
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Muhammad Fazal Ijaz,
Melbourne Institute of Technology,
Australia

REVIEWED BY

Rudiati Evi Masithoh,
Gadjah Mada University, Indonesia
Abid Hussain,
Karakoram International University,
Pakistan

*CORRESPONDENCE

Huaxing Xu

xuhuaxing@zzu.edu.cn

Xiaobo Mao

mail-mxb@zzu.edu.cn

RECEIVED 02 August 2023

ACCEPTED 03 October 2023
PUBLISHED 25 October 2023

CITATION

Hu H, Wang T, Wei Y, Xu Z, Cao S, Fu L,
Xu H, Mao X and Huang L (2023) Non-
destructive prediction of isoflavone and
starch by hyperspectral imaging and deep
learning in Puerariae Thomsonii Radix.
Front. Plant Sci. 14:1271320.
doi: 10.3389/fpls.2023.1271320

COPYRIGHT

© 2023 Hu, Wang, Wei, Xu, Cao, Fu, Xu, Mao
and Huang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 25 October 2023

DOI 10.3389/fpls.2023.1271320
Non-destructive prediction
of isoflavone and starch by
hyperspectral imaging and
deep learning in Puerariae
Thomsonii Radix

Huiqiang Hu1,2, Tingting Wang1, Yunpeng Wei1, Zhenyu Xu1,
Shiyu Cao3, Ling Fu3, Huaxing Xu1*, Xiaobo Mao1,2*

and Luqi Huang1,2,4

1School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China,
2Research Center for Intelligent Science and Engineering Technology of Traditional Chinese
Medicine, Zhengzhou University, Zhengzhou, Henan, China, 3School of Pharmaceutical Sciences,
Zhengzhou University, Zhengzhou, China, 4State Key Laboratory for Quality Ensurance and
Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China
Academy of Chinese Medical Sciences, Beijing, China
Accurate assessment of isoflavone and starch content in Puerariae Thomsonii

Radix (PTR) is crucial for ensuring its quality. However, conventional

measurement methods often suffer from time-consuming and labor-intensive

procedures. In this study, we propose an innovative and efficient approach that

harnesses hyperspectral imaging (HSI) technology and deep learning (DL) to

predict the content of isoflavones (puerarin, puerarin apioside, daidzin, daidzein)

and starch in PTR. Specifically, we develop a one-dimensional convolutional

neural network (1DCNN) model and compare its predictive performance with

traditional methods, including partial least squares regression (PLSR), support

vector regression (SVR), and CatBoost. To optimize the prediction process, we

employ various spectral preprocessing techniques and wavelength selection

algorithms. Experimental results unequivocally demonstrate the superior

performance of the DL model, achieving exceptional performance with mean

coefficient of determination (R2) values surpassing 0.9 for all components. This

research underscores the potential of integrating HSI technology with DL

methods, thereby establishing the feasibility of HSI as an efficient and non-

destructive tool for predicting the content of isoflavones and starch in PTR.

Moreover, this methodology holds great promise for enhancing efficiency in

quality control within the food industry.

KEYWORDS

Puerariae Thomsonii Radix, isoflavones and starch content, hyperspectral imaging,
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1 Introduction

Puerariae Thomsonii Radix (PTR), a perennial plant with a long

history of use in Chinese medicine, has gained increasing popularity

due to its well-documented therapeutic effects (Zhou et al., 2014). It

is valued for its remarkable nutritional and bioactive profiles,

offering a wide range of health benefits (Wagle et al., 2019; Lai

et al., 2020). Rich in phytochemicals, PTR is particularly abundant

in isoflavones, which serve as the primary bioactive compounds

responsible for its diverse pharmacological activities (Xu et al.,

2016). Notably, extensive research has focused on the presence of

isoflavones in PTR, including puerarin, puerarin apioside, daidzin,

and daidzein (Li et al., 2022a), highlighting their anti-inflammatory,

antioxidant, and anti-cancer properties (Chen et al., 2017).

Furthermore, these compounds have been associated with positive

effects on cardiovascular health, reducing the risk of heart disease

and stroke (Wang S. et al., 2023).

Alongside its medicinal value, PTR is extensively acknowledged

as a nutritious food, providing essential nutrients such as starch,

protein, and fiber that are integral to maintaining a balanced and

healthy diet (Liang et al., 2017). Remarkably, PTR is particularly

rich in starch, serving as an excellent source of energy and assisting

in the regulation of healthy blood glucose levels (Liu et al., 2021).

Furthermore, PTR boasts a significant dietary fiber content, which

promotes digestive health, prevents constipation, and reduces the

risk of colon cancer (Fu et al., 2023). Given its exceptional

nutritional and therapeutic properties, PTR has garnered

popularity as a sought-after ingredient in natural remedies and

dietary supplements, offering a diverse array of health benefits

(Zeng et al., 2019).

With the continuous improvement of living standards in the

modern era, consumer concerns regarding food quality have gained

significant prominence. Safeguarding the commercial value of PTR

necessitates a focus on controlling the content of its bioactive

compounds to ensure quality attributes (Li Q. et al., 2022; Zhang

Y. et al., 2023). To facilitate quality control and assurance for

commercial applications, it is essential to accurately predict the

bioactive compound content of PTR. Traditional well-known

chemical and physical strategies such as high-performance liquid

chromatography (HPLC) (Niu et al., 2012), mass spectrometry

(MS) (Liu et al., 2021; Shang et al., 2021), and spectrophotometry

(Wong et al., 2015; Reddy et al., 2017), have been utilized for this

purpose. However, these techniques come with inherent limitations,

including time consumption, expensive equipment requirements,

sample destruction, and the use of toxic reagents. Despite their high

accuracy and sensitivity, these drawbacks have spurred the

exploration of alternative methods that are faster, non-destructive,

and cost-effective. Thus, there is a pressing need for a rapid,

efficient, and non-destructive approach to ensure the quality

of PTR.

Near-Infrared Spectroscopy (NIR) and Infrared Spectroscopy

(IR) techniques offer notable advantages in substance analysis

(Roggo et al., 2005; Tsuchikawa and Kobori, 2015), including
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non-destructive measurements and heightened sensitivity to trace

components (Ozaki, 2012). However, their complexity requires

specialized expertise for data interpretation, and their applicability

is often limited to specific sample types (Ozaki, 2021). Additionally,

these techniques may not fully capture the internal characteristics of

the substances being examined. In certain situations, the acquired

spectral information may be insufficient or inadequate to represent

the entirety of the sample (Ozaki et al., 2021). Hyperspectral

imaging (HSI) is an advanced analytical technique that combines

spectroscopy and imaging to analyze the chemical and physical

properties of a sample (Femenias et al., 2021). With its rapid

analysis time, high spatial resolution, and the ability to

simultaneously analyze multiple components, HSI has become an

essential tool in the food industry for chemical property detection

and quality control (He et al., 2023). By combining the rich spectral

information with the capabilities of machine learning algorithms,

we can effectively identify food adulteration, assess quality, and

predict of component content (Kang et al., 2022; Teixido-Orries

et al., 2023). However, the abundance of spectral bands in

hyperspectral data poses challenges that require attention.

Traditional machine learning models often rely on extensive

feature engineering and selection to optimize their performance,

which limits their practicality and effectiveness (Chen et al., 2014;

Saha and Manickavasagan, 2021; Zhang et al., 2022a; Zhang L.

et al., 2023).

Deep learning (DL) has gained tremendous popularity in recent

years, driven by its remarkable ability to tackle complex problems

(Mishra and Passos, 2021). aging, DL models can effectively exploit

the extensive spectral information embedded within the data,

leading to improved precision and resolution in regression and

prediction tasks (Wang et al., 2021). For instance, Mansuri et al.

(2022) employed Vis-NIR HSI to detect fungal contamination in

maize kernels and developed partial least squares discriminant

analysis (PLS-DA), artificial neural network (ANN), and 1DCNN

models. Notably, the 1DCNN model outperformed the other

methods, demonstrating superior detection accuracy (Mansuri

et al., 2022). Similarly, Li et al. (2023) proposed a CNN model

utilizing HSI to accurately identify adulteration in Atlantic salmon

(Li et al., 2023). Cai et al. (2023) leveraged HSI and deep fusion

learning approaches to determine the geographical origins of Radix

Paeoniae Alba (Cai et al., 2023). Furthermore, Zhou et al. (2023)

predicted lead content in oilseed rape leaves by combining

fluorescence HSI with DL techniques (Zhou et al., 2023). In

another study, Zeng et al. (2022) merged HSI and low-field

nuclear magnetic resonance with DL to rapidly and non-

destructively detect moisture content in salted sea cucumbers

(Zeng et al., 2022). Additionally, Soni et al. (2021) quantified

Clostridium sporogenes spores in food using HSI and compared

the performance of 1DCNN and random forest models. The

findings underscored the significant potential of DL, with the

CNN exhibiting superior performance over the random forest

model (Soni et al., 2021). These studies have substantiated the

feasibility and superiority of employing DL models in conjunction
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with HSI for food analysis and safety inspection, surpassing

traditional machine learning methods such as PLSR and RF.

As mentioned above, the combination of HSI and DL

algorithms have shown significant potential for application in the

field of food analysis in recent years. In this context, the main

objectives of this study are as follows: (1) Explore the potential of

HSI and data analysis methods to predict the levels of puerarin,

puerarin apioside, daidzin, daidzein, and starch in PTR. (2)

Following the conventional modeling process, compare the

performance of typically used traditional machine learning

prediction algorithms, with various spectral preprocessing

techniques and wavelength selection methods. (3) Develop a

1DCNN model and establish its advantage by comparing its

predictive performance with commonly used prediction

algorithms. By addressing these objectives, this study aims to

advance the accurate prediction of compounds in PTR using HSI

technology and data analysis methods, providing valuable insights

for quality evaluation and control in the food industry.
2 Materials and methods

2.1 Sample preparation

This study focused on kudzu (Pueraria thomsonii) sourced

from Jiangxi Province, China. The kudzu plants were harvested

during their second year of growth, and the root tuber epidermis

was carefully removed using ultrasound-assisted washing. The PTR

samples were then subjected to natural drying. A total of 1000 g of

PTR was collected from the specified geographical origin, and 10 g

of PTR were packed together to form one sample for hyperspectral

image acquisition. In total, 100 samples were collected for analysis.

During hyperspectral image acquisition, the PTR samples were

individually placed on a black plate. Subsequently, the samples were

freeze-dried and finely ground into powders to facilitate the analysis

of puerarin, puerarin apioside, daidzin, daidzein, and starch.
2.2 Hyperspectral imaging
system acquisition

The data collection process in this study involved the use of a

hyperspectral imaging system equipped with two lenses: one for

capturing visible light and the other for short-wave/long-wave near-

infrared components (HySpex VNIR1800/HySpex SWIR 384,

Norsk Elektro Optikk, Oslo, Norway). Specifically, our focus for

the experiment was on the wavelength range of 948.72 − 2512.97

nm in the SWIR region, which comprised a total of 288 spectral

bands. To ensure proper illumination of the samples, we employed

two 150 W bromine-tungsten lamps (H-LAM, Norsk Elektro

Optikk, Oslo, Norway) as the light source. The integration time

for the SWIR lenses was set at 3500 µs. Throughout the data

acquisition process, the samples were positioned on a conveyor

belt moving at a constant speed of 2.0 mm/s, while maintaining a

distance of 28 cm between the samples and the lenses, the
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dimensions of the black plate used to place the sample is 100

cm× 45 cm.
2.3 Data correcting

During the process of acquiring hyperspectral images, non-

uniformity in the intensity of light and interference from dark

currents can lead to uneven output images (Jia et al., 2020). This can

be a negative impact on subsequent data analysis. To address this, it

is critical to calculate the relative reflectance using both dark and

white reference images. The corresponding correction method is

calculated as the following equation.

Inew =
Iraw − Idark
Iwhite − Idark

(1)

The corrected image is denoted by Inew, and it is obtained by

applying a correction method to the original hyperspectral image

Iraw, taking into account the dark reference image Idark and the

white reference image Iwhite.
2.4 Measurement of total puerarin,
puerarin apioside, daidzin, daidzein,
and starch

2.4.1 Chemicals
Methanol (chromatography grade) and acetonitrile

(chromatography grade) were obtained from Tianjin Siyou Fine

Chemical Co., Ltd. Methanol (analytical grade) and formic acid

(analytical grade) were obtained from Tianjin Zhiyuan Chemical

Reagent Co., Ltd. Ultra-pure water was prepared in the laboratory

using a Mili-Q Advantage A10 system from Merck KGaA (MA,

USA). The standards used in this study included puerarin (lot

number 110752-201816), daidzin (111738-201904), daidzein

(111502-202003), which were purchased from the China Institute

for Food and Drug Control. Furthermore, puerarin apioside (lot

number 103654-50-8) was purchased from Chengdu Plantmark

Pure Biotechnology Co., Ltd. All reagents were of analytical grade

and were used without further purification.

2.4.2 Preparation of standard solution
Four distinct compounds, namely puerarin, puerarin apioside,

daidzin, and daidzein, were each dissolved in methanol to prepare

standard solutions with a 20 mg amount of each compound. The

solutions were made up to a final volume of 10 mL in volumetric

flasks to obtain the stock solutions for each compound. To prepare a

mixed standard solution, suitable volumes of the stock solutions were

combined and diluted with methanol to produce a concentration

gradient. Standard curves were created for each compound using the

appropriate volumes of the standard solutions. This rigorous method

was employed to guarantee precise and dependable measurements of

the compounds in subsequent experiments. The resulting mixed

standard solution and individual standard curves will be used to

determine the concentration of each compound in samples.
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2.4.3 Isoflavones extraction in Puerariae
Thomsonii Radix

Firstly, 1.0 g of the powder, which had passed through a sieve

(50 mesh), was mixed with 50 mL of the 50% methanol solution.

Ultrasonic extraction was then performed on the mixture at room

temperature for 30 mins. The resulting mixture was cooled, and its

weight was measured. Any weight loss was compensated for by

adding more 50% methanol solution to the mixture. After shaking,

the mixture was filtered, and the filtrate was collected for further

analysis. To prepare the filtrate for injection, it was filtered through

a 0.22 µm microfiltration membrane and then injected into a

sample bottle using an automatic sampler.

2.4.4 HPLC system for isoflavones analysis
The HPLC K2025 liquid chromatography system was

composed of a Binary pump, Autosampler, Column oven, and

UV-VIS detector. For every analysis of the samples, a YMC-Pack

Pro C18 reverse phase column was utilized with a mobile phase

consisting of an aqueous solution containing 0.01% formic acid and

acetonitrile. Detection was conducted at a wavelength of 250 nm,

with the column temperature maintained at 30 °C, a flow rate of 1

mL/min, and an injection volume of 10L.

2.4.5 Quantification of starch
A sample of PTR weighing precisely 1.0 g, which had been

passed through a sieve (50 mesh), was added to 10 mL of distilled

water. The resulting mixture was homogenized in a blender, filtered,

and the filtrate was subjected to centrifugation at 4500 rpm for 15

mins. The supernatant was then discarded, and the resulting

precipitate was dried in a 70 °C oven until a constant weight was

achieved. The mass of the precipitate was recorded for the

calculation of starch content using the following formula.

W =
m1

m2
� 100% (2)

Where, W is starch content, m1 is the mass of the dried

precipitate, and m2 is sample mass.
2.5 Modeling

2.5.1 Spectral preprocessing
Preprocessing plays a crucial role in hyperspectral data analysis

as it helps eliminate noise, correct instrument artifacts, and enhance

the signal-to-noise ratio for further analysis. In this study, we

evaluated several well-established preprocessing methods,

including the standard normal variate (SNV), multiplicative

scatter correction (MSC), Savitzky-Golay smoothing (SG), as well

as the first derivative (FD) and second derivative (SD) methods. The

goal was to identify the most effective preprocessing technique that

would yield the most accurate predictive models.

2.5.2 Effective wavelength selection
In the analysis of hyperspectral data, the selection of

appropriate spectral bands is of paramount importance for
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obtaining meaningful information and reducing data redundancy.

Given the hundreds or thousands of spectral bands, noise and

irrelevant spectral information are common, which can lead to

inaccurate results or high computational costs in further data

analysis. Effective band selection aims to improve the accuracy

and efficiency of the analysis by reducing the dimensionality of the

data while preserving the most informative spectral features.

Furthermore, the selection of relevant bands can facilitate the

interpretation of the data and provide insights into the underlying

physical and chemical processes. Hence, it is a critical step in

hyperspectral data analysis and has received significant attention

in the literature.

Successive projections algorithm (SPA): The SPA operates by

computing the coefficient of determination between each spectral

band and the target variable, and subsequently selecting the feature

with the highest absolute correlation in the initial iteration (Zhang

et al., 2017). During each subsequent iteration, SPA eliminates the

spectral band that has the least impact on the coefficient of

determination of the remaining spectral bands until the desired

number of features is achieved. In this manner, SPA effectively

identifies a subset of the most relevant and informative spectral

bands, while preserving the effective wavelengths that capture the

most significant spectral features.

Competitive adaptive reweighted sampling (CARS): CARS is

a potent algorithm that facilitates wavelength selection in HSI. Its

underlying principle involves competitively sampling spectral

bands iteratively. Every wavelength is assigned a weight that

corresponds to its significance in the classification task (Li et al.,

2009). CARS adaptively reweighs wavelengths during each iteration

based on their discriminative power, and it ultimately selects the

most informative subset of wavelengths.

Uninformative variable elimination (UVE): This algorithm

achieved by measuring the relevance of each wavelength to the final

task using statistical methods such as mutual information,

coefficient of determination, or variance analysis. Wavelengths

that exhibit low significance are subsequently removed, resulting

in only informative wavelengths remaining for subsequent analysis

(Cai et al., 2008).
2.5.3 Conventional data analysis approaches
Support vector regression (SVR): SVR is a powerful machine

learning algorithm that is extensively used for regression tasks. The

fundamental principle of SVR is to construct a hyperplane in a

high-dimensional feature space that maximizes the margin between

the training data points and the hyperplane, facilitating accurate

regression (Dhiman et al., 2019).

To prevent overfitting and improve generalization, SVR

incorporates a regularization parameter that balances the trade-off

between maximizing the margin and minimizing the training error.

By adjusting the regularization parameter, SVR can effectively

handle overfitting and generalize well to new unseen data,

providing robust and accurate regression results.

Partial least squares regression (PLSR): In the realm of HSI,

PLSR is a frequently employed multivariate statistical technique for

predicting the concentrations of chemical components in a sample.
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Its primary objective is to reveal the underlying relationship

between the predictor variables (spectral features) and the

response variable (chemical composition content).

PLSR achieves this by decomposing the predictor variable set

into a reduced number of latent variables that capture the variance

in the spectral data. It then performs regression analysis between

these latent variables and the response variable. The latent variables

are carefully selected to maximize the covariance between the

predictor and response variables, thereby ensuring that they

capture the critical information and relationships between the two

sets (Li et al., 2022b).

CatBoost: Through the use of ordered boosting, random

permutations, and gradient-based optimization, CatBoost is able

to deliver cutting-edge performance across a range of domains. This

versatile machine learning framework boasts a crucial advantage in

its ability to effectively manage categorical variables with high

cardinality and handle missing data, making it a valuable tool for

real-world datasets (Dorogush et al., 2018). When combined with

HSI, it offers an effective approach for accurately predicting the

content of various sample components, particularly in the food

industry, such as fat, protein, and moisture (Zou et al., 2023).

2.5.4 Deep learning approaches
One-dimensional convolutional neural networks (1DCNN) are

becoming increasingly popular in HSI due to their remarkable

ability to accurately predict the concentrations of chemical

components in a sample (Mishra and Passos, 2021; Li et al.,

2023). Essentially, 1DCNN is a type of neural network that

utilizes convolutional layers to extract features from spectral data,

which is treated as a one-dimensional sequence of data points,

followed by fully connected layers to make precise predictions. By

applying convolutional layers along the spectral axis, 1DCNN can

capture spectral correlations and dependencies, thereby extracting

relevant and discriminative features for predicting chemical

composition content.

The 1DCNN architecture offers a notable advantage in handling

large amounts of spectral data, making it well-suited for HSI

applications with numerous spectral bands per pixel. This

capability enables efficient processing of extensive datasets,

resulting in highly accurate predictions. In this study, we

employed a 1DCNN framework to predict the concentrations of
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puerarin, puerarin apioside, daidzin, daidzein, and starch in PTR, as

shown in Figure 1. The designed CNN architecture comprises an

input layer, three convolutional layers, two maxpooling layers, one

fully connected layer, and an output layer. To be specific, the

convolutional layers utilize a kernel size of 3×1, with 64, 32, and

32 kernels, respectively.
2.6 Performance evaluation metrics

This study employed several evaluation metrics to assess the

accuracy and reliability of the models, including root mean squared

error (RMSE), mean absolute error (MAE), coefficient of

determination (R2) and residual predictive deviation (RPD).

Assuming that the predicted values and actual values are

denoted by vectors ŷ = ½ŷ 1, ŷ 2,…, ŷ n� and y = ½y1, y2,…, yn�
respectively, the formula for calculating the performance metric

are as follows.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − ŷ i)

2

s
,∈ ½0, +∞)

MAE = 1
no

n

i=1
ŷ i − yij j

R2 = 1 −
o
n

i=1
(yi − ŷ i)

2

o
n

i=1
(yi − �y)2

,∈ ½1, 0�

RPD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1o
n

i=1
(yi − �y)2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − ŷ i)

2

s

(3)

where n denotes the sample size, ŷ i represents the predicted

value of the ith element, yi represents the actual value of the ith

element, and �y is the mean value.

When evaluating the performance of different models, the one

that with the lowest RMSE is generally regarded as having better

predictive accuracy. A lower MAE value suggests that the model has

smaller prediction errors, while a higher RPD value indicates a

better predictive accuracy compared to the reference data.
FIGURE 1

The CNN architecture utilized for predicting the levels of isoflavones and starch in PTR.
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Additionally, the model with the highest coefficient of

determination indicates a stronger linear relationship between

predicted and actual values, which is also an important factor to

consider when comparing model performance.
2.7 Software tools and configurations

The correction and visualization of hyperspectral image data were

carried out in the Environment for Visualizing Images (ENVI) 5.3

software from ITT Visual Information Solutions, Inc. in Boulder, CO,

USA. The experiments for the proposed DLmodels were conducted on

a server equipped with an Intel(R) Xeon(R) Platinum 8368 CPU @

2.40GHz (251G RAM) and a GA100 graphics card (A100 PCIe 80GB

GPU), running the Ubuntu Linux 21.04 operating system. The model’s

compilation was created in the Python programming language (Python

3.7.10) and implemented using TensorFlow 2.2.0 and CUDA 11.7.

During the network training, the cross-entropy loss function and the

Adam optimization algorithm were utilized, while the learning rate,

and batch size were set to 0.001 and 16, respectively. The dataset was

randomly split into a training set (80% of the dataset) and a test set

(20% of the dataset). To ensure the reliability of the results, all

experiments were conducted and averaged over 10 independent runs.
Frontiers in Plant Science 06
3 Results and discussion

3.1 Content of isoflavones and
starch in PTR

The contents of isoflavones and starch in PTR samples were

determined and presented in Table 1. Among the total samples,

starch had the highest mean concentration of 506.71 mg/g with a

standard deviation of 29.08 mg/g, while daidzein had the lowest

mean concentration of 0.2901 mg/g with a standard deviation of

0.07 mg/kg. In general, the trends in the concentrations of

isoflavones and starch were similar across most samples.

Nonetheless, the results indicate that the starch content in PTR

samples remains relatively constant.
3.2 Spectral characteristics of PTR

The spectral reflectance of PTR samples was analyzed over the

range of 948.72−2512.97 nm, and the mean, minimum, maximum,

and standard deviation values are depicted in Figure 2. The

observed spectral reflectance exhibited a decrease with increasing

wavelength, which is consistent with the typical optical properties of
TABLE 1 Content of isoflavones and starch in PTR.

Nutrient
Content detection indexes

Mean(mg/g) Max(mg/g) Min(mg/g)

Isoflavones
Puerarin Puerarin apioside 2.2863±0.74

0.4212±0.12
4.1164
0.8053

0.8321
0.1820

Daidzin 0.3465±0.11 0.6271 0.1285

Daidzein 0.2091±0.07 0.5878 0.1155

Starch 506.71±29.08 615.12 448.94
FIGURE 2

The mean, minimum, maximum and standard deviation spectral reflectance for PTR.
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PTR. The spectral profile displayed multiple peaks and valleys

corresponding to absorptions, where the primary absorption

bands were appeared at 990 nm, 1200 nm, 1450 nm, 1550 nm,

1765 nm, 1942 nm, 2112 nm, and 2278 nm. Specifically, the

absorption peaks around 990 nm and 1450 nm can be attributed

to the third overtone of O-H stretching in alcohol or phenol-OH

and the first overtone stretching of O-H in water (Barbin et al.,

2013; Zhang et al., 2019). Similarly, the absorption peak around

1200 nm primarily arises from the second overtone of C-H

stretching in starch (He et al., 2013). Moreover, the absorption

peaks at 1550 nm and around 1765 nm correspond to the first

overtone stretching and the third overtone stretching of N-H (Lü et
Frontiers in Plant Science 07
al., 2017), respectively. Additionally, the absorption peak around

2278 nm mainly results from the first overtone stretching of C-H in

aliphatic compounds such as fatty acids (He et al., 2017).

Furthermore, the absorption peaks around 1942 nm and 2112 nm

mainly attributed to the characteristic absorption of N-H and -NH2

groups, which are associated with the presence of proteins and

amino acids in PTR (Wang et al., 2013; Qiu et al., 2021). Therefore,

the obtained spectral profile provides a solid foundation for

qualitative analysis of various PTR attributes using chemometrics

and hyperspectral techniques.

However, the intricate composition of PTR samples presents a

challenge for the direct quantification of isoflavones and starch
B

C D

E

A

FIGURE 3

The regression results for the reference and predicted values of the four isoflavones and starch contents are depicted in (A-E), which illustrate the
predictions of puerarin, puerarin apioside, daidzin, daidzein, and starch contents using the full wavelengths and conventional models.
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levels using wavelengths from the spectral curve. Thus, further

research is crucial to validate these observations and construct

accurate and reliable models that can predict the concentrations

of isoflavones and starch based on spectral data. In this regard,

chemometric approaches were employed to explore the correlation

between spectral reflectance and the levels of isoflavone and starch

in the samples. This will help overcome the limitations of

conventional analytical techniques and enhance the efficiency and

accuracy of quality control in the food industry.
3.3 Prediction model’s performance when
considering full wavelengths

3.3.1 Conventional prediction models
Firstly, we conducted a comparison of three models: SVR,

PLSR, and CatBoost. In order to enhance the prediction

performance, various preprocessing methods were evaluated,

including SNV, MSC, SG, FD, and SD, as discussed in section

2.5.1. The prediction results of the model combinations are

summarized in Supplementary Table 1 (see Supplementary

materials). When comparing the results with the original spectral

data, it was observed that the preprocessing methods led to varying

degrees of improvement in predictive performance. Among these

preprocessing methods, SG exhibited superior performance in

predicting the contents of isoflavones and starch.

Regarding the prediction of isoflavone and starch contents, all

three models demonstrated good performance, with most of the R2

exceeding 0.8 and the RPD values greater than 2.5. These results

indicate that the combination of HSI technology and data analysis

methods is feasible for determining the levels of puerarin, puerarin

apioside, daidzin, daidzein, and starch in PTR. It is worth noting

that the prediction performance of the three models, combined with

all the preprocessing methods, was highest for the starch content

compared to other components. The average values of R2, RPD,

RMSE, and MAE for starch were found to be 0.8527, 2.6258,

11.7018, and 8.3385, respectively.

Furthermore, Figure 3 illustrates the regression results for the

reference and predicted values of the four isoflavones and starch

contents obtained by applying the traditional model using full

wavelengths. It showcases the best performance achieved by this

model. The PLSR yielded better predictions for the content of
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daidzein and starch, resulting in the lowest values of RMSE

(0.01645, 10.3977) and MAE (0.01366, 7.5668), as well as the

highest RPD (2.4413, 2.9242) and R2 (0.8322, 0.8781). On the

other hand, CatBoost exhibited the best prediction accuracy for

puerarin, puerarin apioside, and daidzin contents, with the lowest

values of RMSE (0.2315, 0.036, 0.0372) and MAE (0.1783, 0.0287,

0.0284), as well as the highest RPD (2.7749, 2.5964, 2.6968) and R2

(0.8681, 0.8417, 0.8575).

Overall, the combination of HSI and traditional machine

learning techniques has proven to be a valuable approach for

predicting the levels of isoflavones and starch in PTR. Among the

findings of the experiment, CatBoost demonstrated superior

performance compared to the other investigated models.

Nevertheless, there is still room for further improvement in the

predictive accuracy of these models. One promising direction for

enhancement is the incorporation of advanced wavelength

selection methods.

3.3.2 Deep learning prediction model
In subsection 3.3.1, it has been demonstrated that the SG yields

the best preprocessing results. Therefore, in following experiment,

only the SG method was employed as the preprocessing technique.

The outcomes of predicting the isoflavones and starch contents

based on full wavelengths using the 1DCNNmodel are presented in

Table 2. The results clearly indicate that the 1DCNN model

outperformed the previously compared traditional models. The

preprocessed data were directly fed into the 1DCNN, resulting in

average R2 values above 0.90 and RPD values exceeding 3.20 for the

five different components analyzed in PTR.

In terms of predicting puerarin, the 1DCNN model

demonstrated improved performance compared to the traditional

models, with an average increase of 0.0546 and 0.7804 in R2 and

RPD, respectively. Similarly, for puerarin apioside, the 1DCNN

model surpassed the other models, yielding an average increase of

0.0696 and 0.6653 in R2 and RPD, respectively. Furthermore, the

1DCNN model exhibited enhanced prediction results for daidzin

and daidzein, resulting in average increases of 0.0566, 0.0673 and

0.6226, 0.6252 in R2 and RPD, respectively. Likewise, the 1DCNN

model showcased superior performance in predicting starch, with

average increases of 0.0359 and 0.4598 in R2 and RPD, respectively.

The regression results for the reference and predicted values of

the four isoflavones and starch contents are shown in Figure 4.
TABLE 2 The prediction results of the content of puerarin, puerarin apioside, daidzin, daidzein, and starch in PTR using 1DCNN with full wavelengths.

Models Chemical indexes Evaluation Metrics

R2 RMSE MAE RPD

SG
+

1DCNN

Puerarin
Puerarin apioside

Daidzin
Daidzein

0.9183
0.8955
0.9014
0.8882

0.2051
0.0349
0.0309
0.0123

0.1547
0.0274
0.0278
0.0093

3.4975
3.0939
3.1847
2.9910

Starch 0.9054 7.8528 6.4348 3.2512
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Overall, the 1DCNN model displayed superior and consistent

performance in predicting the contents of puerarin and starch in

PTR. Remarkably, notwithstanding without very complex design,

the 1DCNN model outperformed traditional algorithms,

highlighting the superiority of DL algorithms. Moreover, it should

be emphasized that prediction results can be influenced by different

parameter settings. In our study, we set the epoch to 200 for

predicting the concentrations of the four isoflavones, and 1000

for determining the starch content. These findings suggest that

utilizing a CNN model with spectral data is a feasible and effective

approach for predicting the isoflavones and starch contents in

PTR root.
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3.4 Prediction model’s performance when
considering effective wavelengths

In this section, three methods, namely SPA, CARS, and UVE,

were employed to select effective wavelengths, aiming to improve

the prediction performance of the models. For the prediction of

puerarin, the three methods selected 14, 19, and 25 important

variables from the full range of wavelengths. Similarly, for the

prediction of puerarin apioside, 10, 17, and 22 significant

wavelengths were chosen. For daidzin and daidzein, SPA, CARS,

and UVE selected 16, 31, and 33, as well as 12, 23, and 28

important variables, respectively, from a pool of 288 variables.
B
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A

FIGURE 4

The regression results for the reference and predicted values of the four isoflavones and starch contents are depicted in (A-E), which illustrate the
predictions of puerarin, puerarin apioside, daidzin, daidzein, and starch contents using the full wavelengths and 1DCNN.
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Lastly, 13, 28, and 30 significant wavelengths were chosen for starch

content prediction.

The specific distribution of the selected feature wavelengths for

each component prediction is shown in Figure 5. It is evident that

despite the distinct principles guiding the three wavelength

selection methods, they consistently converge on similar

significant wavelength ranges. These selected wavelengths are

primarily concentrated within regions that exhibit prominent and

representative features, aligning with the absorption bands

illustrated in Figure 2. As depicted in Figure 2, which are known

to be highly correlated with the respective chemical constituents.

This consistency in wavelength selection reinforces the notion that
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these specific regions of the spectrum contain valuable information

that is closely linked to the chemical composition being analyzed.

Supplementary Table 2 (see Supplementary materials) presents

the prediction results of these algorithms for the three traditional

models. From the results in Supplementary Table 2, it is evident that

all three band selection methods improved the prediction ability of

the traditional models. Notably, SPA exhibited the most substantial

improvement, surpassing CARS and UVE.

In addition, Figure 6 illustrates the regression results for the

reference and predicted values of the four isoflavones and starch

contents by applying the aforementioned three traditional model,

showcasing the best performance achieved. For the prediction of
B

C D

E

A

FIGURE 5

The specific locations of important wavelengths extracted by SPA, CARS, and UVE are presented in (A-E), showcasing the prediction of puerarin,
puerarin apioside, daidzin, daidzein, and starch contents.
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puerarin, puerarin apioside, daidzin, and daidzein, the SG-SPA-

CatBoost combination demonstrated the best performance among

the conventional algorithms. The average values of the R2, RPD,

RMSE, and MAE were determined to be 0.8703, 2.783, 0.0775, and

0.0640, respectively. Conversely, for starch prediction, SG-SPA-

PLSR exhibited the highest prediction accuracy, with the lowest

RMSE (10.667) and MAE (7.533), as well as the highest RPD

(2.9692) and R2 (0.8876).

Table 3 displays the prediction results of the effective

wavelengths and CNN model, while Figure 7 illustrates the

regression results for the reference and predicted values of the

four isoflavones and starch contents by utilizing the effective
Frontiers in Plant Science 11
wavelengths and 1DCNN. However, it is important to highlight

that in the case of the CNN model, the inclusion of effective

wavelength selection did not result in a significant improvement

in performance, and in some cases, even led to a slight decrease

compared to the model using full wavelengths. Nevertheless, it

remains evident that DL models are less susceptible to the impact of

different wavelength selection methods, and the CNN model

utilizing full wavelengths consistently demonstrated superior

performance. This underscores the inherent strength of DL in

effectively handling intricate and highly complex data. By virtue

of the end-to-end training process, DL models autonomously

extract non-linear hidden features from samples in a globally
B

C D
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A

FIGURE 6

The regression results for the reference and predicted values of the four isoflavones and starch contents are depicted in (A-E), which illustrate the
predictions of puerarin, puerarin apioside, daidzin, daidzein, and starch contents using the effective wavelengths and conventional models.
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optimized manner. It is this interconnected process that explains

the underlying reason for the observed decrease in performance of

the CNN model when wavelength selection is employed.
3.5 Discussion

The constituents and their corresponding concentrations are

quintessential to determine the intrinsic quality and commercial

value of a material. In this study, we employed a combination of HSI

and data analysis techniques to accurately predict the content of key

compounds in PTR. Through a comprehensive analysis of the

results, it was evident that the integration of HSI with a deep

learning model achieved satisfactory predictive performance. Given

its convenience, non-destructiveness, and high-efficiency, this

approach could serve as a viable and beneficial alternative to

complicated physical and chemical procedures. It could be

implemented in off‐line rapid analysis or on‐line quality control

for quality evaluation of PTR.

First, among the traditional algorithms compared in this study,

the performance of PLSR algorithm was found to be relatively stable

and moderate overall, which is consistent with its frequent utilization

in similar studies involving hyperspectral prediction (Aredo et al.,

2017; Hu et al., 2021). However, Catboost algorithm, despite being

less commonly used in hyperspectral analysis, emerged as a robust

competitor in our study. It outperformed PLSR and SVR in

predicting certain components and exhibited slightly superior

overall performance compared to PLSR and SVR. This can be

attributed to CatBoost’s unique characteristics, including the

utilization of ensemble models, embedded regularization, and

automatic handling of categorical features. These features

contribute to enhanced learning capability, improved

generalization, and increased robustness of the model (Hancock

and Khoshgoftaar, 2020). Consequently, CatBoost exhibits better

performance in predicting hyperspectral data compared to PLSR

and SVR, particularly in scenarios with limited sample sizes.
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Unsurprisingly, the presence of redundant spectral bands

significantly impacts the performance of the algorithms, presenting

a notable challenge for traditional methods. In the comparison of

various band selection algorithms (SPA, CARS, VUE), it was

determined that SPA yielded the best results. Introducing the SPA

significantly improved the algorithm’s performance, as observed in

numerous similar studies (Zhang et al., 2017; Zhu et al., 2017).

In contrast, our study demonstrates that deep learning methods

exhibit superior and robust predictive performance. The average R2

for component prediction reaches 0.9, even without the need for

wavelength selection. This remarkable performance can be

attributed to the autonomous learning capability of deep learning

models, which effectively capture intricate mapping relationships

between spectra and components, unaffected by spectral

redundancy and noise. These findings are consistent with

previous research studies (Dargan et al., 2020; Zhang C. et al.,

2020; Wang et al., 2021). Interestingly, our investigation reveals that

the introduction of wavelength selection does not significantly

enhance the performance. This observation may be attributed to

the distinct approach of CNN as end-to-end learning models, which

differ in learning feature representations compared to traditional

methods. Consequently, the feature subset selected for traditional

models may have limited impact on CNNs, leading to negligible

performance improvements. Moreover, it is worth mentioning that

the 1DCNN used in our study was relatively simple, incorporating

commonly used convolution and pooling modules. Recent

advancements in deep learning have introduced innovative

techniques, particularly attention mechanisms, which enable

models to differentially process various features (Sun et al., 2019).

By assigning greater weights to key features, attention mechanisms

enhance the influence of crucial features, thereby facilitating more

accurate judgments and predictions in spectral classification and

prediction tasks (Zhang et al., 2022a; Wang Y. et al., 2023).

Therefore, the utilization of more complex deep networks and

mechanisms, such as attention, holds potential for further

improving prediction performance.
TABLE 3 The prediction results of the content of puerarin, puerarin apioside, daidzin, daidzein, and starch in PTR using 1DCNN with effective
wavelengths.

Models Chemical indexes Method Number of bands Evaluation Metrics

R2 RMSE MAE RPD

SG
+

1DCNN

Puerarin

Puerarin apioside

Daidzin

SPA
CARS
UVE
SPA
CARS
UVE
SPA
CARS
UVE

14
19
25
10
17
22
16
31
33

0.9277
0.9220
0.9129
0.8961
0.8918
0.8903
0.9020
0.9014
0.8992

0.1889
0.2012
0.2212
0.0279
0.0313
0.0328
0.0286
0.0315
0.0324

0.1536
0.1670
0.1838
0.0229
0.0249
0.0273
0.0228
0.0245
0.0267

3.7199
3.5798
3.3876
3.1020
3.0407
3.0187
3.1950
3.1844
3.1495

Daidzein
SPA
CARS
UVE

12
23
28

0.8956
0.8851
0.8833

0.0122
0.0137
0.0159

0.0108
0.0118
0.0136

3.0954
2.9502
2.9277

Starch
SPA
CARS
UVE

13
28
30

0.9091
0.8977
0.8892

7.7354
8.0546
8.7960

6.2029
7.1920
7.6628

3.3163
3.1271
3.0038
fr
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Furthermore, although CNN have shown remarkable success in

various component prediction tasks (Dargan et al., 2020; Zhang C.

et al., 2020; Wang et al., 2021; Zhang et al., 2022a), including the

findings of this study, they are not without limitations. One such

limitation is the challenge in interpreting the learning process of

CNNs. The interpretability of deep learning can be crucial in

understanding and explaining the importance of specific spectral

bands (Zhang L. et al., 2020). Furthermore, to fully harness the

power of deep learning models, a larger quantity of collected sample

data is expected. Currently, some studies have started exploring the

utilization of generative adversarial networks (GANs) for

generating reliable synthetic spectral data as a form of data
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augmentation (Wang et al., 2019; Zhang et al., 2022b). This

technique has demonstrated the potential to further enhance the

performance of CNNs in spectral prediction tasks.

Finally, with the deepening comprehension of the intrinsic

mechanisms of CNNs, research combining CNNs and spectroscopy

for food quality evaluation has been gaining momentum. These

studies indicate that CNNs still hold strong potential even in small

sample scenarios and, in many cases, outperform traditional

modeling methods (Zhang C. et al., 2020; Zhang et al., 2021; Li

et al., 2023), consistent with the findings of this study. Therefore,

further development of the combination of CNNs and spectroscopy,

leveraging the strengths of CNNs in processing images and high-
B
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A

FIGURE 7

The regression results for the reference and predicted values of the four isoflavones and starch contents are displayed in (A-E), illustrating the
prediction of puerarin, puerarin apioside, daidzin, daidzein, and starch contents using the effective wavelengths and 1DCNN.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1271320
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hu et al. 10.3389/fpls.2023.1271320
dimensional data, is expected to bring new advances in fields such as

food analysis and quality assessment. However, it is important to

address and mitigate the drawbacks and limitations of CNNs,

employing targeted strategies in their application.
4 Conclusions

The accurate detection of isoflavones and starch content in PTR

is of paramount importance in ensuring its quality and safety. In

this study, we pioneered a noninvasive, efficient detection method

using HSI and machine learning algorithms to predict puerarin,

puerarin apioside, daidzin, daidzein, and starch content in PTR. By

employing various spectral preprocessing techniques and

wavelength selection methods, we compared several traditional

machine learning algorithms (PLS, SVM, CatBoost) with a

1DCNN model. Our results unequivocally demonstrated that the

combination of HSI and 1DCNN yielded superior predictive

performance, with an average R2 exceeding 0.9 for all

components. Importantly, unlike traditional methods, the

performance of the 1DCNN model was not significantly

dependent on feature wavelength selection.

Overall, our findings highlight the tremendous potential of HSI

coupled with a deep learning model in simultaneously determining

multiple key components in PTR. Considering the advantages of

spectral detection, this approach offers a viable and efficient solution

for non-destructive quality control assessment of PTR, which can be

applicable to both off-line and on-line settings. Furthermore, future

research can delve into advanced deep learning techniques like

attention mechanisms to boost predictive capabilities and broaden

HSI applications in quality assessment.
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