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Editorial on the Research Topic

Ecological, efficient and low-carbon cereal-legume intercropping systems
The global population will reach 9.4–10.1 billion by 2050 (United Nations, 2019). Over

the last number of decades, traditional agricultural production has met food demands by

increasing resource input. However, excessive chemical fertilizer input results in severe

environmental costs, e.g., soil acidification (Guo et al., 2010), global warming (Penuelas and

Filella, 2001), water pollution (Yu et al., 2019), and finally cropland degradation, decreasing

agricultural products and threatening human health (Han et al., 2016; Zhao et al., 2017).

Moreover, increasing global food production by expanding cropland is unsustainable for

the global ecosystem (Potapov et al., 2022). Expanding cropland also leads to the use of

more chemical fertilizers and a high risk of global warming. Global warming increases yield

losses to insect pests (Deutsch. et al., 2018), meaning more insecticide demands to

guarantee crop production and a high risk of water pollution (Stehle and Schulz, 2015).

Therefore, achieving global food security with environmentally friendly and sustainable

development approaches is a great challenge in this century.

Intercropping is defined as simultaneously cultivating two or more crops on the same

land (Willey, 1979). Intercropping is used worldwide to increase land productivity, to

efficiently use resources (Li et al., 2020b; Li et al., 2021), to better control diseases and pests

(Zhang et al., 2019; Chi et al., 2021), to suppress weeds (Gu et al., 2021), and to decrease

environmental costs (Qin et al., 2013; Chen et al., 2019). Therefore, intercropping provides

potential ways to achieve food security and sustainable agricultural development. In this

Research Topic, we received recent studies revealing the mechanisms of yield advantages

and the efficient use of resources in intercropping.

The complementary use of resources contributes to yield advantages in maize-legume

intercropping (Li et al., 2020a). Raza et al. reported that optimizing the crop planting

density maximizes the yield advantages of maize-soybean strip intercropping. Maize-
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soybean strip intercropping with a maize plant density of eight

plants per square meter obtained a higher total leaf area index and

total grain yield than other methods. The water equivalent ratios of

intercropping are greater than one, suggesting that maize-soybean

strip intercropping provides a potential way to achieve sustainable

agricultural development. The optimized intercropping spares 20–

50% of water and land. Maize-soybean intercropping with a N input

of 250 kg N ha−1 obtained yield advantages (Nasar et al.). The

underlying yield advantages include increased N use efficiency, e.g.,

N uptake efficiency and N agronomic efficiency since the N

assimilatory enzymes of intercropped maize, e.g., nitrate

reductase, nitrite reductase, and glutamate synthase, are more

robust than the monoculture.

However, the underlying mechanisms of yield advantages of

component crops in relay intercropping are different. Chen et al.

revealed the mechanism for intercropped maize over-yielding in a

low radiation area. The net yield of intercropped maize can be

increased by 2.1 Mg ha−1 via the use of dense cultivation and high N

input with plow tillage compared with normal farming practice.

The over-yielding of intercropped maize mainly derives from an

improved leaf area index (LAI) and net photosynthetic rate (Pn).

Similarly, Zheng et al. showed that straw incorporation increases

the aboveground N uptake and nitrogen recovery efficiency of

intercropped soybean by 43.7% and 76.8%, respectively,

compared with straw removal. In particular, straw incorporation

at 30 kg N ha−1 achieved the greatest aboveground N uptake and

nitrogen recovery efficiency compared with other N treatments.

Although straw incorporation remarkably promotes CO2 emission,

the accumulated CO2 emission of straw incorporation was lowest at

30 kg N ha−1.

Legumes’ performance in strip and relay intercropping differs

(Zhang et al., 2023). In relay intercropping, the recovery growth of

legumes benefits their yield advantage (Wu et al., 2021). In maize-

peanut strip intercropping, the crop planted later, e.g., peanut,

suffers from the shade of maize (Chen et al., 2020). Lu et al.

pointed out that optimizing crop configurations increases light

use and obtains yield advantages in maize-peanut strip

intercropping. Although intercropped peanut suffers from the

shade of maize, which decreases the leaf functional traits,

intercropped peanut in eight rows allows higher light energy

utilization than intercropped peanut in four or two rows.

Previous studies reported that intercropped maize with legumes

increases the usage efficiency of resources by optimizing crop root

distribution and strengthening nutrient acquisition (Chen et al.,

2017; Zheng et al., 2021; Zheng et al., 2022). Surigaoge et al. pointed

out that cereal-legume intercropping improves soil nutrient cycling.

Plant litter is decomposed more quickly in maize-peanut

intercropping than in maize-soybean intercropping. Although N

addition promotes plant litter decomposition, maize-peanut

intercropping achieved a higher decomposition rate than maize-

soybean intercropping. Moreover, a trade-off in yield advantage is

observed in maize-wheat relay strip intercropping under rainfed

conditions(Hussain et al.). N input contributes to a more robust

yield advantage by strengthening the yield advantage of
Frontiers in Plant Science 02
intercropped wheat in the border rows. Specifically, the yield

advantage of intercropped wheat in the border rows is mainly

attributed to a higher number of ears in the unit area. In contrast,

yield disadvantage is obtained in intercropped maize due to the

lower kernel number and thousand-grain weight of maize in the

border rows compared with maize alone.

The practice of intercropping is not limited to staple crops;

intercropping of vegetables or forage grass is also valuable (Stoltz and

Nadeau, 2014).Pereira et al. pointed out that vegetable intercropping

can mitigate greenhouse gas (GHG) emissions. Collard greens-spinach

and collard greens-chicory intercropping decreased GHG emissions by

31% compared with the corresponding monoculture. Tahir et al.

reported that a full mixture of legume-grass increases farmland

productivity. The mixture is beneficial in improving the soil enzyme

activity and in increasing the soil nutrient content. In return, the

improved growth of forage leads to higher levels of crude protein than

the monoculture, and the crude protein content of the mixture

increases with increasing N input.

This Research Topic confirms the potential of intercropping to

achieve food security using environmentally friendly approaches.

Advisors and farmers can refer to this knowledge to optimize their

decision-making in crop management and to improve food security

and quality.
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