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Neomicrocalamus and Temochloa are closely related to bamboo genera.

However, when considered with newly discovered and morphologically similar

material from China and Vietnam, the phylogenetic relationship among these

three groups was ambiguous in the analyses based on DNA regions. Here, as a

means of investigating the relationships among the three bamboo groups and

exploring potential sources of genomic conflicts, we present a phylogenomic

examination based on the whole plastome, single-nucleotide polymorphism

(SNP), and single-copy nuclear (SCN) gene datasets. Three different phylogenetic

hypotheses were found. The inconsistency is attributed to the combination of

incomplete lineage sorting and introgression. The origin of newly discovered

bamboos is from introgressive hybridization between Temochloa liliana (which

contributed 80.7% of the genome) and Neomicrocalamus prainii (19.3%),

indicating that the newly discovered bamboos are closer to T. liliana in

genetics. The more similar morphology and closer distribution elevation also

imply a closer relationship between Temochloa and newly discovered bamboos.

KEYWORDS

single-nucleotide polymorphism, single-copy nuclear gene, phylogenetic
incongruence, introgression, incomplete lineage sorting
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1 Introduction

The bamboo tribe Bambuseae (Poaceae: Bambusoideae), also

known as the paleotropical and neotropical woody bamboos, has a

significant role in ecology and socio-economy (Kambale et al., 2022)

and is considered a phylogenetically and taxonomically challenging

group (Goh et al., 2013; Liu et al., 2020). The cytonuclear discordance is

a reflection of reticulate evolution, which makes the paleotropical

woody bamboos a phylogenetically recalcitrant group (Liu et al.,

2020). The discordance could arise from evolutionary processes, such

as hybridization, introgression, and incomplete lineage sorting (ILS)

(Smith et al., 2015; Stull et al., 2020). In previous studies, it has been

demonstrated that assessing gene flows (hybridization and

introgression) and ILS could help us reach a better understanding of

closely related taxa (Garcıá et al., 2017; Morales-Briones et al., 2018).

For paleotropical woody bamboos, some hybrids have been reported

among erect bamboos (Goh et al., 2011; Goh et al., 2018); however,

hybridization/introgression and ILS, which are presumed as underlying

causes for their complex evolutionary history (Goh et al., 2013), have

been poorly explored in climbing bamboos.

Neomicrocalamus Keng f. is a small genus of climbing or

scrambling bamboos, comprising three species and distributed in

Bhutan, southwest China, northeast India, and Vietnam (Li and

Stapleton, 2006; BPG [Bamboo Phylogeny Group], 2012;

Vorontsova et al., 2016). Neomicrocalamus dongvanensis T.Q.

Nguyen from Vietnam may not belong to this genus as it

possesses erect culms (Nguyen, 1991; Stapleton et al., 1997). This

genus has often been regarded as related to Racemobambos

Holttum, another group of climbing or scrambling bamboos

distributed in Malesia (Holttum, 1956; Wen, 1986; Stapleton,

1994). However, in the phylogenetic analyses inferred with plastid

and nuclear fragments, Neomicrocalamus has been shown to be

distantly related to Racemobambos and sister to Temochloa S.

Dransf. (Ruiz-Sanchez and Sosa, 2015; Zhou M.Y. et al., 2017).

Temochloa is a monotypic genus in Thailand and possibly Laos

(Dransfield, 2000; Zhou M.Y. et al., 2017). Up to now, little is

known about it. Some crucial morphological characters are still

unavailable, such as lodicules, stamens, and fruits. As such, it was

not possible to place Temochloa in a subtribal classification of

Southeast Asian woody bamboos (Wong et al., 2016). Likewise, it

was regarded as having an affinity to Racemobambos (Dransfield,

2000). However, Temochloa possesses some characteristics

in common with Neomicrocalamus in morphology and

biogeography. Both of them are climbing bamboos in limestone

areas and have short-necked pachymorph rhizomes and branch

complements with many short and subequal branches with an

occasional dominant central branch that reiterates and

approaches the size of the culm. In phylogenetic analyses based

on plastid regions, it was recovered close to the Bambusa–

Dendrocalamus–Gigantochloa (BDG) complex and sister to

Neomicrocalamus (Sungkaew et al., 2009; Kelchner and BPG

[Bamboo Phylogeny Group], 2013; Zhou M.Y. et al., 2017).

However, substantial conflicting signals were detected in the

organelle DNA dataset (Zhou M.Y. et al., 2017).

During fieldwork in North Vietnam, some climbing bamboos

came to our attention, but no flowering material was obtained until
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subsequent exploration in a neighboring area in China (Table S1).

The Chinese material (collection number: BH85) is significant

among these newly discovered bamboos as it is the only one

containing flowers and fruits. After consulting the literature,

potential placements in Neomicrocalamus or Temochloa were

considered for these newly discovered bamboos. These three

groups share a number of similar morphological characters,

prompting an investigation of their phylogenetic relationships in

order to better understand if taxonomic placements may be better

justified or improved.

However, the phylogeny based on DNA fragments shows an

ambiguous relationship among these three groups. The use of single-

nucleotide polymorphism (SNP) datasets has been demonstrated to

give a better resolution in bamboo phylogeny (Liu et al., 2020; Guo

et al., 2021; Liu et al., 2022). In addition, the multispecies coalescent

model used to reconstruct species trees with large numbers of nuclear

genes has also much-improved accuracy of phylogenetic inference

(McCormack et al., 2009; Smith et al., 2015; Liu et al., 2021). In this

study, we aim to 1) examine the relationship among these two genera

and the newly discovered bamboos based on the whole plastome,

SNP, and single-copy nuclear (SCN) gene datasets with both

concatenation and coalescence methods, and 2) assess the potential

sources of plastid/nuclear discordance and the gene tree/species

tree incongruence.
2 Materials and methods

2.1 Taxon sampling

For inference of the systematic position, phylogenetic

reconstruction was based on plastid loci referred to in the

analyses of Zhou M.Y. et al., (2017) and Haevermans et al.

(2020). Finally, 23 samples were involved in the reconstruction,

among which 15 samples, representing 14 species (including one

variety) from nine genera, were downloaded from GenBank. Eight

samples were newly sequenced in this study. Guadua angustifolia

Kunth was set as the outgroup for this analysis.

The eight newly sequenced samples were also used to conduct

further analyses on the basis of the complete plastome, SNP, and

SCN gene datasets. For the plastome, SNP, and SCN phylogenetic

tree reconstruction, another sample was added as the outgroup,

Bonia levigata (L.C. Chia, H.L. Fung & Y.L. Yang) N.H. Xia. All

sample details are provided in Tables S1 and S2.
2.2 DNA extraction and sequencing

Total genomic DNA was isolated from silica-dried healthy

leaves using the TIANGEN Genomic DNA Extraction Kit

(TIANGEN, Beijing, China). DNA samples of concentration

meeting the standard (≥1 mg) were randomly sheared into

fragments using Covaris M220 (Covaris, Woburn, MA, USA).

Fragments of 350 bp were enriched using PCR, and the paired-

end (2 × 150 bp) reads were generated in Novogene (Beijing, China)
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using the NovaSeq 6000 platform. As a result, approximately 20 Gb

genome skimming data were generated for each sample. Among

species with already published bamboo genome data, Bonia

amplexicaulis (L.C. Chia, H.L. Fung & Y.L. Yang) N.H. Xia, with

a whole genome size of 0.848 Gb (Guo Z.H. et al., 2019), is the

species closest to the taxa included in the present investigation

(Zhou M.Y. et al., 2017). Hence, the expected sequencing coverage

for our samples would be approximately 23.58× (20 Gb/0.848 Gb).

For confirmation of the actual coverage, Jellyfish 2.2.3 (Marçais and

Kingsford, 2011) and GenomeScope 2.0 (Ranallo-Benavidez et al.,

2020) were used to estimate genome size for each newly sequenced

sample (including the outgroup).
2.3 Plastome assembly, annotation, and
plastid locus extraction

All DNA regions were extracted from plastomes using a python

script “get_annotated_regions_from_gb.py” (https://github.com/

Kinggerm/PersonalUtilities/). Eventually, following the procedures

of Zhou M.Y. et al. (2017), 18 plastid loci were selected (rpl32-trnL,

trnT-trnL, trnL-trnF, psbA-trnH, rpl16 intron, rps16-trnQ, trnC-

rpoB, trnD-trnT, rps16 intron, ndhF [3′ end], matK, atpB-rbcL,

psbM-petN, trnS-trnfM, ycf4-cemA, trnG-trnT, rps15-ndhF, and

rb cL -p sa I ) . A l l p l a s t id loc i we re conca t ena t ed fo r

phylogenetic analysis.

The filtered clean reads were used for de novo assembly of

complete plastomes using the GetOrganelle v.1.6.2 pipeline (Jin

et al., 2020) with six k-mer values: 21, 45, 65, 85, 105, and 125.

Subsequently, the filtered plastid reads were transferred to Bandage

v.0.8.1 (Wick et al., 2015) for the visualization process. Two

opposite plastid sequences exported from Bandage were aligned

with the reference sequence Bonia saxatilis (L.C. Chia, H.L. Fung &

Y.L. Yang) N.H. Xia (GenBank accession No. MK679779), and the

one matching the reference was annotated using PGA (Qu et al.,

2019). Finally, plastomes were manually corrected in Geneious

v.9.1.4 (Kearse et al., 2012).
2.4 SNP dataset construction

The latest high-quality genome sequence of Dendrocalamus

latiflorus Munro (Zheng et al., 2022) was selected as the

chromosome-level reference to build an index using SAMtools

v.1.9 (Danecek et al., 2021) and Picard v.2.27.3 (Broad, 2019).

After the filtration of low-quality data, clean reads were processed

with the removal of duplicates using Fastuniq v.1.1 (Xu et al., 2012).

Newly filtered paired reads were aligned to the reference using

Bowtie2 v.2.4.4 (Langmead and Salzberg, 2012) with the minimum

acceptable alignment score set as L, 0.3, 0.3. SAMtools was invoked

to sort out alignments in binary alignment format (BAM) files.

Picard was used to remove duplicates again with the function

“MarkDuplicates”. GATK v.4.2.2.0 (van der Auwera and

O'Connor, 2020) was used to anchor variable sites including SNP

and InDel in the genomic variant call format (GVCF) file by the

joint-calling method “HaplotypeCaller” with the minimum
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assembly region size as 10 and k-mer from 10 to 25. After

completion of variant calling, the tool “CombineGVCFs” in

GATK was performed to combine all the GVCF files. The tool

“GenotypeGVCFs” was then used to identify all the joint-called

variants. After that, filtration of low-quality SNPs was conducted

with the tool “VariantFiltration” with the following parameters: QD

< 2.0, MQ < 40.0, FS > 60.0, SOR > 3.0, MQRankSum < −12.5, and

ReadPosRankSum < −8.0. Then, the tool “SelectVariants” was run

to extract raw SNPs. After extraction, plink v.1.90b4.6 (Purcell et al.,

2007) was used to filter low-quality SNPs with the parameter “geno”

set as 0.1 and “maf” set as 0.01. Filtered variants were then pruned

with the parameter “indep-pairwise” set as 50, 10, and 0.2,

representing its window size, a variant count to shift the window,

and pairwise r2 threshold for SNPs, respectively. Finally, a clean

SNP dataset was generated, and the GVCF file was transferred to a

PHYLIP file for phylogenetic analysis using the python script

“vcf2phylip.py” (Ortiz, 2019).
2.5 SCN dataset construction

The protein-coding sequences of five previously published

bamboo genomes, namely, Phyllostachys edulis (Carrière) J. Houz.

(Zhao et al., 2018), B. amplexicaulis, G. angustifolia Kunth, Olyra

latifolia L., and Raddia guianensis (Brongn.) Hitchc. (Guo Z.H. et

al., 2019), were used to identify conserved orthologous genes based

on the Liliopsida and Poales datasets of BUSCO v.4.1.3 (Manni

et al., 2021). Then, the selected orthologous genes of these five

bamboo genomes were used to further identify the single-copy

nuclear genes using OrthoFinder v 2.4.0 (Emms and Kelly, 2019). A

total of 443 genes were generated and set as the reference gene

dataset. The filtered reads were mapped to the reference and

assembled using the software HybPiper v 1.3 (Johnson et al.,

2016) with default parameters. Finally, following the previous

study (Zhou et al., 2022), these assembled genes, which are longer

than 200 bp, were used in the subsequent analyses.
2.6 Phylogenetic analysis

Each dataset (plastid locus, whole plastome, SNP, single SCN

gene, and concatenated SCN genes) was aligned using MAFFT

v.7.450 (Katoh and Standley, 2013). For each data matrix, both

maximum likelihood (ML) and Bayesian inference (BI) analyses

were conducted. Maximum likelihood analysis was carried out in

RAxML-HPC v.8.2.10 (Stamatakis, 2014), with a GTRGAMMA

nucleotide substitution model and 1,000 rapid bootstrap replicates.

Bayesian inference analysis was carried out using MrBayes v.3.2.7

(Ronquist et al., 2012). The HKY+I+G model, deduced using

MrModeltest2 v.2.4 (Nylander, 2004) under the Akaike

information criterion (AIC) (Posada and Buckley, 2004), was

selected for the plastid locus matrix, as well as the plastome

matrix, the GTR model was selected for the SNP matrix, and the

GTR+I+G model was selected for the SCN gene concatenated

matrix. At least 30,000,000 generations were run to ensure that

the average standard deviation of split frequencies was lower than
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0.01, with the sampling frequency set as 100 generations. The first

25% of sampled trees were discarded as burn-in.

To infer species trees, two different approaches were used. The

first method was conducted using ASTRAL-III v.5.7.8 (Zhang et al.,

2018). Individual SCN gene trees were estimated using RAxML-

HPC v.8.2.10 (Stamatakis, 2014) with a GTRGAMMA model and

500 rapid bootstrap replicates. Branches of each gene tree with

support lower than 50% were removed to improve the accuracy of

species tree inference. Then, individual gene trees and their

bootstrap replicates were used to estimate species trees with 500

coalescent bootstrap replicates. SVDquartets v.1.0 (Chifman and

Kubatko, 2014) implemented in PAUP v.4.0a169 (Swofford, 2003)

was the second method that utilizes the concatenated SCN gene

matrix to infer the species tree. The clade support was assessed

using 1,000 bootstrap replicates.

The final phylogenetic results were visualized using FigTree

v.1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/).
2.7 Network analysis

In order to investigate potential conflicting signals within the

plastid locus matrix, the Neighbor-Net algorithm based on

uncorrected P-distances was performed with SplitsTree4 v.4.18.1

(Huson and Bryant, 2006).
2.8 Coalescent simulation

To test if the discordance between plastome tree and nuclear

trees could be explained by ILS alone, we conducted coalescent

simulations following previous studies (Garcıá et al., 2017; Morales-

Briones et al., 2018; Zhou et al., 2022). The ASTRAL-III tree was

chosen as a guide tree for the gene tree simulation using

DENDROPY v3.12.1 (Sukumaran and Holder, 2010). To simulate

plastid gene trees, branch lengths of the ASTRAL-III tree were

scaled by 12 to account for organellar inheritance as paleotropical

woody bamboos are hexaploidy, and the effective population size of

the plastome is generally expected to be one-twelfth that of the

nuclear genome given the assumptions of equal sex ratios, haploidy

(homoplasmic), and uniparental inheritance (McCauley, 1994; Stull

et al., 2020). Finally, 1,000 gene trees were simulated under the

coalescent model. The clade frequencies of simulated trees were

summarized on the plastome tree inferred using RAxML with

PHYPARTS (Smith et al., 2015). In a scenario of ILS alone, the

clades in the empirical plastome tree should be present in the

simulated trees with high frequency. If hybridization exists, the

clades of the empirical plastome trees should be absent or at very

low frequency in the simulated trees (Garcıá et al., 2017; Morales-

Briones et al., 2018; Zhou et al., 2022).
2.9 Gene flow analyses

To detect potential gene flows between lineages, the D-statistic

test was performed in Dsuite v.0.5 (Malinsky et al., 2021). Each
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lineage was represented by all samples of each clade. B. levigata was

treated as the outgroup. Z-scores greater than three are generally

interpreted as strong evidence of gene flow; otherwise, ILS cannot

be excluded as an explanation for ancient polymorphisms at

maximum probability (Eaton and Ree, 2013; Ye et al., 2021).

To further explore the reticulate evolutionary history, SnaQ

(Solıś-Lemus and Ané, 2016) implemented in PhyloNetworks

v.0.12.0 (Solıś-Lemus et al., 2017) was used to infer species

networks. The input was SCN gene trees estimated using RAxML.

Analyses allowing for 0–4 hybridization (h) events were performed

using 10 independent runs. The best network was selected when

pseudolikelihood scores reached a nearly constant level.
3 Results

3.1 Basic features of three datasets

For the newly sequenced samples, the estimated genome size

and the coverage ranged from 747.32 Mb to 927.72 Mb and from

21.56× to 26.76×, respectively (Table S3).

The dataset for the combined and aligned matrix of 18 plastid

loci across 23 samples consisted of 18,484 bp. A total of 787 (4.26%)

variable sites were found, of which 301 (1.63%) were parsimony

informative sites and 486 (2.63%) were singleton variable sites.

Missing data accounted for 5.5% of the entire matrix.

The plastome size ranged from 138,292 bp to 139,510 bp. The

alignment of the plastome of nine samples comprised 140,288 bp,

characterized using only 976 (0.69%) variable sites, including 327

(0.23%) parsimony informative sites and 649 (0.46%) singleton

variable sites. Missing data accounted for only 0.7% of the

entire matrix.

For the SNP data, the matrix was 1,651 bp in total length with

1,490 (90.25%) variable sites, including 279 (16.90%) parsimony

informative sites and 1,211 (73.35%) singleton variable sites. The

SNP data matrix did not have missing data.

A total of 358 SCN genes were obtained for each sample. The

concatenated matrix for 358 SCN genes consisted of 618,938 bp,

featuring 48,971 (7.91%) variable sites, of which 21,237 (3.43%)

were parsimony informative sites and 27,734 (4.48%) were

singleton variable sites. For the whole matrix, the missing data

were 5.3%.
3.2 Systematic position inferred using 18
plastid loci

Inference of phylogenetic relationships using plastid loci

conducted with different methods (ML and BI) yielded identical

topologies but different support values for some nodes (Figure 1).

Newly sequenced Neomicrocalamus samples clustered with

published Neomicrocalamus samples (Figure 1), forming a well-

supported Neomicrocalamus clade (Bayesian inference posterior

probability [PP]/bootstrap [BS], 1/100). The two Temochloa

liliana S. Dransf. samples were recovered together with PP/BS 1/

100 support and sister to Temochloa sp. (PP/BS 1/66), together
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making up the Temochloa clade. The three newly discovered

bamboo samples formed a clade with PP/BS 1/100 support and,

together with Neomicrocalamus spp. and Temochloa spp., represent

a monophyletic lineage with high support (PP/BS 1/93). However,

the relationship among the three clades of this lineage was

unresolved as one of the pivotal nodes was not fully supported

(PP/BS 0.984/49).

The network analysis revealed a splitting pattern similar to the

phylogenetic tree topology, in which Neomicrocalamus, Temochloa,

and the newly discovered bamboo clusters were connected by many

parallel short edges, indicating character conflicts among these

three clades (Figure S1).
3.3 Relationship revealed with plastome,
SNP, and SCN

As with the plastid locus dataset, ML and BI analysis methods

produced identical topologies. However, three backbone topologies

were revealed with different datasets and methods: Topology A

(recovered using plastome), Topology B (SNP and ASTRAL-III),

and Topology C (concatenated SCN and SVDquartets).

In the well-resolved plastome phylogeny, with almost every

node being fully supported (PP/BS 1/100), the newly discovered

bamboo clade was sister to the Neomicrocalamus clade, and the

Temochloa clade was in turn sister to both of them (Figure 2A). The

SNP phylogeny was also well-resolved except for the relationship

within the Neomicrocalamus clade. The clade comprising the newly

discovered bamboos aligned with the Temochloa clade as a

monophyletic lineage with PP/BS 0.955/89 support, which was

sister to the Neomicrocalamus clade (Figure 2B). In the

phylogenetic tree inferred with the concatenated SCN genes, the

Temochloa clade and the Neomicrocalamus clade together form a
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well-supported (PP/BS 1/99) monophyletic lineage. The newly

discovered bamboo clade is sister to them (Figure 2C).

In the species trees, the backbone topology recovered using

SVDquartets is the same as the concatenated SCN gene tree.

However, the support value for the sister group relationship of

the Temochloa clade and the Neomicrocalamus clade is not high

enough (BS 74 < 75) (Figure 3). However, the ASTRAL-III found

the Temochloa clade is sister to the newly discovered bamboo clade

with good support (BS 92), in agreement with the SNP phylogeny.

Furthermore, the relationship within the newly discovered

bamboo clade is always identical among the five phylogenies.

Although Neomicrocalamus prainii (Gamble) Keng f. is always

sister to the other three Neomicrocalamus species, the position of

Neomicrocalamus sp.2 is varied. In most of the phylogenies,

Neomicrocalamus sp.1 is sister to Neomicrocalamus sp.3; however,

in the concatenated SCN gene phylogeny, the position of

Neomicrocalamus sp.3 is replaced by Neomicrocalamus sp.2.
3.4 Assessment ILS and gene flow

The plastid gene trees produced by the coalescent simulations

resembled the empirical plastome tree. After summarizing

simulated plastid gene trees onto the empirical plastome tree,

most clade frequencies were at or near 100%, except for the clade

of sister groups, the Neomicrocalamus group, and the newly

discovered bamboo group, which is only 15.5% (Figure 4).

From the D-statistic test, the Z-score was 1.63 lower than 3,

which indicates both gene flows and ILS could be because of ancient

polymorphisms (Table S4). However, the p-value (0.101 > 0.05)

suggests that the result is only for reference.

Finally, three hybridization/introgression events were inferred

(Figure 4 and Table S5). The results show that the newly discovered
FIGURE 1

Majority rule (50%) consensus phylogenetic tree based on a combined plastid dataset of 18 loci. Both Bayesian inference (BI) and maximum
likelihood (ML) analyses were conducted. Numbers above and below branches indicate Bayesian inference posterior probability (PP) and bootstrap
(BS), respectively. BH85, 2018VNB018, and 2018VNB040 represent the newly discovered bamboos; these and other accessions freshly obtained for
this analysis are indicated in bold.
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bamboo group inherited 80.7% of its genome from T. liliana and

inherited 19.3% from N. prainii (Figure 4). The other two events are

located within the Neomicrocalamus group and the newly

discovered bamboo group, respectively. Both of them show

largely unequal (ca. 95% vs. ca. 5%) gene flows between parents.
4 Discussion

In the previous phylogenetic analyses, Neomicrocalamus and

Temochloa were revealed as closely related genera (sister groups) (Zhou

M.Y. et al., 2017), which is also supported by some morphological and

biogeographic evidence, such as short-necked pachymorph rhizomes

and climbing culms endemic to limestone areas. After adding more

accessions into the matrix of 18 plastid loci, the relationships among the

main groups were congruent with those found in a former study (Zhou

M.Y. et al., 2017), and the close relationship of these two genera is

further confirmed, but these two genera together with the third bamboo

group formed a three-clade polytomy (Figure 1) accompanied with

substantial conflicting signals (Figure S1).

In the further phylogenetic analyses, three backbone topologies

were recovered: Topology A (recovered by plastome), Topology B
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(SNP and ASTRAL-III), and Topology C (concatenated SCN and

SVDquartets). The differences among topologies show the plastid/

nuclear discordance and the gene tree/species tree incongruence. For

the incongruence between two species trees ASTRAL-III and

SVDquartets, we view the ASTRAL-III topology as more likely to be

accurate as in the SVDquartets topology, the sister relationship between

Temochloa clade and Neomicrocalamus clade is uncertain (low BS).

The cytonuclear discordance has been widely reported in

plants (Mugrabi De Kuppler et al., 2015; Scheunert and Heubl,

2017; Soltis et al., 2019), as well as in Bambusoideae (Zhang et al.,

2012; Wang et al., 2017; Guo C. et al., 2019). Our results of the

coalescent simulation suggest that ILS was at play in the speciation

of these taxa in this study, causing the cytonuclear discordance

(Stull et al., 2020). Furthermore, the D-statistic test results (Z-score

value < 3) also could not reject the existence of ILS (Eaton and Ree,

2013). The rapid evolutionary radiation and the long generation

time of woody bamboos (Janzen, 1976; Guo Z.H. et al., 2019) are

expected to maintain much of their ancestral polymorphism

implying opportunities for extensive ILS (Pease and Hahn, 2015;

Zhou Y. et al., 2017). Moreover, the hybridization/introgression

events identified in this case also could be one of the reasons for the

phylogeny incongruence (Linder and Rieseberg, 2004; Folk et al.,
B

C

A

FIGURE 2

Phylogenetic trees of three groups of climbing bamboos based on the whole plastome (A), the single-nucleotide polymorphism (SNP) (B), and the
concatenated single-copy nuclear (SCN) genes (C). Both Bayesian inference (BI) and maximum likelihood (ML) analyses were conducted for each
dataset. Numbers above and below branches indicate Bayesian inference posterior probability (PP) and bootstrap (BS), respectively. BH85,
2018VNB018, and 2018VNB040 represent the newly discovered bamboos. The red branches indicate the position of Temochloa.
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BA

FIGURE 3

Tanglegram comparing the species trees inferred in ASTRAL-III (A) and SVDquartets (B). Numbers above branches indicate bootstrap (BS). BH85,
2018VNB018, and 2018VNB040 represent the newly discovered bamboos. The red branches indicate the position of Temochloa.
B

A

FIGURE 4

(A) Plastome phylogeny inferred with maximum likelihood; numbers above branches represent clade frequencies of the simulated gene trees.
(B) Inference of gene flows; blue lines indicate hybrid edges, and numbers near blue lines are vectors of inheritance probabilities (g).
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2017). In view of the largely unequal proportion of genes

contributed by each parental lineage inferred by PhyloNetworks,

the gene flows detected here are better interpreted as introgression

(Solıś-Lemus et al., 2017). The gene flow analyses suggest that the

newly discovered bamboos originated from the introgressive

hybridization between T. liliana and N. prainii, with T. liliana

contributing 80.7% of the genome. In other words, genetically, the

newly discovered bamboos are closer to T. liliana.

The similarity between the newly discovered bamboos and

Temochloa is also indicated by another two aspects. In the

biogeography, the newly discovered bamboos share the same

distribution elevation with Temochloa 50–250 m, rarely reaching 700

m, whereas the Neomicrocalamus taxa are hitherto only found above

1,000 m (Dransfield, 2000; Li and Stapleton, 2006). This somehow

interprets why T. liliana contributed a much higher genome

component to the newly discovered bamboos, as gene flow is

expected to happen more commonly among neighboring

populations than distantly located populations (Petit and Excoffier,

2009; Zhou Y. et al., 2017). Morphologically, the newly discovered

bamboos and Temochloa have nearly circular primary branch buds and

shallowly grooved culm leaf sheaths, which are distinguished from the

lanceolate buds and plane culm leaf sheaths of Neomicrocalamus

(Dransfield, 2000; Li and Stapleton, 2006). On balance, the newly

discovered bamboos have a closer relationship with Temochloa.

The phylogenetic network would help visualize clearer

evolutionary relationships when reticulation events are involved

(Morales-Briones et al., 2018). Empirically, the bifurcating

phylogenetic tree inferred with SNP is more consistent with the

evidence from morphology conventionally used to form

classifications and genus circumscriptions for bamboos (Liu et al.,

2020; Guo et al., 2021; Liu et al., 2022). In view of the limitation of

bifurcating phylogenetic trees, the monophyletic group comprising

Temochloa and the newly discovered bamboos, recovered in the

SNP tree and ASTRAL-III species tree, seems to be the best

classification for these two groups; as aforementioned, they are

more closely related. However, overall, these three groups are

closely related phylogenetically and morphologically. Therefore,

for a more comprehensive understanding of their relationships,

more evidence from all aspects should be investigated, such as the

stamen of Temochloa, which is still unknown (Dransfield, 2000).
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