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Non-destructive detection
of protein content in
mulberry leaves by using
hyperspectral imaging

Xunlan Li, Fangfang Peng, Zhaoxin Wei,
Guohui Han* and Jianfei Liu

Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
Protein content is one of the most important indicators for assessing the quality

of mulberry leaves. This work is carried out for the rapid and non-destructive

detection of protein content of mulberry leaves using hyperspectral imaging

(HSI) (Specim FX10 and FX17, Spectral Imaging Ltd., Oulu, Finland). The spectral

range of the HSI acquisition system and data processing methods (pretreatment,

feature extraction, and modeling) is compared. Hyperspectral images of three

spectral ranges in 400–1,000 nm (Spectral Range I), 900–1,700 nm (Spectral

Range II), and 400–1,700 nm (Spectral Range III) were considered. With standard

normal variate (SNV), Savitzky–Golay first-order derivation, and multiplicative

scatter correction used to preprocess the spectral data, and successive

projections algorithm (SPA), competitive adaptive reweighted sampling, and

random frog used to extract the characteristic wavelengths, regression models

are constructed by using partial least square and least squares-support vector

machine (LS-SVM). The protein content distribution of mulberry leaves is

visualized based on the best model. The results show that the best results are

obtained with the application of the model constructed by combining SNV with

SPA and LS-SVM, showing an R2 of up to 0.93, an RMSE of just 0.71 g/100 g, and

an RPD of up to 3.83 based on the HSI acquisition system of 900–1700 nm. The

protein content distribution map of mulberry leaves shows that the protein of

healthy mulberry leaves distributes evenly among the mesophyll, with less

protein content in the vein of the leaves. The above results show that rapid,

non-destructive, and high-precision detection of protein content of mulberry

leaves can be achieved by applying the SWIR HSI acquisition system combined

with the SNV-SPA-LS-SVM algorithm.
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1 Introduction

Mulberry leaves are rich in a variety of bioactive ingredients

necessary for the human body, with such functions as anti-obesity

(Li et al., 2019), anti-oxidation and antibacterial (Thabti et al.,

2014), and anti-diabetes (Riche et al., 2017), and thus are considered

to be beneficial in the Asian population. Compared to animal

protein, the abundant protein of mulberry leaves contains no

animal cholesterol, with an amino acid pattern similar to that of

the human body (Gryn-Rynko et al., 2016; Sun et al., 2017). In

recent years, mulberry leaves are eaten as a vegetable, and used as a

traditional source of animal feed protein as well in Asian countries

(Srivastava et al., 2003; Yu et al., 2018). The protein content is one of

the most important indicators for assessing the quality of mulberry

leaves used as an animal feed source or a fresh vegetable.

At present, the methods for determining protein content in

leaves are mainly chemical analysis methods (Ledoux and Lamy,

1986; Chromý et al., 2015; Denholm et al., 2021), such as the

Kjeldahl nitrogen determination method. Such methods require the

samples to undergo not only drying, grinding, and other destructive

treatments, but also deboiling, distillation, and titration under the

condition of concentrated sulfuric acid being added. This is a

complex process producing chemical pollution. In light of this, it

is highly necessary to introduce a non-destructive and rapid

determination of protein content of mulberry leaves.

Hyperspectral imaging (HSI) combining imaging technology

with spectral technology can provide both spectral and spatial

information of substances. With the advantages of non-

destructiveness, high efficiency, and low cost, HSI is widely used

in non-destructive detection of protein content of different farm

products, including meat products such as pork (R2
P = 0.9161 and

RMSEP = 2.71 mg/g) (Ma J. et al., 2019), lamb (R2
p = 0.67 and

RMSEP = 0.41) (Pu et al., 2014), and beef (R2
P = 0.86 and SEP =

0.29) (ElMasry et al., 2013), and grain products such as wheat (R2P =

0.79 and RMSEP = 0.94) (Caporaso et al., 2018), rice (R2
P = 0.8011

and RMSEP = 0.52) (Ma et al., 2021), and peanuts (R2
P = 0.912 and

RMSEP = 0.438) (Cheng et al., 2017). There are studies showing

that N-H bonds in proteins present absorption peaks at 1,460–1,570

nm and 2,000–2,180 nm (Shenk et al., 2007; Chelladurai and Jayas,

2014), which lead to the non-destructive detection of proteins to be

conducted by mainly using the Short-Wave Infrared (SWIR) HSI

system with an acquisition wavelength range of 1,000–1,700 nm or

900–2,500 nm. There are also some other researchers using visible

near-infrared (Vis-NIR) HSI with an acquisition wavelength range

of 400–1,000 nm for non-destructive detection of proteins of meat

(Ma J. et al., 2019), rice (Onoyama et al., 2018), milk (Jin et al.,

2022), and rape leaves (Zhang et al., 2015), with good results

obtained. As the main parts of optical imaging systems, detectors

are meant for detecting and measuring the radiation reflected or

transmitted by objects. A detector made of a certain material can

only detect certain wavelength ranges, and the prices of detectors

vary greatly. Currently, silicon detectors (300–1,100 nm) are the

most widely used Vis-NIR detectors, and their prices are very low,

compared with the slightly more expensive InGaAs detectors (900–

2,500 nm) and the much more expensive HgCdTe detectors (1,000–
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2,600 nm). At present, there are only a few studies on the non-

destructive detection of proteins of mulberry leaves. Ma et al. used a

900-1,600 nm handheld near-infrared spectrometer to detect

proteins of dry mulberry leaves, and by combining with partial

least squares (PLS) regression and the wavelength optimization

method, they obtained a prediction set R2 of up to 0.92 (Ma Y. et al.,

2019). However, this method requires the mulberry leaves to

undergo drying and grinding, and the obtained data are single

point data, thus leading to failure to obtain the protein content of

the whole leaves. The vibrational characteristics of different

molecules and functional groups vary, resulting in differences in

sensitivity to specific wavelengths among different substances.

Therefore, we are not clear about the best detector material and

the spectral range for conducting the non-destructive detection of

protein content of mulberry leaves. As a result, it is necessary to

choose an optimal compromise.

This study aims at developing a non-destructive and rapid

method for the detection of protein content of mulberry leaves.

The main research contents are as follows: (1) analyzing the spectral

characteristics of mulberry leaves at Vis-NIR (400–1,000 nm) and

SWIR (900–1,700 nm); (2) comparing different pretreatment,

feature extraction, and modeling methods and selecting the best

optimal data processes and methods; (3) selecting the best spectral

range of HSI acquisition system for the detection of protein content

of mulberry leaves; and (4) visualizing the distribution of protein

content of mulberry leaves by using the optimal model.
2 Materials and methods

2.1 Materials

The healthy mulberry leaves, randomly collected and washed

with tap water when brought to the laboratory, undergo

hyperspectral images collection and protein content determination

after the surfaces of the leaves become dry. In this study, 193 samples

are randomly divided into the training set and the testing set at the

ratio of 7:3, with 135 and 58 samples, respectively. Among them, the

training set is used for training the model, with the 10-fold cross-

validation method applied to the training set to adjust the model

parameters and select the optimal model, while the test set is used for

assessing the final model.
2.2 Acquisition and calibration of
hyperspectral images

The HSI acquisition system consists of two hyperspectral cameras

(FX10 and FX17, Spectral Imaging Ltd., Oulu, Finland), the electric

linear platform (Spectral Imaging Ltd., Oulu, Finland), two light

sources (each light source consists of three 20-W halogen lamps),

and a laptop (Figure 1). The FX10 spectral camera (Si detector) is used

for acquiring hyperspectral images of the Vis-NIR region (400–1,000

nm). The FX17 spectral camera (InGaAs detector) is used for acquiring

hyperspectral images of the SWIR region (900–1,700 nm).
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The two light sources are at an angle of 45° of the moving

platform, and the distance between the lens and the platform is 33

cm. When FX10 is used for hyperspectral image acquisition, the

exposure time is set to 12.5 ms, the frame rate is 49.83 Hz, the

spectral interval is 2, the spatial interval is 1, and the mobile

platform moving speed is set to 11.9 mm/s. When FX17 is used

for hyperspectral image acquisition, the exposure time is set to 6 ms,

the frame rate is 40.5 Hz, the spectral interval is 1, the spatial

interval is 1, and the moving speed of the mobile platform is set to

14.8 mm/s. The hyperspectral image acquisition is conducted after

the preheating of 20 min. The white reference image W is obtained

by screening the standard white board with a reflectance of 99%

placed in front of the sample. The dark reference image D is

obtained by screening with the lens closed. The reference images

are acquired together with the hyperspectral image of the sample.

To avoid the effect caused by uneven light source intensity

distribution and dark current during the image collecting process,

hyperspectral image calibration is conducted (Figure 2). The

following formula is used for hyperspectral image calibration.

Rl =
Il − Dl
Wl − Dl

where Rl is the calibrated image, Il is the raw image, Wl is the

white reference image, and Dl is the dark reference image.
2.3 Determination of protein content of
mulberry leaves

After the hyperspectral image acquisition, the mulberry leaves

underwent drying in the oven at 105°C for 15 min and then drying

at 50°C for 2 h. With the main vein removed, the leaves were

ground with a mortar and passed through a 60-mesh sieve, and the
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protein content of mulberry leaves was determined by using Kaye

nitrogen determination (Chromý et al., 2015). The sample (0.3 g)

was weighed and transferred into a digestion tube. Then, 0.4 g of

copper sulfate, 6 g of potassium sulfate, and 20 mL of sulfuric acid

were added to the tube for digestion. Once the temperature of the

digestion furnace reached 420°C, the digestion process was

continued for 1 h. After the liquid in the digestion tube exhibited

a green and transparent appearance, the tube was carefully removed

from the furnace and allowed to cool. Once cooled, 50 mL of water

was added to the tube. In the Kjeldahl nitrogen analyzer, sodium

hydroxide solution, hydrochloric acid standard solution, and boric

acid solution containing mixed indicators were first added. Finally,

the automated Kjeldahl nitrogen analyzer was utilized to

automatically perform the processes of sample addition,

distillation, titration, and data recording. The protein content in

the mulberry leaf can then be calculated using the provided formula.

X =
(V1 − V2)*C*0:0140*F*100

m*V3=100

In the formula, X represents the measured protein content, V1

represents the volume of consumed hydrochloric acid standard

solution, V2 represents the volume of blank consumed hydrochloric

acid standard solution, V3 represents the volume of extracted

liquid. C = 0.05 mol/L represents the concentration of

hydrochloric acid standard solution. m represents the weight of

the sample taken. F represents the conversion factor of nitrogen to

protein, and F is taken as 6.25. 100 is the conversion factor.
2.4 Data processing

2.4.1 Region of interest identification and
spectrum extraction

In this study, a whole mulberry leaf is the region of interest for

spectral extraction. A gray image is obtained at 800 nm and 1,000

nm of the Vis-NIR and SWIR hyperspectral images, respectively.

The Otsu method automatically calculates the segmentation

threshold between the leaf and the background in the gray image,

from which a binary image is obtained. Then, the ROI is obtained

by conducting mask processing. Finally, the average spectral

reflectance of the whole mulberry leaf at each wavelength

is calculated.

2.4.2 Spectral pretreatment
In light of the high noises in the first and last bands of the

original spectral data, spectral data within the ranges of 423–975 nm

(Spectral Range I), 970–1,684 nm (Spectral Range II), and 423–

1,684 nm (Spectral Range III) are selected for subsequent analyses.

The raw spectra need to be pre-treated to eliminate the scattering

caused by uneven particle distribution and different particle sizes

and the influence of optical path difference on the spectral data. The

standard normal variate (SNV) (Barnes et al., 1989), Savitzky–

Golay combined first-order derivation (Savitzky and Golay, 1964),

and multiplicative scatter correction (MSC) (Isaksson and Næs,

1988) are the commonly used spectral preprocessing methods, and
FIGURE 1

The hyperspectral imaging system.
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have been shown to be effective in eliminating or reducing

interference such as electrical noise, sample background, and

stray light during acquisition. In order to determine the best

pretreatment of spectral data, the SNV, Savitzky–Golay combined

first-order derivation, and MSC are adopted in this study.

2.4.3 Variable selection
Because of the high correlation between adjacent spectral bands,

successive projections algorithm (SPA), competitive adaptive

reweighted sampling (CARS), and random frog (RF) are

respectively used to extract characteristic wavelengths in this

study to reduce model input variables and improve model

efficiency and prediction accuracy.
Frontiers in Plant Science 04
SPA is a forward variable selection method, which selects a

wavelength at the beginning, calculates the projection value of the

remaining wavelength, cycles forward, selects the wavelength

corresponding to the maximum projection value, and then combines

the projection vector with the wavelength until the end of the cycle

(Araújo et al., 2001). SPA can minimize the collinearity between

variables, extract the minimum redundant information variable

group, and reduce the number of variables required to establish the

model, thus improving the efficiency and speed of modeling.

CARS is a feature variable selection method that combines

Monte Carlo sampling with PLS model regression coefficient (Li

et al., 2009). The primary selection of the feature variables is

conducted by combining the PLS regression coefficient with
B

C D

A

FIGURE 2

Hyperspectral image calibration. (A, C) show the raw hyperspectral image of Vis-NIR and SWIR region, respectively. (B, D) show the calibrated
hyperspectral image of Vis-NIR and SWIR region, respectively.
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exponential decay through adaptive weighted sampling each time.

Then, a new PLS model is constructed based on the new subset

established with the points of larger absolute weight of regression

coefficient retained and the points with smaller weight removed in

the PLS model. After multiple calculations, the wavelength in the

subset with the smallest root mean square error of the PLS model is

selected as the characteristic wavelength.

RF is a very effective algorithm, which is similar to Reversible

Jump Markov Chain Monte Carlo, proposed by Li for variable

selection of high-dimensional data (Li et al., 2012). It functions in

an iterative manner, calculating the probability of each variable

being selected in each iteration. The higher the probability, the

greater the importance of the variable. The variable with the higher

probability is preferred as the characteristic variable.

2.4.4 Model construction and assessment
In this study, PLS and least squares-support vector machine (LS-

SVM) are selected for constructing models. LS-SVM (Suykens and

Vandewalle, 1999), a machine learning algorithm based on support

vector machine, is selected for constructing a regression model by

adopting partial least squares linear system as loss function through

nonlinear mapping function. With input variables projected into a

high-dimensional feature space, and then the optimization problem

converted into equality constraint conditions, this model has good

generalization performance and nonlinear regression processing

performance. When LS-SVM is used for analysis, appropriate kernel

functions must be decided. In this study, RBF kernel function is

adopted, and two parameters of the kernel function, g and s2, are
selected by grid searching based on cross-validation. PLS (Mehmood
Frontiers in Plant Science 05
et al., 2012), a multivariate statistical analysis method on the basis of

principal component analysis, reduces the dimension by projecting

independent variables and dependent variables into a new low-

dimensional space, thus being capable of being used to treat the

linear relationship between multiple independent variables and one

or more dependent variables in a high-dimensional data set.

The evaluation metrics of the model are determination coefficient

(R2), root mean square error (RMSE), and relative percent deviation

(RPD). R2 reflects the stability of the model. The closer R2 is to 1, the

better the stability of the model is and the higher the degree offitting is.

RMSE is used for testing the predictive power of themodel. The smaller

the RMSE is, the better the predictive power of the model is. RPD is the

ratio of sample standard deviation to RMSE.WhenRPD is less than 1.4,

the model fails to predict the sample. When 1.4 ≤ RPD< 2, the model is

considered tobeof averageeffect andcanbeused for roughassessmentof

the samples. When RPD ≥ 2, the model is considered to be of excellent

predictive power (Khoshnoudi-Nia and Moosavi-Nasab, 2019).

The data processing process is shown in Figure 3. The

calibration of the hyperspectral images and all the data processing

are completed on MATLAB 2022a by encoding.
3 Results and analyses

3.1 Protein and spectral characteristics of
mulberry leaves

The spectral reflection curve is drawn with the samples divided

into 3 groups according to the level of protein content (Figure 4).
BA

FIGURE 3

Workflow of data processing. (A) The raw hyperspectral image preprocessing and segmentation procedure. (B) The spectral processing, variable
selection, and the modeling procedure.
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The spectral reflection curves of mulberry leaf samples of different

protein levels show the characteristics of the typical reflection

spectral curve of a green plant, as follows: green peak (530–580

nm), red valley (590–670 nm), red edge (680–780 nm), high

reflective platform (750–1,300 nm) related to leaf tissue

structures, and the water absorption peak (1,450 nm) (Gates

et al., 1965; Gausman and Allen, 1973; Gitelson et al., 1996; Tang

et al., 2005). Absorption peaks of protein-associated N-H bonds

have been reported at 1,020 nm and 1,510 nm in the SWIR region,

but this absorption peak is not directly shown from the spectrum of

Figure 4, which may be due to the fact that the absorption bands in

the NIR region tend to be wide and often overlap (Curran, 1989;

ElMasry et al., 2011). In addition, from Figure 4, we can see that the

higher the protein content of mulberry leaves is, the lower the

corresponding spectral reflectance is.
3.2 Results of feature
wavelength extraction

In this study, SPA, RF, and CARS are being used individually to

extract characteristic wavelengths from spectral data within three

band ranges (Figure 5). In this study, the subset of bands with the

smallest root Mean Square Error of Cross-Validation (RMSECV)

value was selected as the characteristic band determined in the

CARS and SPA algorithms. The CARS algorithm was iterated 1,000

times to ensure a comprehensive exploration. Similarly, the RF

algorithm was also iterated 1,000 times to thoroughly explore the

entire dataset, and by selecting the top 10 wavelength variables with

a high average probability from these 1,000 runs, we obtained the

characteristic wavelengths.

Analysis of the feature wavelengths extracted by using SPA, RF,

and CARS shows that there are differences in the positions and

numbers of the obtained feature wavelengths extracted from the

spectral data undergoing the same pretreatment by using the

different feature screening methods, but the extracted wavelength

positions tend to concentrate in some specific bands. There are also

differences in the positions and numbers of the obtained feature

wavelengths extracted from the spectral data undergoing different

pretreatments by using the same feature screening method, but the

extracted wavelength positions tend to concentrate in some specific

bands. The obtained feature wavelengths extracted in Spectral
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Range I mainly concentrate in 450–700 nm and 900–1,000 nm.

The obtained feature wavelengths extracted in Spectral Range II

mainly concentrate in 1,170–1,350 nm. The obtained feature

wavelengths extracted in Spectral Range III bands mainly

concentrate in the visible light region of 450–700 nm, near 800

nm, at 950 nm, and in 1,500– 1,650 nm. It is found, that the

characteristic bands of proteins obtained in relevant studies are

highly overlapping in the positions with the characteristic

wavelengths obtained in this study. However, there are obvious

differences in the specific positions and numbers. This is speculated

to be caused by the heterogeneity of protein composition among

different species (Caporaso et al., 2018; Ma J. et al., 2019; Ma et al.,

2021; Cruz-Tirado et al., 2023). These results demonstrate the

effectiveness of the applied feature screening methods (SPA, RF,

and CARS) in extracting relevant wavelengths for protein content

detection in mulberry leaves using HSI.
3.3 Results of modeling

Prediction models for protein content is constructed on the

basis of PLS and LS-SVM, respectively, by combining three

pretreatment methods, three feature wavelength screening

methods, and full-band wavelength (Tables 1–3). In this study,

the R2, RMSE, and RPD of the test set are used to evaluate the

predictive ability of the model, and the most suitable model for

mulberry leaf content detection is selected by combining the

number of variables and the predictive ability of the model.

It can be seen in Table 1, in Spectral Range I, the results

obtained using the PLS models are better than those obtained using

the LS-SVM models, and the S.G. first-order derivation + SPA +

PLS model achieves the best performance, with an R2 of 0.90, an

RMESP of 0.85, and an RPD of 2.91. It can be seen in Table 2, in

Spectral Range II, the results obtained using LS-SVM and PLS

models are not much different, and the SNV + SPA + LS-SVM

model achieves the best performance, with an R2 of 0.93, an RMESP

of 0.71, and an RPD of 3.83. It can be seen in Table 3, in Spectral

Range III, the results obtained by using the PLS model are better

than those obtained by using the LS-SVM model, and the SNV +

SPA +L S-SVM model achieves the best performance, with an R2 of

0.93, an RMESP of 0.73, and an RPD of 3.51. The above results

show that there is no specific pretreatment method, characteristic
FIGURE 4

The average spectra of mulberry leaves with different protein content.
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wavelength, or modeling method optimal for all types of spectral

data, and it is necessary to explore the effects of different algorithm

combinations on model performance, so as to select the optimal

processing method in light of different situations. LS-SVM is

superior to linear methods in solving nonlinear problems, but it is

sensitive to noise and error in the input data, while in Spectral

Range I and III, the data used for modeling may be of poor quality

or poorly correlated with the detection of protein content spectral

data, so PLS algorithms obtain better results than LS-SVM

algorithms (Suykens et al., 2002; Wang and Hu, 2005).

As can be seen from Tables 1–3, better results are achieved by

using the models based on the feature extraction method, compared

with the full-band models, which is due to the fact that the full-band

spectral data have some redundant and interference information,

and this is an indication that the feature extraction method can

effectively reduce the redundant information between adjacent

spectral bands and improve the accuracy of models. Two

hyperspectral cameras with different wavelength ranges were

compared, and the overall performance of the predictive model

developed in the SWIR region shows better predictive power and

robustness than that established in the Vis-NIR region, which is

exactly opposite to the results of Ma et al. (Ma J. et al., 2019). They

obtained better results in detecting pork protein by using spectral

data of the Vis-NIR region. However, in many other protein

detection studies, good prediction results are obtained by using

spectral data of the SWIR region (Talens et al., 2013; Ma et al., 2021;
Frontiers in Plant Science 07
He et al., 2023). In this study, compared with the models

constructed based on Spectral Range II spectral data, the model

based on Spectral Range III spectral data fails to show better

accuracy, although it obtains richer spectral information. This

may result from the spectrum of the Spectral Range III region

containing more redundant information related to the detection of

protein content of mulberry leaves. The above results show that the

SWIR region is the optimal spectral range for mulberry leaf

protein prediction.

Previous studies have explored the feasibility of HSI for the

non-destructive detection of protein content; however, few studies

have attempted to determine the optimal spectral range for

measuring proteins, especially for fresh mulberry leaves. In this

study, the best results are obtained by combining the SWIR HSI

acquisition system based on InGaAs detectors with SNV + SPA +

LS-SVM, with an R2 of the test set of up to 0.93, an RMSE of only

0.71 g/100 g, and an RPD of up to 3.83. The results show that the

model is qualified for detecting and analyzing the protein content of

mulberry leaves.
3.4 Visualization of protein content of
mulberry leaves

The distribution of protein content in mulberry leaves has not

been reported. In the practical application of non-destructive
A

B

C

FIGURE 5

The characteristic wavelength obtained after the combination of different pretreatment and variable extraction methods. (A) SNV preprocessing.
(B) Savitzky–Golay combined first-order derivation preprocessing. (C) MSC preprocessing.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1275004
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2023.1275004
detection technology for mulberry leaf protein, the visualization of

the protein content of mulberry leaves can not only provide valuable

insights for merchants to classify the freshness and quality of

mulberry leaves more intuitively, but also aid researchers in

conducting plant physiology studies related to mulberry leaves. By

extracting spectral data from all pixels of the leaves, a distribution

map is generated by using the established SNV + SPA + LS-SVM

model to visualize the spatial distribution of protein content in

mulberry leaves. The level of protein content is represented by the

depth of shade, as depicted in Figure 6. It should be noted that the

variety, harvest time, and maturity significantly influence the nutrient

content of mulberry leaves. Previous studies have indicated that the
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protein content of mulberry leaves decreases with increasing ripeness

(Ramesh et al., 2021). In the visualization results of this study, it can

be seen that tender leaves exhibit higher protein content compared to

mature leaves, which is consistent with the above findings.

Additionally, the visualized distribution of the protein content of

mulberry leaves shows that the protein of healthy mulberry leaves is

essentially evenly distributed in the mesophyll, while the protein

content in the veins is extremely low. This is due to heterogeneity,

and the fact that the protein content varies across different locations

within the sample and the leaf vein is mainly composed of cellulose

and conductive substances with no capacity of storing energy

(Fukuda, 2004; Jiang et al., 2022).
TABLE 2 Results of models in spectral range II.

Pretreatment Variable selection No. of variables
PLS LS-SVM

PCs R2 RMSE RPD R2 RMSE RPD

SNV

Full bands 204 15 0.86 1.02 2.17 0.87 0.97 2.81

SPA 15 15 0.92 0.78 3.07 0.93 0.71 3.83

CARS 26 9 0.85 1.05 1.95 0.86 1.03 2.24

RF 10 8 0.81 1.19 2.15 0.80 1.21 2.65

S.G. first-order derivation

Full bands 204 14 0.85 1.04 2.13 0.89 0.90 3.04

SPA 42 19 0.86 1.01 2.25 0.91 0.80 3.40

CARS 13 7 0.85 1.05 2.12 0.88 0.94 2.91

RF 10 7 0.80 1.20 1.84 0.86 1.01 2.70

MSC

Full bands 204 14 0.88 0.94 2.36 0.87 0.98 2.78

SPA 45 15 0.92 0.78 3.09 0.86 1.02 2.68

CARS 26 8 0.81 1.17 1.93 0.81 1.17 2.34

RF 10 9 0.74 1.37 1.48 0.71 1.44 1.89
frontie
TABLE 1 Results of models in spectral range I.

Pretreatment Variable selection No. of variables
PLS LS-SVM

PCs R2 RMSE RPD R2 RMSE RPD

SNV

Full bands 204 17 0.82 1.14 2.28 0.60 1.71 1.60

SPA 24 21 0.89 0.91 2.62 0.86 1.01 2.69

CARS 23 18 0.88 0.93 2.68 0.84 1.09 2.53

RF 10 9 0.88 0.92 2.81 0.84 1.08 2.49

S.G. first-order derivation

Full bands 204 16 0.90 0.85 2.94 0.70 1.47 1.85

SPA 35 23 0.90 0.85 2.91 0.82 1.15 2.36

CARS 26 11 0.66 1.57 1.63 0.69 1.51 1.80

RF 10 7 0.69 1.49 1.61 0.72 1.43 1.91

MSC

Full bands 204 16 0.86 1.01 2.59 0.60 1.71 1.59

SPA 51 18 0.90 0.87 2.87 0.76 1.31 2.08

CARS 39 14 0.87 0.96 1.96 0.73 1.40 1.95

RF 10 8 0.89 0.90 3.20 0.85 1.04 2.63
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4 Conclusion

The protein content of mulberry leaves is a crucial indicator for

assessing their quality. In this study, we aimed to develop a rapid and

non-destructive method for detecting the protein content of mulberry

leaves using HSI technology. The feasibility of using HSI technology

within the spectral range of 400–1,000 nm and 900–1,700 nm for non-

destructive detection of mulberry leaf protein content is investigated.

By comparing different spectral ranges of the HSI acquisition system

and utilizing various data processingmethods, including preprocessing,

variable extraction, and modeling, prediction models for protein

content detection are constructed. The results demonstrated that the

best performance was achieved by combining the spectral data from

900–1,700 nm with SNV + SPA + LS-SVM. This approach yielded a
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testing set R2 value of up to 0.93, an RMSE of only 0.71 g/100 g, and an

RPD of up to 3.83. Furthermore, the visualization of the protein

content distribution in mulberry leaves based on the best model

revealed that healthy leaves exhibited an even distribution of protein

content throughout the mesophyll, with lower protein concentrations

observed in the leaf veins.

These findings show the optimal spectral range for mulberry

leaf protein prediction and highlight the potential of utilizing SWIR

HSI combined with the SNV–SPA–LS-SVM algorithm for rapid,

non-destructive, and high-precision detection of protein content in

mulberry leaves. The developed method can provide valuable

insights for assessing the quality of mulberry leaves in a non-

invasive manner, enabling efficient monitoring and optimization of

mulberry leaf quality.
TABLE 3 Results of models in spectral range III.

Pretreatment Variable selection No. of variables
PLS LS-SVM

PCs R2 RMSE RPD R2 RMSE RPD

SNV

Full bands 405 18 0.90 0.84 3.04 0.88 0.93 2.93

SPA 50 21 0.92 0.78 3.20 0.92 0.78 3.51

CARS 19 14 0.75 1.36 1.40 0.70 1.48 1.30

RF 10 10 0.67 1.54 1.78 0.39 2.10 1.84

S.G. first-order derivation

Full bands 204 22 0.93 0.72 3.39 0.91 0.82 3.31

SPA 43 28 0.92 0.77 3.20 0.90 0.85 3.22

CARS 19 7 0.87 0.97 2.49 0.85 1.04 2.62

RF 10 6 0.88 0.95 2.61 0.88 0.92 2.97

MSC

Full bands 204 16 0.90 0.86 3.00 0.87 0.97 2.80

SPA 48 19 0.93 0.73 3.51 0.86 0.99 2.75

CARS 77 16 0.92 0.76 3.39 0.87 0.99 2.75

RF 10 9 0.79 1.24 1.79 0.29 2.28 1.19
frontie
FIGURE 6

Visualization of protein content in mulberry leaves. (A) A young leaf with a protein content of 45.7 g/100 g. (B) A middle mature leaf with a protein
content of 26.3 g/100 g. (C) A mature leaf with a protein content of 16.3 g/100 g.
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