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Humic acids enhance salt stress
tolerance associated with
pyrroline 5-carboxylate
synthetase gene expression and
hormonal alteration in perennial
ryegrass (Lolium perenne L.)

Qiuxia Meng1,2†, Min Yan1,2†, Jiaxing Zhang2, Qiang Zhang1,2*,
Xunzhong Zhang3*, Zhiping Yang1,2*, Yuan Luo2 and Wenli Wu1

1Key Laboratory for Soil Environment and Nutrient Resources of Shanxi Province, Shanxi Agricultural
University, Taiyuan, China, 2Institute of Eco-environment and Industrial Technology, Shanxi
Agricultural University, Taiyuan, China, 3School of Plant and Environmental Sciences, Virginia Tech,
Blacksburg, VA, United States
Humic acid (HA) has been used as an important component in biostimulant

formulations to enhance plant tolerance to salt stress, but the mechanisms

underlying are not fully understood. This study was to investigate the

physiological and molecular mechanisms of HA’s impact on salt stress

tolerance in perennial ryegrass (Lolium perenne L.). The two types of HA were

extracted from weathered coal samples collected fromWutai County (WTH) and

Jingle County (JLH) of Shanxi Province, China. The grass seedlings subjected to

salt stress (250 mM NaCl) were treated with HA solutions containing 0.01% WTH

(W/V) or 0.05% JLH (W/V), respectively. The HA treatments improved leaf

photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs)

and reduced leaf oxidative injury (lower malondialdehyde content) and Pro and

intercellular CO2 concentrations in salt-stressed perennial ryegrass. The HA

treatments also reversed the decline in antioxidative enzymes ascorbate

peroxidase (APX), catalase (CAT), peroxidase (POD), and superoxide dismutase

(SOD) activity and improved growth and anti-senescence hormones indole-3-

acetic acid (IAA) and brassinosteroid (BR). The HA treatments reduced the relative

expression of P5CS and its downstream products proline (Pro) and the stress

defense hormones abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), and

polyamines (PA). The results of this study indicate that the application of HAs may

improve salt stress tolerance by regulating P5CS gene expression related to

osmotic adjustment and increasing the activity of antioxidant enzymes and anti-

senescence hormones in perennial ryegrass.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1272987/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1272987/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1272987/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1272987/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1272987/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1272987/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1272987&domain=pdf&date_stamp=2023-12-22
mailto:xuzhang@vt.edu
mailto:sxsnkytfs@163.com
mailto:yzpsx0208@163.com
https://doi.org/10.3389/fpls.2023.1272987
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1272987
https://www.frontiersin.org/journals/plant-science


Meng et al. 10.3389/fpls.2023.1272987
1 Introduction

Soil salinity is one of the major abiotic challenges hindering

plant growth and development, which is aggravated by natural

environmental deterioration, poor irrigation practices, and climate

change (Park et al., 2016; Stavridou et al., 2017). The high

concentrations of Na+ in the soil solution of saline soil cause

hyperosmotic and hyperionic conditions that limit the absorption

of water and nutrients in plant (Gong, 2021). Water deficiency and

nutritional imbalance induce osmotic and ionic stresses and thus

lead to various physiological and molecular changes, including

suppression of photosynthetic capacity, overaccumulation of

reactive oxygen species (ROS), impairment of antioxidant defense

systems, and endogenous hormone disturbance, which

subsequently impedes the growth and development of the plant

(Zhu, 2002; Kim et al., 2016; van Zelm et al., 2020).

As sessile organisms, plants must develop physiological and

biochemical mechanisms to survive high levels of salinity in the soil,

including regulation of photosynthesis, production of

osmoprotectants and compatible solutes, activation of antioxidant

enzymes, synthesis of polyamines, and modulation of hormones

(Gupta and Huang, 2014; Zahra et al., 2022). High levels of salinity

impact many cellular processes including photosynthesis. Salt-

stressed leaves have a lower stomatal index and pore area than

unstressed leaves, leading to changes in stomatal conductance (Gs),

intracellular CO2 concentration (Ci), and transpiration rate (Tr)

(Volpe et al., 2011; Zahra et al., 2022). When exposed to salt stress,

reduction of the photosynthetic rate, Gs, and leaf chlorophyll (Chl)

content was observed in rye grass (Wu et al., 2017).

In many cases, the greater accumulation of osmolytes such as

proline (Pro), sucrose, and glycine betaine was observed in salt-

stress-tolerant plants, which acts as a mechanism of adaption to

osmotic changes that occurred during salinity stress (Soltabayeva

et al., 2021). Salt stress increased the Pro concentration in different

parts of plants (Wang et al., 2015). In vascular plants, the first two

reactions of Pro biosynthesis are regulated by delta 1-pyrroline-5-

carboxylate synthetase (P5CS) (Hu et al., 1992), which is a rate-

limiting enzyme in Pro synthesis (Liu and Zhu, 1997). The P5CS

gene has been isolated from many plants including perennial

ryegrass (Silva-Ortega et al., 2008; AbdElgawad et al., 2015), and

the correlation between the upregulation of P5CS gene and the

accumulation of Pro and thus the enhanced oxidative stress

tolerance under drought or salt stress has been extensively studied

(Hu et al., 2011; Rai and Penna, 2013; AbdElgawad et al., 2015). In

perennial ryegrass, P5CS responds to stress signals involving salt,

drought, cold, and ABA (AbdElgawad et al., 2015) and is a useful

molecular marker for Pro biosynthesis in the regulation of salinity

stress tolerance. The elevated concentrations of cytosolic Ca2+ and

ROS induced by salt stress lead to the expression of antioxidant

enzymes including catalase (CAT), peroxidase (POD), ascorbate

peroxidase (APX), and superoxide dismutase (SOD) in plants to

maintain ROS homeostasis of the cell (Hanin et al., 2016). In salt-

stressed perennial ryegrass, the upregulated levels and expressions

of related genes of catalase (CAT), peroxidase (POD), ascorbate

peroxidase (APX), and glutathione peroxidase (GPX) are recorded,

indicating that these antioxidant enzymes play an important role in
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scavenging ROS (Hu et al., 2011; Hu et al., 2012a). The content of

malondialdehyde (MDA), which represents cell membrane lipid

peroxidation, is also raised to eliminate excessive ROS (Zhao et al.,

2020). An elevated MDA level was also recorded in perennial rye

grass when subjected to salt stress (Wu et al., 2017).

A large body of literature shows that the exposure to salt stress

causes changes in levels of stress response hormones abscisic acid

(ABA), salicylic acid (SA), and jasmonic acid (JA) as well as growth

promotion hormones indole-3-acetic acid (IAA), gibberellins

(GAs), and cytokinins (CKs) in plants. ABA plays an

indispensable role in salt stress tolerance. The expression of ABA-

responsive genes and ABA accumulation have been reported in a

range of plants, including ryegrass, rice, Arabidopsis, tomato, and

grape (Fang et al., 2017; Wu et al., 2017; Marusig and Tombesi,

2020; Huang et al., 2021; Martıńez-Andújar et al., 2021). Salt stress

triggers the SA signaling in plants (Jayakannan et al., 2015), and SA

prevents cell damage from free radicals and promote intracellular

redox homeostasis by lowering levels of ROS when plants sense

environmental stresses (Filgueiras et al., 2019). JA modulates the

growth, development, secondary metabolism, and tolerance of

plants to abiotic stresses (Wasternack and Song, 2017), whose

levels are elevated, and JA signaling is activated under salt stress

(Zhao et al., 2014; Valenzuela et al., 2016). The levels of endogenous

IAA and GA are inhibited in plants including walnut and maize

when exposed to salt stress (Ali et al., 2022b; Ji et al., 2022). The CKs

are generally a negative regulator of the response to salt stress

(Cortleven et al., 2019), the concentrations of which are reduced in

the salt-stressed plant (Nishiyama et al., 2011). Excessive uptake of

Na+ and decreased uptake of K+, Mg2+, and Ca2+ lead to Na+

toxicity and trigger the accumulation of organic osmoprotectants

including Pro to offset cellular imbalances caused by salt stress (Kim

et al., 2016). Polyamines (PAs) are low molecular organic cations

that are ubiquitous in plants and are involved in various

physiological events such as development and senescence. The

accumulation of polyamines is also associated with plant

tolerance to a wide range of environmental stresses (Alcázar

et al., 2006).

Perennial ryegrass (Lolium perenne L.) is the most widely grown

perennial gramineous forage grass in temperate regions. Its

agricultural and ecological values lie in its rapid establishment,

long growing season, high yield, grazing tolerance, high palatability,

and high digestibility for ruminant animals (Byrne et al., 2015). Due

to its wide distribution, perennial ryegrass is liable to abiotic stresses

such as high salinity, drought, and extreme temperatures.

Therefore, looking for ways of defense against the abiotic stresses

is particularly important in perennial ryegrass growth and

management. In addition to making use of endogenous salt

tolerance mechanisms of plants, such as screening and breeding

of salt-tolerant varieties or introduction of salt tolerance-related

genes by genetic engineering, researchers also seek ways of using

exogeneous ameliorants to help plants adapt to the salt stress in the

environment. Many exogeneous agents have been found to be able

to mitigate the damage caused by salt stress in plants, including

biostimulants, osmoprotectants, minerals, hormones, and

antioxidants (Rehman et al., 2014; Yin et al., 2019; Yang et al.,

2022). Especially, Hu et al. found that glycine betaine (GB)
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enhanced salt tolerance in perennial ryegrass by enhancing the

activity of SOD, CAT, and APX and alleviating cell membrane

damage by reducing oxidation of membrane lipid and improving

the ion homeostasis under salt stress (Hu et al., 2012b).

Applied as a fertilizer for a long history, HA is abundant in soil,

peat, or weathered coal and derives from the decay of organic

materials (Krumins et al., 2017; Zulfiqar et al., 2020). HA displays

positive effects not only on soil fertility but also on development and

stress tolerance of plants and acts as a biostimulant (Cha et al., 2021;

Othibeng et al., 2021). The past decade has witnessed the increasing

study of HA’s role as a biostimulant in plants. HA is reported to

promote seed germination, lateral root development, and salt stress

tolerance in Arabidopsis via post-transcriptional control of a sodium

influx transporter HIGH-AFFINITY K+ TRANSPORTER 1 (HKT1)

gene under salt stress (Khaleda et al., 2017). HA was found to increase

vegetative growth, salt tolerance, and nutrient uptake through ionic

homeostasis and activation of antioxidant enzymes in salt-tolerant and

salt-sensitive wheat (Triticum aestivum), pepper (Capsicum annuum),

and sorghum (Sorghum bicolor) (Yildiztekin et al., 2018; Abbas et al.,

2022; Ali et al., 2022a). HA as a biostimulant promotes the growth of

seedlings in both shoots and roots as well as regrowth after cutting an

Italian ryegrass (Lolium multiflorum) (Laila et al., 2017). However, its

alleviation of the adverse effects on perennial ryegrass posed by salt

stress and the underlying physiological and molecular mechanisms

remain largely untapped. This study addresses this discrepancy by

exploring the ameliorating effects of HA derived from weathered coal

of different origins on photosynthesis, membrane damage,

osmoprotectant, oxidative enzyme activity, phytohormones, and

relative expression of P5CS, a key enzyme in Pro biosynthesis, thus

offering some insights into the physiological and molecular

explanations for the enhanced salinity tolerance of perennial

ryegrass induced by HA.
2 Materials and methods

2.1 Weathered coal material and
extraction of HA

2.1.1 Material collection
The weathered coal samples were collected respectively from

coal mines of Jingle County and Wutai County, Shanxi Province.

All the weathered coal samples were pulverized into powder and

stored at 4°C for further experiments.

2.1.2 Activation and extraction of weathered coal
The weathered coal samples were activated before extraction for

higher HA yield, as described by Hou (Hou et al., 2022). Specifically,

for the sample fromWutai, 100.0 g sample was mixed with 20.0 g of

(NH4)2HPO4, the activating agent, and 100 mL of deionized H2O

and heated at 50°C for 30 min in a water bath, and then kept in a

ventilated dryer at 50°C until dryness. The activated and dried

weathered coal was extracted with 1.5% (W/V) KOH at 50°C for

45 min. For weathered coal samples from Jingle, the activation

process involved the incubation of 100.0 g sample with 7.3 g (NH4)
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2HPO4, 16.0 g NH4HCO3, and 100 mL deionized H2O at 50°C for

30 min a water bath, and then kept in a ventilated dryer at 50°C

until dryness. The activated and dried weathered coal was extracted

with 2.0% (W/V) KOH at 40°C for 30 min.

2.1.3 Purification of HA
The abovementioned extracts of HA were subjected to further

purification. Briefly, the pH value of the extract was adjusted to 7.00

with diluted HCl solution before centrifugation at 10,000 rpm. The

supernatant was collected, and the pH value was adjusted to 1.00

with concentrated hydrochloric acid before undergoing

centrifugation at 10,000 rpm again. The residue was collected,

dissolved into 0.10 mol L−1 NaOH solution, and transferred into

a 10,000-Da dialysis bag and dialyzed with running water for 24 h.

The resulted solution was freeze-dried to obtain weathered coal-

derived HAs from Wutai (WTH) and Jingle (JLH), respectively.
2.2 Plant material and growth conditions

Seeds of perennial ryegrass (cv. ‘Esquire’) were purchased from

Huimei Turf Seeds (Xuzhou, Jiangsu, China). The cultivar has a

moderate salt stress tolerance, and its height was inhibited by 20% at

50 mM NaCl and brown leaves appeared at 400 mM NaCl

according to our preliminary experiments. Seeds of ryegrass were

sown at a rate of 30 g m−2 pure live seeds in plastic pots (32.3-cm

upper diameter, 27.5-cm lower diameter, 23.0-cm height) filled with

the growing substrate consisting of soil and humus (2:1, W/W) on

17/07/2022. The soil used was the topsoil collected from the

Dongyang Experimental Base of Shanxi Agricultural University.

The physiochemical parameters of the growing substrate used were

pH value 6.46, electricity conductivity 130.95 ms cm−1, organic

matter 14.03 g kg−1, total nitrogen 1.38 g kg−1, available potassium

(K2O) 133.03 mg kg−1, and nitrate nitrogen 1.10 mg kg−1. All pots

were placed in a climate-controlled greenhouse with a constant

temperature of 21.0°C ± 0.5 (day/night), relative humidity of 70 ±

8%, a 14-h photoperiod, and a photosynthetically active radiation of

450 ± 11 mmol m−2 s−1. The grass was fertilized at 1.5 g m−2 nitrogen

from 28-8-18 complete fertilizer with micronutrients biweekly. The

grass was irrigated by hand until water drained from bottom of the

pots, three times per week.
2.3 Treatments and sampling

Once emerged, the ryegrass plants were allowed to grow for 15

days before exposure to four treatments as follows: (1) control:

normal water; (2) salt stress: 250 mM NaCl; (3) salt stress (250 mM

NaCl) plus 0.01% (W/V) WTH; and (4) salt stress (250 mM NaCl)

plus 0.05% (W/V) JLH. The salt stress was created by irrigation of

salt solution in aliquots of 200 mL with gradually increasing

concentrations of 50 mM every 12 h until the concentration of

250 mM was attained within 48 h after initiation and maintained

concentrations by measuring the conductivity of the growth media

(Shavrukov et al., 2012). 15 hours after 250 mM NaCl was reached,
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an aliquot of 300 mL of 0.01% (W/V) WTH solution or 0.05% (W/

V) JLH solution was irrigated into the growing substrate,

respectively. The concentration of salt stress used (250 mM) was

based on our preliminary experiments, at which the height of the

tested ryegrass cultivar was inhibited by around 50% (data not

shown). The concentration of WTH and JLH was used based on our

preliminary screening study.

Physiological parameters of photosynthesis were measured at 0,

7, 14, 21, 28, and 35 days after the initiation of salt treatment. Fully

expanded leaves were collected at 0, 7, 14, 21, 28, and 35 days after

the initiation of salt treatment, and a portion of each sample was

stored at −80°C for analysis of activity of antioxidant enzymes,

contents of Pro and MDA, and phytohormone and

P5CS expression.
2.4 Measurements

2.4.1 Growth rate
At the end of the experimental period (35 days), the height of

ryegrass was measured from the soil surface to the top of the highest

leaf blade and the average value of five replicates calculated, and the

vertical shoot growth rate (VSGR) was calculated according to the

method described by Hu (Hu et al., 2012b). The shoot and root of

the plants were harvested and then separated, and the dry weights

were measured to obtain the biomass after drying at 105°C for

30 min and then at 70°C for 48 h, and the root-to-shoot ratio (R/S

ratio) was calculated.

2.4.2 Photosynthetic capacity
Leaf net photosynthetic rate (Pn), Gs, Ci, and Tr were measured

using a portable photosynthetic system (LI-6400XT, Licor

Corporation, Lincoln, Nebraska, USA). Four uniform leaf blades

were sampled from each pot and placed in the gas chamber for

measurement with settings of temperature at 23°C–25°C, relative

humidity at 60%–70%, CO2 concentration at 385 ppm, and PAR at

800 µmol m−2 s−1. Three plants were selected in each treatment, and

the leaf at the middle or upper part of each plant was measured. A

total of 10 readings from each sample were recorded and averaged

for statistical analysis.

2.4.3 Membrane damage and Pro content
Leaf contents of malondialdehyde (MDA) and Pro were

measured following the method of Wu (Wu et al., 2017) with

minor modifications. For MDA, leaf samples (50 mg) were

homogenized in 1.8 mL of 10% trichloroacetic acid (TCA) and

centrifuged at 12,000g for 20 min. Then, 1 mL of 0.6%

thiobarbituric acid (TBA) in 10% TCA was added to 1 mL

supernatant. The mixture was heated in a 95°C water bath for

30 min and then quickly cooled in an ice bath. After centrifugation

at 10,000g for 10 min, the absorbance of supernatant was read at 532

and 600 nm. Non-specific absorbance at 600 nm was subtracted

from that at 532 nm. The MDA concentration was calculated using

the adjusted absorbance and MDA’s extinction coefficient of 155

mM−1 cm−1. For Pro, leaf samples (50 mg) were homogenized with
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1.8 mL of 3% sulfosalicylic acid and boiled at 100°C for 10 min.

After centrifugation at 12,000g for 10 min, 1 mL supernatant was

mixed with 1 mL acetic acid and 1 mL acidic ninhydrin and heated

at 100°C for 40 min, the reaction mixture was extracted with 2 mL

toluene after cooling, and the absorbance was read at 520 nm and

calculated as micromoles per gram FW against standard Pro.

2.4.4 Leaf antioxidant enzyme activity
The enzyme extract was prepared as described by Wu (Wu

et al., 2017). Namely, frozen leaf samples (100 mg) were

homogenized in liquid N2 and extracted in 1.8 mL of ice-cold 50

mmol sodium phosphate buffer (pH 7.0) containing 0.2 mM EDTA

and 1% polyvinylpyrrolidone (PVP) in an ice-water bath. The

homogenate was centrifuged at 12,000g for 20 min at 4°C, and

the supernatant was used for the testing of antioxidant enzyme

activity. Activities of APX, CAT, and SOD were tested using

methods described by Wu (Wu et al., 2017). For APX, the

reaction solution (1 mL) contained 50 mM PBS (pH 7.0), 0.5 mM

ascorbate, 0.1 mM EDTA, and 100 µL enzyme extract. The reaction

was started with addition of 10 µL of 10 mM H2O2, and the

absorbance of the reaction solution was determined at 290 nm

after 1 min (ϵ = 2.8 mM−1 cm−1). For CAT, the reaction solution (1

mL) contained 50 mM PBS (pH 7.0), 15 mM H2O2, and 30 µL of

extract. The reaction was initiated by adding the enzyme extract,

and the changes in absorbance were recorded at 240 nm in 1 min (ϵ
= 39.4 M−1·cm−1). For SOD, the reaction solution (1 mL) contained

50 mM PBS (pH 7.8), 0.1 mM EDTA, 13 mM methionine, 65 µM

NBT, 1.3 µM riboflavin, and 30 µL enzyme extract. Test tubes were

irradiated under fluorescent lights 60 µmol·m−2·s−1 at 25°C for

10 min. The absorbance of the reaction solution was measured at

560 nm. A solution in the absence of enzyme extract was used as the

control, and one unit of enzyme activity was defined as the amount

of enzyme that would inhibit 50% of NBT photoreduction. Activity

of POD was determined as described by Ponce et al. (2004). The

reaction solution contained 2.8 mL of 100 mM potassium

phosphate (pH 6.0), 1 mL of 0.1 mM guaiacol, and 1 mL of 50

mM H2O2. The reaction solution was incubated in a 45°C water

bath for 3 min before the addition of 200 µL enzyme extract. The

absorbance at 470 nm was performed at 30 s intervals for 5 readings.

The reaction solution containing the enzyme extract inactivated in a

boiling water bath for 5 min was used as control. The unit of POD

activity was expressed as a change of 0.001 in the absorbance

per minute.

2.4.5 Endogenous phytohormones
The contents of endogenous phytohormones were determined

in a CMax Plus Molecular Devices (California, USA) using enzyme-

linked immunosorbent assay (ELISA). Briefly, fresh leaf samples of

different treatments collected (0.2 g) on treatment days of 0, 7, 14,

21, 28, and 35 were ground in liquid nitrogen and then mixed with

1.8 mL of phosphate-buffered saline (PBS, pH 7.4) before

centrifugation at 12,000g for 20 min. Subsequently, the contents

of ABA, IAA, PA, JA, SA, and BR were measured using their

corresponding Elisa Kits (Shanghai Enzyme-linked Biotechnology

Co., Ltd., Shanghai, China). For all results, three technical replicates
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were performed, and all data represent the mean with standard

deviations (n = 3).

2.4.6 Relative expression of P5CS
Total RNA was extracted from the leaves of different treatments

using TRIzol reagent (Invitrogen) and treated with DNase I

(Invitrogen), reverse-transcribed using SuperScript™ RNase H-

Reverse Transcriptase (Invitrogen) before real-time PCR analysis

using gene-specific primers. The gene-specific primers are listed in

Table S1. PCR amplification was performed with an initial step at

95°C for 1 min followed by 45 cycles of 5 s at 95°C, 10 s at 60°C, and

30 s at 72°C. Amplification of the target gene was monitored using

SYBR Green in every cycle. Amplifications of actin 2 messenger

RNA were used as an internal quantitative control (Zang et al.,

2010). The relative expression of the target genes was calculated

using the 2−DDCt method (Livak and Schmittgen, 2001). The PCR

system was optimized to ensure that the amplification efficiencies of

the target and reference gene were approximately equal.
2.4.7 Experimental design and statistical analysis
Statistical analysis of the data was performed using the SPSS

20.0 statistical program (SPSS, Chicago, IL, USA). Figures were

plotted using the OriginPro 2022 (v.9.9.0) software. The

measurements of parameters were presented by mean values of

three or five replicates in each treatment along with standard error.

Mean values of different treatments were compared using Duncan’s

significant difference test at P < 0.05. Correlation between the

different parameters was investigated using R package “corrplot”

by Taiyun Wei and Viliam Simko (2021) (Visualization of a

Correlation Matrix, Version 0.92) available from https://

github.com/taiyun/corrplot.
3 Results

3.1 Vertical shoot growth rate and biomass

Salt stress decreased the shoot height and VSGR of perennial

ryegrass by 32.79% relative to the non-stressed control (Table 1).

The inhibition of saline stress on shoot height and VSGR of ryegrass

treated with WTH and JLH was alleviated. A greater alleviating

effect was observed in the JLH treatment. As shown in Table 1, DW
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of both shoot and root in the salt treatment alone was decreased

when compared with the control. JLH ameliorated the decline, and

the DW of both shoot and root was lifted to similar levels of that of

control. WTH showed a less strong alleviating effect, but the DW of

both shoot and root was also increased to a level significantly higher

than that of the salt-stressed treatment. Salt stress also depressed

ryegrass’s R/S ratio, which was 24.42% lower than that of non-

stressed control, whereas WTH and JLH effectively lifted the R/S

ratio back to that of the non-stressed control.
3.2 Photosynthetic capacity

Pn, Gs, Ci, and Tr were measured after treated with humid acids

extracted from weathered coal of different origins (Figure 1). Salt stress

reduced Pn by 39.7%–55.0% when compared with the control as

measured from day 7 to day 35, whereas Pn was increased by18.2%–

78.0% and 34.8%–72.8%, respectively, in the presence of WTH or JLH

relative to the control even the plants underwent salt stress (P < 0.05).

Salt stress suppressed leaf Gs by 25.40%–82.74% when compared with

the control under salt stress (P < 0.05) as observed from day 7 to day 35.

Application of WTH alleviated the reduction of Gs from day 21 to day

35 (P < 0.05), and application of JLH ameliorated Gs decline as

measured from day 7 to day 28 (P < 0.05). The Ci in the leaf was

slightly increased as observed at days 7,14, and 35 (P > 0.05), whereas it

significantly increased on days 21 and 28 under salt stress (P < 0.05).

The WTH treatment decreased the accumulation of Ci from day 14 to

day 28 (P < 0.05), and JLH decreased Ci on days 21 and 28 (P < 0.05).

The leaf Tr was depressed by 9.38%–53.01% from day 7 to day 35

under salt stress when compared with the control, whereas the WTH

and JLH application alleviated the decline of Tr and pushed it up to

similar levels of those of the control on day 7 (P > 0.05) and even higher

from days 14 to 35 (P < 0.05).
3.3 MDA and Pro

Salt stress elevated the MDA content by 82.1%–158.3% as

measured from day 7 to day 35 when compared with control,

whereas WTH or JLH treatment suppressed the MDA level (P <

0.05) induced by salt stress, although not to the same levels of those

of the controls (Figure 2). With time, the MDA content was abated

to a higher degree and dropped to the level of those of the controls
TABLE 1 Effect of HAs derived from weathered coal of different origins on vertical shoot growth rate (VSGR) and biomass of perennial ryegrass under
salt-stressed conditions.

Treatment Height (cm) VSGR (cm/d)
Biomass (mg, DW)

R/S ratio
Shoot Root

Control 42.50 ± 2.10Aa 0.85 ± 0.04Aa 38.4 ± 2.7Aa 14.2 ± 0.8Aa 0.371 ± 0.028a

Salt 28.56 ± 2.87Cc 0.57 ± 0.06Cc 16.6 ± 1.1Cc 4.6 ± 0.9Cc 0.280 ± 0.072b

Salt+WTH 34.82 ± 1.90Bb 0.70 ± 0.04Bb 31.2 ± 1.5Bb 10.8 ± 1.3Bb 0.346 ± 0.032a

Salt+JLH 39.02 ± 1.37Aa 0.78 ± 0.03Aa 37.6 ± 1.7Aa 12.4 ± 1.1Aa 0.330 ± 0.034ab
Data are expressed as mean of five replicates ± SD (n = 5). In the same column, values that do not share the same uppercase letter are significant at P = 0.01 and values that do not share the same
lowercase letter are significant at P = 0.05 using LSD and Duncan’s tests.
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(P > 0.05) in the ryegrass treated with WTH or JLH as observed on

day 21, and this trend lasted to the end of the trial. Generally, the

MDA-lowering effect of WTH was stronger than that of JLH.

Meanwhile, the content of Pro in ryegrass subjected to salt stress

increased 1.25- to 3.30-fold as measured from day 7 to day 35 and

peaked on day 21. Meanwhile, the HA treatments effectively

reversed this trend. Under salt stress, the Pro content in ryegrass

treated withWTH gradually deceased by 20.43% on day 7 to 68.82%
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on day 28 when compared with the salt-stressed control and

reached the level of that of the non-stressed control. The Pro

content increased 1.49-fold on day 35 relative to the non-stressed

control but still significantly lower than that of the salt-stressed

control. By contrast, the Pro content in ryegrass treated with JLH

was abated to the level of the non-stressed control on day 7 and day

14 and then gradually increased by 81.85%–122.52% as observed

from day 21 to day 35 when compared with the control.
B

C D

A

FIGURE 1

Effects of weathered coal-derived HAs from Wutai (WTH) and Jingle (JLH) on leaf photosynthetic rate (Pn, A), stomatal conductance (Gs, B),
intercellular carbon dioxide concentration (Ci, C) and transpiration rate (Tr, D) of perennial ryegrass under salt stress. Results are mean and SD.
Treatments with the same letters for each sampling date are not significantly different at P = 0.05.
BA

FIGURE 2

Effects of weathered coal-derived HAs from Wutai (WTH) and Jingle (JLH) on leaf contents of malondialdehyde (MDA, A) and Pro (B) of perennial
ryegrass under salt stress. Results are mean and SD. Treatments with same letters for each sampling date are not significantly different at P = 0.05.
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3.4 Antioxidative enzymes

The APX activity experienced a slight rise on day 7 when

exposed to stress and then started to decrease on day 14 and

reached its valley on day 21 and remained at a low level till the

end of the test period and was kept at a significantly lower level than

that of control (Figure 3). On day 14, JLH increased the APX

activity to similar levels of non-stressed control (P < 0.05), but

WTH did not. Both WTH and JLH showed a significantly

promoting effect of APX activity from day 21 to day 35 (P < 0.05)

relative to the salt-stressed control (P < 0.05).

Similar to APX, the activity of CAT exhibited a significant rise

on days 7 and 14 upon the exertion of salt stress and then was kept

at lower levels when compared with the non-stressed control on day

21 to day 35 (P < 0.05). Both WTH and JLH treatments elevated the

CAT activity from day 21 to day 35.

The POD activity was remarkably decreased from day 7 to day

28 when subjected to salt stress. The WTH and JLH treatments

alleviated POD activity decline. The POD activity-recovering effect

of JLH appeared earlier and slightly stronger from day 7 to day 21,

and on day 28 and day 35, JLH caught up and raised POD to a level

significantly higher than that of the salted-stress treatment (P >

0.05). By contrast, the POD activity-elevating effect of WTH was

attenuated on day 28 and day 35.

The SOD activity in ryegrass under salt stress was abated

slightly on day 7 (P > 0.05), and the difference became significant
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from day 14 to day 35 when compared with the non-stressed

control (P < 0.05). Meanwhile, WTH or JLH treatment reversed

the inhibition of SOD activity induced by salt stress and increased

the SOD activity when compared with that of the stressed level (P <

0.05), although not to levels as that of the non-stressed control. The

alleviated effect of JLH was slightly stronger than that of WTH, but

the difference was generally not significant (P > 0.05).
3.5 Phytohormones

As shown in Figure 4, the concentration of ABA in ryegrass was

elevated as observed on day 7 of salt stress (P > 0.05) when

compared with the non-stressed control, and this ascendance

trend persisted through the next 4 weeks. Meanwhile, the ABA

concentration in the ryegrass treated with WTH or JLH was

lowered even in the presence of salt stress, which was reduced to

similar levels to those of the control, especially in the treatment of

salt+JLH (P < 0.05).

Salt stress led to a decrease in IAA concentration of ryegrass leaf

tissues. On day 7 after salt stress, the IAA concentration in salt-

stressed ryegrass was slightly reduced while in HA treatments it was

being lifted slightly, but not to the same level as that of the control.

On day 14, the IAA concentration in both two HA treatments was

brought down to a lower level than those of the control (P < 0.05)

and the salt-stressed treatment (P > 0.05). In the last 3 weeks, the
B

C D

A

FIGURE 3

Effects of weathered coal-derived HAs from Wutai (WTH) and Jingle (JLH) on activity of ascorbate peroxidase (APX, A), catalase (CAT, B), peroxidase
(POD, C), and superoxide dismutase (SOD, D) in perennial ryegrass leaf under salt stress. Results are mean and SD. Treatments with same letters for
each sampling date are not significantly different at P = 0.05.
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IAA concentration in the ryegrass treated with JLH was lifted to the

same levels as those of the control. By contrast, the IAA

concentration in the ryegrass treated with WTH was significantly

abated when compared with the control and the salt-

stressed treatment.

Salt stress resulted in an increase in BR concentration of

ryegrass when compared with control as measured from day 14

day to day 35 (P < 0.05). The BR concentration in salt-stressed

ryegrass treated withWTH was abated in the first 2 weeks (P < 0.05)

and then increased dramatically in the next 3 weeks and reached to

the same level of that of the salt-stressed treatment eventually (P <

0.05). The BR concentration in salt-stressed ryegrass treated with

JLH remained at the same level as that of the non-stressed control

(P > 0.05) and then dropped to significantly lower levels from day

14 to day 35 as compared with the control (P < 0.05).
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The concentration of JA in ryegrass showed a general trend of

increase when subjected to salt stress, and the ascendance was

significant when compared with control on day 21 and day 28 (P <

0.05). However, the JA concentration in salt-stressed ryegrass was

lowered when treated with HAs. The WTH showed a stable, long,

and significant inhibiting effect on JA concentration through the

tested period (P < 0.05). By contrast, the JA-lowering effect of JLH

was weaker and the difference was significant only from day 14 to

day 28 (P < 0.05), and the JA concentration was lifted to a level

similar to that of control and salt-stressed treatment (P > 0.05).

Similar to JA, the concentration of PA in ryegrass showed a

general trend of increase when subjected to salt stress, which gently

declined in the non-stressed control. Meanwhile, the PA

concentration in salt-stressed ryegrass was subdued to a large

extent when treated with HAs. Especially in the JLH treatment,
B
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FIGURE 4

Effects of weathered coal-derived HAs from Wutai (WTH) and Jingle (JLH) on level of endogenous phytohormone abscisic acid (ABA, A)), indole-3-
acetic acid (IAA, B), brassinosteroid (BR, C), jasmonic acid (JA, D)), polyamines (PA, E)), and salicylic acid (SA, F)) in perennial ryegrass leaf under salt
stress. Results are mean and SD. Treatments with same letters for each sampling date are not significantly different at P = 0.05.
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the PA concentration was decreased by 12.55%–16.35% through the

tested period.

When subjected to salt stress, the concentration of SA in

ryegrass increased steadily and peaked on day 21, whereas the SA

concentration in salt-stressed ryegrass was suppressed when treated

with HAs. The SA concentration in the JLH treatment was lowered

to a similar level as that of the non-stressed control from day 7 to

day 28 (P > 0.05) and to a significantly lower level than that of the

control on day 35 (P < 0.05). The SA concentration in the WTH

treatment was significantly suppressed from day 7 to day 35 and

reached the trough on day 21 before slight turning up.
3.6 Relative expression of P5CS

The relative expression of P5CS in ryegrass was analyzed with

qRT-PCR and shown in Figure 5. It was hoisted by 21.16% (day 7)–

42.97% (day 28) when subjected to salt stress relative to the non-

stressed control (P < 0.01). This trend was converted in HA

treatments. In the WTH and JLH treatments, although the P5CS

expression was not significantly inhibited to the level of non-

stressed control on day 7 (P > 0.01), it was suppressed to a

significantly lower level than that of the salt-stressed treatment (P

> 0.01) and decreased to the non-stressed control levels from day 14

to day 21 (P < 0.01), even in the presence of salinity. The P5CS

expression in the WTH treatment rose to a significantly higher level

than that of the control on day 28 (P < 0.01) and reached its peak on
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day 35, which was still significantly lowered compared with that of

the salt-stressed treatment (P < 0.01). Meanwhile, the P5CS

expression in the JLH treatment reached its peak on day 28

before undergoing a slight decrease on day 35.
3.7 Correlations of different parameters

Correlations between different parameters were investigated

and are plotted in Figure 6. A significant positive correlation was

found of Pro and P5CS, IAA and height, IAA and biomass, height

and biomass, height and Pn, biomass and Pn, MDA and ABA, PA

and JA, PA and SA, PA and BR, JA and SA, JA an Ci, Pn and Tr,

POD and SOD, CAT and APX, and APX and SOD. Meanwhile, a

significant negative correlation was found between Pro and Gs, Pro

and POD, Pro and APX, Pro and SOD, P5CS and POD, P5CS and

APX, P5CS and SDO, IAA and ABA, height and ABA, biomass and

ABA, MDA and Tr, MDA and Gs, MDA and POD, PA and Pn, SA

and Tr, and SA and Gs.
4 Discussion

A large amount of evidence suggests that HA acts as a

biostimulatant in abiotic stress response of plants. HA-mediated

improvement of salt tolerance has been observed in Arabidopsis,

maize, wheat, pepper, forage sorghum, and Italian ryegrass
FIGURE 5

Effects of weathered coal-derived HAs from Wutai (WTH) and Jingle (JLH) on relative expression of P5CS in perennial ryegrass leaf under salt stress.
Results are mean and SD. Treatments with same letters for each sampling date are not significantly different at P = 0.01.
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(Khaleda et al., 2017; Yildiztekin et al., 2018; Cha et al., 2021;

Othibeng et al., 2021; Abbas et al., 2022; Ali et al., 2022a). The

reduction in height and biomass under salinity stress under was

observed in a series of plants (Soltabayeva et al., 2021). In the

present study, the biomass of perennial ryegrass was reduced to

63.88% of that of the control, which was similar to a previous report

(Tang et al., 2013). Inhibition of VSGR and biomass by salt stress

was probably due to inadequate uptake of water and essential

nutrients, and surplus generation of toxic intermediate

compounds such as ROS (Rodrıǵuez et al., 2004). Under salt

stress, VSGR and biomass of ryegrass in HA treatments were

higher than those treatments in absence of HA, suggesting that

HA could ameliorate the inhibition of saline stress on the growth of

perennial ryegrass. Correlation analysis indicated that HA might

reverse the adverse effect of salt stress on height and biomass growth

of perennial ryegrass by accumulation of IAA, suppression of ABA,

and recovery of Pn.

Salt-induced reduction in Pn is closely related to reduction in Gs

and Tr and increase of Ci. In addition to atmospheric CO2 influx

through stomata, photosynthetic efficiency depends on Gs, namely, the

transport of CO2 from sub-stomatal air spaces (mesophyll

conductance) to the carboxylation sites in chloroplast stroma. Gs

limitation is responsible for the change in intracellular CO2 under
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salinity stress (Volpe et al., 2011). Lower Gs and Tr in salt-stressed

viburnum and bottlebrush relative to control plants were also reported

(Carillo et al., 2020). In this work, the inhibition of Gs and increase of

Ci were observed in salt-stressed perennial ryegrass, indicating the

accumulation of intercellular CO2 concentration and reduction of

intracellular CO2 influx which eventually resulted in an abated

photosynthetic efficiency. The application of WTH and JLH

effectively reversed the reduced Gs and increased Ci in ryegrass

exposed to salt stress. These findings suggest that HA is able to

reverse the Gs limitation caused by salt stress and maintain a stable

photosynthetic efficiency in perennial ryegrass. Correlation analysis

showed that HA might recover the suppressing effect of salt stress on

Pn by raising Tr and Gs. Tr has been considered as an indicator of toxic

effects in salinity-stressed plants, particularly because it is related to

CO2 uptake for photosynthesis and water status of the plant (Harris

et al., 2010; Barbieri et al., 2012). Our results showed that WTH and

JLH increased Tr in ryegrass plants under saline conditions. As shown

in the correlation map, Tr was significantly related to Gs. These

indicate that WTH and JLH were able to enhance Gs and then the

water flow from roots to shoots and eventually increase the CO2 uptake

and transpiration rate under salinity stress (Jangra et al., 2022).

The accumulation of compatible osmolytes such as Pro in

plants is one of the remarkable indices relevant to the defense
FIGURE 6

The correlation map of every single parameter. * and ** represent significant correlations at 0.05 and 0.01 levels, respectively.
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against the Na+ toxicity caused by salt stress (Kim et al., 2016). The

rise of Pro content was recorded in the salt-stressed perennial

ryegrass in the present work. Higher contents of Pro resulting

from the application of other exogeneous biostimulants including

trinexapac-ethyl, ABA, Pro, or GB under drought or salinity has

been found in perennial ryegrass and Thai aromatic rice (Nounjan

et al., 2012; Sheikh Mohammadi et al., 2017). However, our results

showed that HA decreased the level of Pro accumulation in

perennial ryegrass when compared with the salt-stressed control,

suggesting that HA could mitigate the Na+ toxicity induced under

salinity stress and thus reduce the accumulation of compatible

osmolytes/osmoprotectant. This is similar to the previous studies of

exogenous 24-epibrassinolide and GB on perennial ryegrass (Hu

et al., 2012b; Wu et al., 2017) and indicates that Pro accumulation in

perennial ryegrass under salinity stress is not a cause of tolerance

but a metabolic response to salt stress.

In this work, MDA content in perennial ryegrass was

dramatically lifted under salinity stress, suggesting cell membrane

lipid peroxidation in the plant. Meanwhile, lower MDA contents

were recorded in the salt-stressed perennial ryegrass after the

application of HA, indicating that HA lowered the level of

oxidative damage caused by salinity stress and helped maintain

the stability of cell membrane lipids (Jan et al., 2017).

Reactive oxygen species (ROS) respond to varied environmental

stresses, including high salinity, drought, heat stress, and pathogen

infection (Dat et al., 2000). At lower concentrations, ROS function

as versatile signal molecules to regulate many biological processes,

including plant growth and responses to a spectrum of biotic and

abiotic stresses (Zhao et al., 2020). An excessive accumulation of

ROS, however, has detrimental effects on plant cells (Zhao et al.,

2020). Plants defend against the ROS-induced cellular injuries by

upregulation of various antioxidative enzymes that scavenge ROS

(Parida and Das, 2005). The antioxidant enzymes CAT, SOD, and

APX in perennial ryegrass are reported to be increased on day 7 and

day 21 after being irrigated with 250 mM NaCl (Ma et al., 2016). In

other studies, CAT was increased on day 7 and decreased from day

14 to day 28, whereas SOD and APX remained similar to the control

on day 7 and were decreased from day 14 to day 28 when subjected

to 250 mM NaCl (Wu et al., 2017). In this work, APX and CAT

were increased on day 7 and suppressed from day 14 to day 35,

whereas SOD was suppressed from day 7 to day 35 under the same

level of salt stress. The disparity in changes of SOD may be due to

the timing of observation since the activities of antioxidative

enzymes change with time. Along with CAT and APX, POD

maintains homeostasis and prevents oxidative stress by ROS

scavenging, whose activity was inhibited under different abiotic

stresses and recovered when WTH or JLH was applied, as observed

in this work. This is in accordance with the previous studies

(Goharrizi et al., 2020; Wang et al., 2022). Similar to other

exogeneous biomodulators (Ma et al., 2016; Ali et al., 2022a;

Wang et al., 2022), WTH and JLH generally recovered the

activities of APX, CAT, POD, and SOD activities, indicating the

activation of the antioxidative enzyme system in defense from the

salt-induced oxidative stress in perennial ryegrass.

Under salinity stress, the growth and stress adaptation of plants

are closely associated with the mediation of a panel of endogenous
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phytohormones (Yu et al., 2020). In the present work, WTH and

JLH downregulated the levels of stress response hormone ABA. As

osmoregulation is an important function of the ABA-mediated

plant salt stress response (Verma et al., 2016), this indicates they

could relieve the osmotic stress caused by salinity conditions. Under

salt stress, the accumulation of BR signaling regulates the

acclimation to stress via fine-tuning of stress-responsive transcript

machineries, activation of antioxidative machineries, and

promotion of the osmoprotectant production (Planas-Riverola

et al., 2019). In general, WTH and JLH lowered the elevated BR

levels in perennial ryegrass under salt stresses. This indicates that

WTH and JLH may have induced the antioxidant system and

mediated the ion homeostasis and osmostasis and thus led to the

reduction of BR. Salt stress-induced JA accumulation and signaling

activation inhibit plant cell elongation and primary root growth

(Valenzuela et al., 2016). We found that the JA level was also abated

after being treated with WTH and JLH under saline conditions,

suggesting that HA could reverse the growth inhibition of salinity

on plant by decreasing JA accumulation. As a defense hormone, SA

is an important regulator of influx and efflux of Na+ that is able to

lower osmotic damage on the cell membrane (Liu et al., 2022).

Excessive accumulation of SA, however, may aggravate the

oxidative stress induced by salt stress as SA is a key signaling

compound in the mediation of the antioxidant system (Liu et al.,

2022). Here, SA levels in perennial ryegrass were lowered by WTH

and JLH, indicating that HA mitigated the oxidative stress of

salinity by reduction of SA. IAA promotes root growth and

maintains apical dominance (Dunlap and Binzel, 1996). IAA

levels were significantly lowered in plants growing under salinity

or water deficit conditions (Liu et al., 2015). This is in accordance

with our results. We found that WTH and JLH reversed the

inhibition of growth promotion hormone IAA, which is positively

correlated with height and biomass growth here. This suggests that

WTH and JLH mediate the IAA-associated growth pathway in salt-

stressed perennial ryegrass. PAs often act as cell signaling molecules

in modulating plant tolerance to a variety of abiotic stresses

including salinity stress (Pathak et al., 2014). The changes in PA

content of perennial ryegrass under salinity stress have not been

previously reported. Here, we found that the PA content in

perennial ryegrass was raised under salinity stress, indicating a

response to saline stress. In most of the studies pertaining to salinity

stress, the PA accumulation was induced by the activation of

arginine decarboxylase (ADC), and ultimately resulted in

improved salt tolerance (Pathak et al., 2014). Here, in the salt-

stress perennial ryegrass treated with HA, the content of PA was

reduced as compared with the control, indicating the ameliorating

effect against salinity stress.

Expression analysis revealed that in perennial ryegrass, the

upregulation of P5CS genes can be induced by salinity stress and

may be associated with salt-stress tolerance (Li et al., 2014). In this

work, the relative expression of P5CS in perennial ryegrass was the

highest in the salt treatment alone, which was downregulated when

treated with WTH and JLH to different extents in the presence of

salt stress. This is highly correlated with the Pro accumulation

under the corresponding treatments (Figure 5). The results suggest

that salinity-induced expression of P5CS and Pro accumulation may
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serve as one of the mechanisms for the salt tolerance in

perennial ryegrass.

Intriguingly, JLH showed a stronger ameliorating effect against

salinity stress in perennial ryegrass relative to WTH. This can be

explained by the differences in their chemical characteristics. The

plant growth-promoting functions of humic substance are ascribed

to the acid groups such as phenolic groups, which are responsible

for the weak acidity properties (Nardi et al., 2021). As we previously

reported, JLH contained higher contents of total acidic groups and

phenolic hydroxyl groups (3.86 mmol·g−1 and 3.52 mmol·g−1,

respectively) as compared with WTH (2.38 mmol·g−1 and 1.70

mmol·g−1, respectively) (Hou et al., 2022). Meanwhile, high

contents of phenolic hydroxyl groups normally mean good

hydrophilicity. These indicate that JLH has more functional

groups and better hydrophilicity than WTH. Therefore, higher

levels of acidic groups and phenolic hydroxyl groups in the

structure may be responsible for the stronger mitigation effect of

JLH under salinity stress.

In summary, the salinity condition of 250 mM NaCl caused

lipid peroxidation, suppressed photosynthetic function, increased

Na+ accumulation, induced oxidative stress, suppressed growth,

and antisenescence hormones especially IAA and BR, and

eventually inhibited height and biomass of perennial ryegrass.

Application of 0.01% (W/V) WTH or 0.05% (W/V) JLH, the HAs

extracted from weathered coal samples of Wutai County and Jingle

County of Shanxi Province, recovered Pn, Tr, and intracellular CO2

influx. The application of HA also upregulated the antioxidative

enzyme (SOD, CAT, POD, and APX) activity and reversed the

decline in plant growth hormones (IAA, BR) and reduced relative

expression of P5CS and its downstream products Pro as well as the

stress defense hormones ABA, JA, SA, and PA. The mediation of

hormonal cross talks by HA may lead to antioxidative enzyme

defense and osmotic rebalance, protecting photosynthetic function

and thus ameliorate the detrimental effects of salinity conditions.
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