinability when

seeds were placed at higher temperatures at a later date

(Clevering, 1995).
Seed gut passage

In March of 2002, 20 semi-captive mallards Anas platyrhynchos

(10 of each sex) were placed in individual cages with a mesh floor

and given unlimited access to food (broken rice) and drinking

water. This experiment was conducted at ‘‘La Cañada de los

Pajaros” wildlife centre in Sevilla province, and some of the seeds

recovered were used in the related studies of Espinar et al. (2004;

Espinar et al., 2006). This experiment was carried out several years

before legislation requiring specific bioethical permits was passed in

Spain, but used similar protocols to more recent experiments

approved with current legislation (Lovas-Kiss et al., 2020; Peralta-

Sánchez et al., 2023). Removable metal trays were placed under the

cages to recover any droppings. The next morning, approximately

500 seeds of S. litoralis and another 500 seeds of J. subulatus were

force-fed to each bird. The next day, faeces were collected from the

trays and transported in plastic bags to the laboratory. The mallards

were kept in a large pen until a few days later, when the process was

repeated with the same individuals. In this case, each bird was

fed with 500 seeds of B. maritimus. The day after, the birds were

returned to large ponds in the wildlife centre and faeces were

collected from the trays as before. In the laboratory, faeces

were washed in a 300 µm sieve, and intact seeds were separated.

Recovered seeds were subsampled from those ingested by different

ducks so that each of the 20 individuals contributed equally to the

experimental seeds. Individual ducks vary in the proportion of seeds

destroyed during digestion (Figuerola et al., 2010; Lovas-Kiss et al.,

2020), and this procedure prevented those individual ducks which

destroyed fewer seeds from contributing relatively more to those

used in our experiments.
Exposure time and salinity in storage,
simulating seed banks

Saline solutions for seed storage were prepared by adding

different amounts of sea salt (dried to 110°C for 24 h) to

demineralized water to produce the desired salinity. Six different

solutions (ranging from 1 to 20 g L-1) were used, with electrical

conductivities (EC) of 1, 2, 4, 8, 16, and 32 dSm-1, roughly reflecting

the range of salinities encountered over time in the Doñana marsh

where seeds were collected (Espinar and Serrano, 2009; Paredes

et al., 2021).

These six salinities were used to store seeds for three different

exposure times of 1, 6, and 12 months (i.e. 30, 180, and 365 days).

Both the ingested seeds (passage) and non-ingested seeds (controls)

were randomly distributed into groups of 25 seeds. For each salinity ×

time treatment, four groups (each placed in a separate 100 ml flask)

were used for control seeds and another four for passage seeds. In

total, this represented 1800 control seeds and 1800 passage seeds, for
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each of the three plant species. During the exposure period, the flasks

were stored in the dark at 4°C (stratification conditions, after

Clevering, 1995). In addition, further sets of passage and control

seeds (four groups of 25 for each) were immediately placed to

germinate without storage in the saline solutions (note, these seeds

were some of those included in previous studies by Espinar et al.,

2004, Espinar et al., 2006, which did not incorporate simulated

seed banks).
Germination

No germinations occurred during cold storage. Once the

exposure time (i.e. simulated time in the seed bank) had elapsed,

each group of seeds was washed with demineralized water and placed

in an individual Petri dish containing a Whatman N° 1 filter paper

and 20 ml demineralised water. Salinity varies greatly within and

between years in the Doñana marsh, which is flushed with freshwater

during major rainfall events (Espinar & Serrano, 2009; Paredes et al.,

2021). Since S. litoralis seeds only germinate readily if they are

submerged (Espinar et al., 2005a), 250 ml precipitation flasks were

used for this species instead of Petri dishes, so as to keep the seeds

continuously under water. Dishes and flasks containing seeds were

placed in a germination chamber, with a 12h/12h light-darkness

photoperiod and a light intensity of 200 mmol photons m-2, and

temperature cycles of 25°C/10°C. Every two days for one month, the

number of seeds germinated in each dish/flask was observed. We

present germinability results based on the proportion of seeds that

had germinated after 30 days. For each group of 25 seeds, we

calculated the number of days taken for half of those seeds that

germinated by the end of the experiment to germinate (T50%), as an

estimate of the speed of germination (after Espinar et al., 2004,

Espinar et al., 2006). In other words, T50% represents the median

time to germination for each group, excluding seeds which did not

germinate within 30 days.
Data analysis

We conducted statistical analyses on seeds subjected to storage in

solutions of different salinities, analyzing the effects of exposure time,

salinity, and gut passage simultaneously using generalized lineal

models (GLMs). We did not include the set of seeds that were not

placed in storage solutions, since there were no salinity treatments

comparable to those for other seeds. Furthermore, these “zero time

seeds” were previously analyzed by Espinar et al. (2004; Espinar et al.,

2006). Espinar et al., 2004 analyzed the effect of gut passage on

immediate seed germination across a salinity gradient from 0 to 32

dSm-1. Furthermore, Espinar et al., 2006 analyzed the effect of seed

storage conditions (salinity from 0 to 32 dSm-1 and exposure time) on

germination patterns without gut passage.

In our GLMs, the different germination parameters

(germinability, and germination time) were response variables,

with duck treatment (passage or control), salinity, and storage/

exposure time as predictors. With germinability (i.e. whether a seed

germinated or not) as the dependent variable, we used a Binomial
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error distribution with logit function. With germination time

(T50%) as the dependent variable, we used a Poisson error

distribution with a log-link function (Dobson, 2002). Models were

corrected for over-dispersion. We used conductivity and

conductivity squared as continuous predictors, to allow for linear

and non-linear effects of the salinity gradient. Conductivity was first

log-transformed, to remove heteroscedasticity. Time was included

as a categorical predictor, and we included the first order

interactions between time and salinity. As expected from previous

studies (Espinar et al., 2004, Espinar et al., 2006), when duck

treatment was included as a categorical predictor in provisional

GLMs, there was a strong effect of gut passage in all three plant

species, and passage also had strong interactions with other

predictors (results not shown). Therefore, in order to facilitate

interpretation of the effects of salinity and exposure time, we

present separate GLM analyses for seeds from gut passage and

control treatments, and for each plant species.

The effects of predictors were tested using Wald tests (Dobson,

2002). Akaike’s information criterion (AIC) was used as a guide to

select the best models (i.e., those being more parsimonious and with

a better fit, minimizing the AIC values). All data analyses were

performed using the Statistica 6.0 software package (Statsoft, 2001).
Results

Germinability in response to gut passage,
salinity, and seed storage time

According to GLMs, the Time of exposure to the saline storage

solution and a Time × Salinity interaction were both important in

explaining germinability of non-ingested control seeds for all three

plant species, with no evidence of curvilinear relations between

germinability and salinity (Table 1). Seeds that had passed through

the avian gut showed a germination response that was significantly

different to that of control seeds, but in a manner specific to plant

species. Only Time was selected in the final model for J. subulatus

after passage. Curvilinear effects of Salinity were evident for S.

litoralis and B. maritimus after passage. These were combined with

a Time effect for S. litoralis, and a Time x Salinity interaction for B.

maritimus (Table 1). Germinability of S. litoralis after passage

peaked at intermediate salinities. In B. maritimus after passage,

germinability peaked at intermediate salinities after 365 days

exposure, but at the highest salinities after shorter exposure times.

Germinability was consistently lower for passage than for

control seeds for J. subulatus, and was lower for passage seeds in

S. litoralis except for low salinities at 180 days exposure (Figures 1,

2). Germinability was not consistently reduced by gut passage in B.

maritimus, although passage changed the response to salinity to

some extent (Figure 2). In particular, after 180 days, germinability

of B. maritimus was highest for control seeds at high salinities, but

after passage at low salinities (Figure 2).

Germinability was highest at minimum exposure times (30

days) for control seeds and passage seeds of J. subulatus

(Figures 1, 2). Germinability of passage seeds of B. maritimus and

S. litoralis was highest at intermediate exposure times (180 days,
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TABLE 1 Results of GLMs for germinability, with a binomial error and separate models for control seeds (C) and passage seeds (P).

Dependent variable Effects Level of Effect Estimate SE df WaldStat p

Germinability

J. subulatus C Intercept -0.85 0.054 1 240.74 0.0001

Time 2 7.03 0.029

30 -0.48 0.184

180 0.27 0.162

Sal × Time 2 6.07 0.048

x30 -0.19 0.085

x180 0.14 0.073

J. subulatus P Intercept 0.369 0.048 1 58.10 0.0001

Time 2 34.87 0.0001

30 -0.336 0.067

180 -0.033 0.068

B. maritimus C Intercept -0.88 0.265 1 11.13 0.0008

Time 2 13.06 0.001

30 -0.54 0.182

180 0.56 0.170

Sal × Time 2 13.49 0.001

x30 0.11 0.080

x180 -0.282 0.079

B. maritimus P Intercept -1.68 0.267 1 11.13 0.0008

Sal 0.90 0.291 1 9.52 0.002

Sal2 -0.21 0.068 1 9.50 0.002

Sal × Time 2 2.08 0.35

S. litoralis C Intercept -0.54 0.049 1 123.85 0.0001

Time 2 19.53 0.0001

30 -0.20 0.160

180 0.67 0.156

Sal 1 0.25 0.62

Sal × Time 2 17.27 0.0001

x30 0.03 0.072

x180 -0.27 0.071

S. litoralis P Intercept 1.59 0.295 1 29.32 0.0001

Time 2 53.41 0.0001

30 -0.58 0.191 1

180 -1.27 0.190

Salinity -0.70 0.306 1 5.26 0.022

Sal2 0.13 0.071 1 3.47 0.062
F
rontiers in Plant Science
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 frontie
We present the best models selected by AIC. Exposure time of 365 days was aliased in the models, and so effectively had an estimate of zero. Sal2, salinity squared.
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Figure 2). For control seeds of B. maritimus, germinability was

increased at higher salinities after 180 days exposure, whilst for

control seeds of S. litoralis this occurred after both 30 and 180 days

(Figure 2). In S. litoralis, there was a particularly strong reduction of

germinability after 365 days after gut passage (Figures 1, 2). For

seeds that had passed through the avian gut, after 365 days of

storage in a saline solution, overall germinability remained at 67%

for B. maritimus, 30% for J. subulatus , and 7% for S.

litoralis (Figure 1).
Frontiers in Plant Science 06
Time to germination in response to gut
passage, salinity, and seed storage time

For seeds that germinated, gut passage had a strong effect on

median time to germination (T50%), but in a species-specific

manner (Figures 1, 3). Passage seeds of J. subulatus germinated

more slowly than control seeds after 30 days exposure, but faster

than control seeds after 365 days. Passage seeds of B. maritimus

germinated consistently more slowly than control seeds. Passage
FIGURE 1

The proportion of control (C) and passage (P) seeds that germinated over time within 30 days, for different plant species and exposure times in
saline storage solutions (0, 30, 180 and 365 days).
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seeds of S. litoralis germinated faster than control seeds after 180

days, but more slowly after 30 or 365 days (Figures 1, 3).

GLMs revealed that T50% was consistently influenced by Time

of exposure in all species (Table 2). Salinity x Time interactions

were also important in J. subulatus (but only after gut passage) and

B. maritimus (Table 2). Curvilinear effects of salinity were apparent

in B. maritimus, but only following gut passage (Table 2) when

T50% was shortest at intermediate salinities in B. maritimus, but

only for exposures of 180 or 365 days (there was no effect of salinity

after 30 days). For passage seeds, germination was notably slower at

higher than at lower salinities in J. subulatus after 30 days, and in B.

maritimus after 180 days (Figure 3).
Comparison with seeds placed to
germinate immediately

Both for germinability and germination time, the effects of

storage in saline solutions for 30-365 days, compared to no storage

at all, were complex and variable between plant species and duck

treatment (Figure 1). For B. maritimus, storage consistently

increased both germinability and speed of germination, for both

control and passage seeds. For S. litoralis, storage generally

increased germinability and speed of germination, with the

exception of passage seeds stored for 365 days, which performed
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worse than unstored seeds. For J. subulatus, storage consistently

reduced germinability, although it increased the proportion of seeds

germinating within 3 days (Figure 1).
Discussion

We found strong evidence that seeds from wetland plants can

remain viable within seed banks after endozoochory by waterbirds.

After gut passage, seeds of three species of sedges and rushes could

be stored in the dark (as if buried in inundated sediments) and at a

range of salinities that reflect field conditions, for up to 12 months

before germination. Subsequent germination was modified by gut

passage, in comparison with non-ingested control seeds, in a

manner that depended on both the time that seeds were stored in

cold water (simulating presence in a seed bank), and the salinity of

that water. Furthermore, both for germinability and for speed of

germination, the direction and strength of time and salinity effects

varied between plant species, as did time x salinity interactions.

Previous reviews of endozoochory by frugivores and

herbivorous mammals have shown that the effects of gut passage

on germinability and germination time vary considerably between

plant species and studies (Jaganathan et al., 2016; Soltani et al.,

2018), but much less information is available for waterbirds.

Waterbird endozoochory is especially frequent in coastal
FIGURE 2

Germinability of control (C) and passage (P) seeds at different exposure times and salinities, pooled by low (1, 2, 4 dSm-1) and high (8, 16, and 32
dSm-1) conductivities for storage solutions. Means ± SE are represented. .
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ecosystems where migratory waterbirds are particularly abundant

(MWO, 2018), and where wetland plants are generally halotolerant.

The number of waterfowl (Anatidae: ducks, geese and swans)

species known to disperse a given plant species is positively

correlated with Ellenberg indicators of halotolerance, as well as

with increasing moisture requirements (Almeida et al., 2022). If

seeds carried by waterbirds can enter seed banks, this will facilitate

the role of these dispersal vectors in plant meta-population

dynamics and gene flow (Tomowski et al., 2023). After

endozoochory, seeds do not need to become established

immediately, but can remain in the seed bank until suitable

conditions arise. For example, seeds arriving at a site during

autumn migration may readily enter the seed bank before

germinating the following spring. Waterfowl endozoochory of

aquatic plant seeds is likely to be more frequent during autumn

migration than in spring (Urgyán et al., 2023, but see Figuerola

et al., 2003). Avian gut passage reduces floatability of wetland plant

seeds (authors, unpublished data), probably due to increased water

permeability following damage to the pericarp and seed coat

incurred during passage (Clevering, 1995; Costea et al., 2019).

Therefore, when faeces are egested into water following

endozoochory, seeds are likely to sink and be incorporated into

seed banks in the sediments. Genetic studies of aquatic seed banks
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may detect migration events via zoochory (Tomowski et al., 2023).

Population genetic studies support the role of waterfowl in long-

distance dispersal of sedges (Kettenring et al., 2019).

Schoenoplectus litoralis grows at greater depths than the other two

species studied (Espinar et al., 2005b). It showed a particularly positive

response to gut passage after storage for 180 days, when it had a higher

germinability than after 30 or 365 days, and a faster germination than

control seeds. After gut passage, B. maritimus also had the highest

germinability after 180 days. These responses could potentially be

adaptive, if seeds first arrive by endozoochory to a dry microhabitat or

to a wetland during autumn migration, and germinate the following

spring. In Doñana, habitat suitable for this species typically floods 3–5

months before germination occurs in spring (Green et al., 2017). High

rates of waterfowl endozoochory have been recorded in the field for

both these Cyperaceae species, in contrast to J. subulatus (Espinar

et al., 2006; Almeida et al., 2022; Urgyán et al., 2023). Our results for

germination patterns in three species are consistent with van Leeuwen

et al. (2023) who found that, following prior stratification, simulated

gut passage was more likely to increase germinability and reduce

germination time for plant species with higher Ellenberg moisture

requirements. Of our study species, J. subulatus has the lowest

moisture requirements and was the one we found to have the fewest

positive effects of gut passage on germination.
FIGURE 3

Median time to germination of control (C) and passage (P) seeds at different exposure times and salinities, pooled by low (1, 2, 4 dSm-1) and high (8,
16, and 32 dSm-1) conductivities for storage solutions. Means ± SE are represented.
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Previous studies may have underestimated the ability of aquatic

seeds to incorporate into seed banks after gut passage. For example,

Tol et al., 2021 concluded that seeds of the seagrass Zostera muelleri

are unlikely to enter the seed bank after gut passage by marine

herbivores (green sea turtles and dugongs), because after a
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germination test of 60 days at 19-32°C, no seeds remained viable

according to a tetrazolium test. However, if they had not been

placed at those temperatures, they may have retained viability for

much longer (Infante-Izquierdo et al., 2023). Our results suggest

that aquatic seeds in general have the capacity to enter seed banks
TABLE 2 Results of GLMs for germination time, with a Poisson distribution and a log-link function, and separate models for control seeds (C) and
passage seeds (P).

Dependent variable Effects Level of Effect Estimate SE df WaldStat p

T50%

J. subulatus C Intercept 1.55 0.269 1 33.25 0.0001

Time 2 19.79 0.0001

30 1.55 0.269

180 -0.34 0.203

J. subulatus P Intercept 1.23 0.126 1 95.00 0.0001

Sal 0.16 0.055 1 9.21 0.0024

Sal × Time 2 83.34 0.0001

x30 0.27 0.029

x180 -0.04 0.034

B. maritimus C Intercept 1.94 0.197 1 96.61 0.0001

Time 2 5.77 0.056

30 0.27 0.125

180 -0.25 0.131

Sal × Time 2 5.59 0.061

x3 -0.08 0.058

x180 0.13 0.058

B. maritimus P Intercept 3.32 0.169 1 383.7 0.0001

Time 2 8.43 0.015

30 0.23 0.106

180 -0.30 0.113

Sal -1.27 0.195 1 42.54 0.0001

Sal2 0.32 0.045 1 49.55 0.0001

Sal × Time 2 8.93 0.011

(x30 -0.08 0.046

x180 0.13 0.047

S. litoralis C Intercept 1.99 0.192 1 107.49 0.0001

Time 2 28.54 0.0001

30 -0.818 0.160

180 0.285 0.125

S. litoralis P Intercept 2.381 0.039 1 3596.6 0.0001

Time 2 6.90 0.032

30 -0.202 0.056

180 -0.170 0.055
frontie
We present the best models selected by AIC. Exposure time of 365 days was aliased in the models, and so effectively had an estimate of zero. Sal2, salinity squared.
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for extended periods if they are not initially exposed to necessary

germination cues (e.g. an increase in light intensity, or a reduction

in salinity). After endozoochory of plants lacking a fleshy fruit by

ungulates and other mammalian herbivores, seeds often enter

seedbanks in terrestrial habitats such as grasslands and forests

(Malo et al., 1995; Pakeman et al., 1999; Jaroszewicz, 2013). Non-

classical endozoochory by ungulates and waterfowl has many

similarities (Green et al., 2022), and the role of both these vector

groups in contributing to seedbanks is likely to be one of them.
Salinity effects

The majority of studies addressing the impact of vertebrate gut

passage on germination conducted immediate germination tests at

near-zero salinity (including those on frugivores and herbivores;

Jaganathan et al., 2016; Soltani et al., 2018), without considering the

potential importance of soil or water salinity in the field. Salinity is a

critical environmental gradient in all coastal wetlands and estuaries,

as well as inland wetlands and soils in general in Mediterranean,

semi-arid, and arid climates. Increases in salinization due to global

heating, sea level rise, and increases in water abstraction pose a

major threat to wetland biodiversity (Taylor et al., 2021; Cunillera-

Montcusı ́ et al., 2022).
We demonstrated that the effect of gut passage on germination

response of sedges and rushes along a salinity gradient is complex

and species-specific. Our work builds on previous studies using

seeds from the same plant populations (Espinar et al., 2004; Espinar

et al., 2006) which showed that germination responses immediately

after gut passage, and their relation with the response of control

seeds, depend on the salinity at which a germination test is

conducted. For S. litoralis, gut passage increased germinability

and the speed of immediate germination at low salinities of 0-2

dSm-1, whereas the opposite occurred at salinities of ≥4 dSm-1

(Espinar et al., 2004). In our study, the germination test itself was

conducted with demineralized water. Freshwater pulses are known

germination cues for plants in coastal wetlands (Muñoz-Rodrıǵuez

et al., 2017; Castillo et al., 2021; Tol et al., 2021), and removal from

saline solution into fresh germination conditions may well be a

germination cue for our sedge and rush species. Furthermore, the

salinity at which seeds were stored before our germination tests had

a strong influence on the germination response of both control and

gut passage seeds, as well as on the difference between them. Given

the mechanical effects of gut passage on seed architecture (Costea

et al., 2019), it is not surprising that there were important

differences with control seeds in the response to storage in saline

solution. Nevertheless, we did not find consistent evidence that

higher salinities reduce the germinability of seeds after gut passage,

despite the resulting increase in permeability of the seed coat.

Our results illustrate the complexity of how avian gut passage

affects the germination response of wetland plants. A caveat for our

study is that, since many seeds are destroyed during gut passage by

digestive processes, it is possible that seeds recovered after gut

passage are partly selected by this process. Hence, recovered seeds

may not be fully representative of ingested seeds, complicating their

comparison with control seeds. Brochet et al. (2010) found that gut
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passage may increase the proportion of viable seeds by selective

digestion of non-viable ones. Ideally, we should have tested the

viability of all the seeds in our study that did not germinate within

30 days with a tetrazolium test, to separate seeds that were dead

from those that remained dormant. This limitation does not apply

to studies simulating digestive processes with laboratory protocols

(van Leeuwen et al., 2023), in which the fate of each individual seed

can be monitored.
Dormancy strategies

We stored seeds in darkness at 4 °C between their collection and

starting the feeding experiment, and again during seed bank

simulation, with the aim of breaking physiological dormancy to

assure high germination rates (Clevering, 1995). However, we still

found evidence that gut passage had an additional effect in breaking

dormancy for sedges in some treatments (i.e. germinability was

often higher than for control seeds after 180 or 365 days of storage,

Figure 2). Thus, our initial hypothesis, based on dormancy

classification (Baskin & Baskin, 2004), that gut passage would

always inhibit germination, was rejected. Our results bring into

question the assumptions used to classify dormancy strategies (see

also Costea et al., 2019; van Leeuwen et al., 2023), and underlines

both the importance of endozoochory and the complexity of

dormancy for plants of dynamic wetland ecosystems (see also

Marty and Kettenring, 2017).

Both passage through the waterfowl gut, and cold storage, may

act to break dormancy in sedges. Schoenoplectus lacustris and B.

maritimus can persist in seed banks for many years (Clevering,

1995), and it is possible that the increases in germinability we

observed after gut passage may have disappeared if we had used

much longer storage periods. However, Clevering (1995) argued

that germination in these species is mainly triggered by permeability

of the seed coat, rather than some internal clock, and gut passage

can provide that trigger.

Temperature is a critical variable influencing dormancy and

germination responses, and in our study area with a Mediterranean

climate a temperature as low as 4 °C is only experienced in winter

months (Espinar et al., 2015). Hence, our results may have changed

if seeds had been stored under different temperature regimes, and

our study only represents a first approximation of what might occur

in a natural wetland when seed banks are inundated over periods of

up to 12 months.
Conclusions

Our experiment simulated the presence of seeds in a seed bank

in inundated sediments in a general manner, and suggests that

waterfowl endozoochory can lead to effective dispersal even when

seeds are moved by birds into microhabitats where conditions are

not immediately suitable for germination. The seeds can remain for

weeks, months, or at least a year in the seed bank until conditions

become suitable. Research into establishment success of plants after

waterbird endozoochory events has been highlighted as a future
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priority (Green et al., 2023), and our study represents an important

step which supports the potential for establishment long after

endozoochory has occurred. Further studies (e.g. with

mesocosms) should address the fate and fitness of seeds

incorporated into seedbanks after waterfowl endozoochory.
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