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Soybean cyst nematode (SCN) is a destructive pathogen of soybeans responsible

for annual yield loss exceeding $1.5 billion in the United States. Here, we

conducted a series of genome-wide association studies (GWASs) to

understand the genetic landscape of SCN resistance in the University of

Missouri soybean breeding programs (Missouri panel), as well as germplasm

and cultivars within the United States Department of Agriculture (USDA) Uniform

Soybean Tests—Northern Region (NUST). For the Missouri panel, we evaluated

the resistance of breeding lines to SCN populations HG 2.5.7 (Race 1), HG 1.2.5.7

(Race 2), HG 0 (Race 3), HG 2.5.7 (Race 5), and HG 1.3.6.7 (Race 14) and identified

seven quantitative trait nucleotides (QTNs) associated with SCN resistance on

chromosomes 2, 8, 11, 14, 17, and 18. Additionally, we evaluated breeding lines in

the NUST panel for resistance to SCN populations HG 2.5.7 (Race 1) and HG 0

(Race 3), and we found three SCN resistance-associated QTNs on chromosomes

7 and 18. Through these analyses, we were able to decipher the impact of seven

major genetic loci, including three novel loci, on resistance to several SCN

populations and identified candidate genes within each locus. Further, we

identified favorable allelic combinations for resistance to individual SCN HG

types and provided a list of available germplasm for integration of these unique

alleles into soybean breeding programs. Overall, this study offers valuable insight

into the landscape of SCN resistance loci in U.S. public soybean breeding

programs and provides a framework to develop new and improved soybean

cultivars with diverse plant genetic modes of SCN resistance.

KEYWORDS

soybean (Glycine max (L.) Merr.), SCN (Heterodera glycines Ichinohe), resistance to
Heterodera glycines 1 (Rhg1), genome wide association study (GWAS), a-soluble N-
ethylmaleimide sensitive factor attachment protein (a-SNAP)
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1 Introduction

Soybean cyst nematode (SCN; Heterodera glycines Ichinohe) is

the number one pathogen of soybeans responsible for annual yield

loss exceeding $1.5 billion in the United States (Bandara et al.,

2020). SCN populations are classified by HG type (HG = H.

glycines) (formerly race designations) based on their reproductive

potential on a set of soybean indicator lines compared to a

susceptible check (Howland et al., 2018). The former race system

initially classified SCN populations into 16 races based on their

ability to reproduce on four differential lines, including Pickett,

plant introduction (PI) 548402 (‘Peking’), PI 88788, and PI 90763

(Riggs and Schmitt, 1988). The race classification system was later

expanded to include PI 437654 as a measure of SCN parasitism

owing to concerns regarding the utility of this system in the

characterization of resistance (Schmitt and Shannon, 1992). The

race system was updated to the HG type test in 2002, where an SCN

population is assigned a numerical designation based on the

indicator line number to which it is virulent (female index >10)

using a set of seven indicator lines, including 1) PI 548402, 2) PI

88788, 3) PI 90763, 4) PI 437654, 5) PI 209332, 6) PI 89772, and 7)

PI 548316 (‘Cloud’) (Niblack et al., 2002).

Planting resistant soybean cultivars is a cost-effective and eco-

friendly strategy for SCN management (Mitchum, 2016). Multiple

studies have investigated the genetic mechanisms of SCN resistance

over the last six decades, and 216 QTL regions have been identified

and cataloged at SoyBase.org to date (www.soybase.com, 2023).

Two major genes and their alleles, Rhg1 and Rhg4 (resistance to H.

glycines 1 and 4), have been utilized by public and private soybean

breeders for the development of SCN resistance cultivars. The Rhg1

locus has been shown to harbor a tandem repeat of three genes in

multiple copies, including an a-soluble N-ethylmaleimide-sensitive

factor attachment protein gene (GmSNAP18; Glyma.18g022500)

(Cook et al., 2012; Lee et al., 2015). Two resistant haplotypes of

Rhg1, namely, rhg1-b and rhg1-a, have been previously identified

and shown to carry slightly different versions of a-soluble N-

ethylmaleimide-sensitive factor attachment protein (a-SNAP)

encoded by GmSNAP18 (Cook et al., 2014). The abnormal a-
SNAP proteins encoded by these resistant haplotypes have been

demonstrated to impart resistance through poisoning of the SCN

syncytia (Bayless et al., 2016). The Rhg4 locus, in contrast, has been

shown to encode a cytosolic serine hydroxymethyl transferase gene

(GmSHMT08; Glyma.08g108900) (Liu et al., 2012). The resistant

Rhg4 allele has been shown to harbor two single-nucleotide

polymorphism (SNP) substitutions that alter the function of the

encoded protein (Liu et al., 2012). SCN resistance gene sources have

been classified into PI 88788- and Peking-type resistance based on

these two loci and their allelic/haplotype variants (Bayless et al.,

2019). The PI 88788-type resistance is attributed to the rhg1-b

haplotype at the Rhg1 locus. Contrastingly, Peking-type resistance

governs an epistatic effect between the rhg1-a haplotype at the Rhg1

locus and the Rhg4 locus (Liu et al., 2012; Liu et al., 2017), along

with an additional epistatic interaction between rhg1-a and the SCN

resistance locus rhg2 (Basnet et al., 2022).

It has been shown that the a-soluble N-ethylmaleimide-sensitive

factor attachment protein gene (GmSNAP11; Glyma.11g234500)
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located at the Rhg2 locus contributes a role in Peking-type SCN

resistance (Lakhssassi et al., 2017; St-Amour et al., 2020; Suzuki et al.,

2020; Basnet et al., 2022; Shaibu et al., 2022). The resistant Rhg2 allele

carries a splice site variant that induces a premature stop codon

resulting in low protein abundance (Matsye et al., 2012; Bayless et al.,

2018). In addition to GmSNAP18 and GmSNAP11, soybean harbors

three GmSNAPs on chromosomes 2, 9, and 14. GmSNAP02 has now

been shown to confer resistance to HG 1.2.5.7 populations through a

loss-of-function (Usovsky et al., 2023). GmSNAP14 has previously

been reported to not play a role in SCN resistance (Lakhssassi et al.,

2017), while the function of GmSNAP09 has not been reported.

Additional investigations into the molecular mechanisms responsible

for resistance governed by rhg1-a and rhg1-b have pointed to an

unusual allele of the N-ethylmaleimide-sensitive factor gene

(GmNSFRAN07; Glyma.07g195900) on chromosome 7, which is

essential for viability of soybeans carrying these resistance loci

(Bayless et al., 2018).

Traditionally, bi-parental quantitative trait locus (QTL)

mapping studies have been successfully used to elucidate the

genetic regions associated with resistance to different SCN

populations (Guo et al., 2005; Guo et al., 2006; Wu et al., 2009;

Vuong et al., 2021). Despite the widespread utilization of bi-

parental QTL mapping and its success in trait discovery, this

method suffers from low genomic resolution due to limited

recombination events and the ability to only capture the

polymorphisms between the two parents (Zhu et al., 2008).

Genome-wide association studies (GWASs) are an efficient

complementary approach to QTL mapping, which allow the

determination of marker–trait associations in genetically

unstructured accession panels (Zhu et al., 2008). In soybeans,

GWASs have been successfully employed to validate Rhg1 and

Rhg4 SCN resistance loci (Han et al., 2015; Vuong et al., 2015; Tran

et al., 2019; Tian et al., 2023). Further, quantitative trait nucleotides

(QTNs) on chromosomes 18 and 19 have been identified in Glycine

soja accessions for resistance to HG 2.5.7 (Race 5) using a GWAS

(Zhang et al., 2016). A similar analysis using G. soja accessions

identified QTNs on chromosomes 4, 9, and 16 for resistance to HG

2.5.7 (Race 1) (Zhang et al., 2017). Investigations into resistance for

HG 0 (Race 3) using a GWAS have identified QTNs on

chromosomes 7 and 10 (Tran et al., 2019). A recent study using a

GWAS identified Rhg1, Rhg2, GmNSFRAN07, and a QTN on

chromosome 7 for resistance to HG 0 (Tian et al., 2023). These

studies demonstrate the effectiveness of GWASs in identifying

marker–trait associations for complex traits such as SCN resistance.

Despite the discovery of multiple loci in previous studies, most

cultivars grown in the United States have been reported to utilize

the rhg1-b allele for SCN resistance (McCarville et al., 2016;

McCarville et al., 2017; Rincker et al., 2017; Howland et al., 2018;

Chowdhury et al., 2021). The limited application of other major and

minor effect QTLs in public and private breeding programs could be

attributed to issues associated with the introgression of these loci.

This is especially true for minor effect loci where the use of these loci

is hindered by the time-consuming nature of backcrossing and

potential linkage drag associated with trait introgression.

Furthermore, excessive use of rhg1-b over long periods has led to

a shift in SCN populations, where a widespread increase in HG 2.-
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and 1.2.- populations have been observed (Howland et al., 2018;

Chowdhury et al., 2021).

In this study, we aimed to catalog the resistance loci for

individual SCN populations by conducting GWASs with

experimental lines and cultivars from the University of Missouri

soybean breeding programs (Missouri panel) and with breeding

lines and cultivars from within the United States Department of

Agriculture (USDA) Uniform Soybean Tests—Northern Region

(NUST panel). Compared to the USDA Soybean Germplasm

Collection, which consists of 20,087 genotyped wild and

cultivated soybean accessions, these two panels consisted solely of

breeding lines and cultivars from Missouri and other breeding

programs from the northern and mid-western states of the USA

and provinces of Canada. Due to decades of breeding for SCN

resistance, these two panels have a higher frequency of SCN

resistance alleles than the USDA Soybean Germplasm Collection.

Hence, GWASs using these panels enabled us to understand the

landscape of resistance loci in these two panels and to decipher the

novel sources of SCN resistance with a higher resolution. The major

and minor QTNs identified in this study offer great potential in

selective and precise breeding for SCN resistance. Hence, this study

provides solutions to diversify commercially available soybean

cultivars with novel sources of SCN resistance.
2 Materials and methods

2.1 Plant material and SCN bioassay

Two different GWAS panels were used for analysis in this study.

The first panel consisted of advanced breeding lines and cultivars

from the University of Missouri’s northern and southern soybean

breeding programs (Missouri panel). The lines and cultivars in this

panel were generated by the University of Missouri’s soybean

breeding programs as part of routine breeding efforts for the

development of high-quality soybean cultivars. To screen for SCN

resistance, these lines were phenotyped with five SCN inbred

populations: HG 2.5.7 (Race 1), HG 2.5.7 (Race 5), HG 1.2.5.7

(Race 2), HG 0 (Race 3), and HG 1.3.6.7 (Race 14). The number of

breeding lines in this panel is listed in Table 1 and ranged from 150

lines for HG 1.3.6.7 (Race 14) to 1,136 lines for HG 0 (Race 3). SCN

bioassays were performed for these lines over a period of 7 years

from 2016 to 2022 at the Ashland Plant Growth Facility, University

of Missouri-Columbia, MO, in accordance with the Standardized

Cyst Evaluation Protocol (Niblack et al., 2009). Briefly, seedlings

from each test line along with the susceptible controls (Lee 74 and

Williams 82), seven indicator lines for the HG type test (Niblack

et al., 2002), and Pickett, a differential line for SCN race test (Riggs

and Schmitt, 1988), were transplanted into pots (100 cm3) of steam-

pasteurized sandy loam soil. Each soybean line included five

replicates organized in a randomized complete block design. Two

days post-transplanting, seedlings were inoculated with 1,000 eggs,

and the pots were suspended in temperature-controlled water tanks

to maintain 27°C soil temperature. Twenty-eight days post-

inoculation, the females from each sample were collected from

the roots of each plant and manually counted using a stereo
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microscope. The mean number of cysts from each line was

obtained, and a female index (FI) value was calculated by dividing

the mean number of cysts from the test line by the mean number of

cysts from the susceptible control and multiplying by 100. Lines

with an extremely high number of females were not counted and

assigned a FI value of ≥60.

The second panel consisted of 512 breeding lines evaluated for

SCN resistance within the USDA Uniform Soybean Tests—

Northern Region (NUST panel) (Cai and Brock, 2022). USDA

Uniform Soybean Tests—Northern Region aims to critically

evaluate the soybean lines from the northern and mid-western

states of the USA and provinces of Canada for yield, quality, and

disease resistance. Lines within the NUST have been screened

annually for SCN resistance at the University of Illinois SCN

greenhouse since 2009. The SCN inbred populations HG 2.5.7

(Race 1) and HG 0 (Race 3) were used as inoculum, and a

healthy seedling from each line was inoculated with 1,000 eggs

from each SCN population separately. Three technical replicates for

each line were infected and grown at a controlled soil temperature

of 27°C for 30 days. Finally, the number of cysts was counted, and

the phenotypes were reported as FI in the yearly NUST report.
2.2 Genotyping data and quality control

The genotypic data for the Missouri panel were assembled from

the University of Missouri’s northern and southern breeding

programs. Briefly, the genomic DNA for these lines was extracted

with the cetyl trimethyl ammonium bromide (CTAB) method

(Doyle and Doyle, 1987), and SNP genotyping was performed at

Soybean Genomics and Improvement Laboratory, USDA-ARS,

Beltsville, MD, using Illumina Infinium BARCSoySNP6K

BeadChip (Song et al., 2020). From over 6,000 resulting SNPs, a

total of 4,383 high-quality SNPs were selected for the analysis after

eliminating the SNPs with more than 10% of missing data or

heterozygosity and minor allele frequencies of less than 5%. For

the NUST panel, the Illumina array-based SNP genotyping data

(SoySNP6K) for cultivars were obtained from the SoybeanBase

website (https://soybeanbase.breedinginsight.net/), and a total of

4,315 high-quality SNPs were obtained after quality control using

the same criteria as previously described.
2.3 Genome-wide association study for
resistance to SCN

Initially, GWASs were performed for individual SCN

populations in each of the full GWAS panels. For this, both

Mixed Linear Model (MLM) (Yu et al., 2006) and Multi-Locus

Mixed-Model (MLMM) (Segura et al., 2012) algorithms were used

and implemented in R statistical software using the Genomic

Association and Prediction Integrated Tool (GAPIT) package

(Wang and Zhang, 2021). These analyses are referred to as

unfixed GWASs in this study. The optimal number of principal

components (PCs) was identified visually from the screen plots, and

a kinship matrix was calculated using the VanRaden method
frontiersin.org
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TABLE 1 Summary table of QTNs identified for individual SCN populations in unfixed GWASs for Missouri and NUST panels along with average
accuracies (%).

Panel
Statistical
model

HG
(race)

Number
of

genotypes

QTN SNP
chromosome

QTN SNP
position

(Wm82.a2.v1)

QTN
SNP ID

Average
accuracy

(%)

Candidate SCN
resistance gene
within 1 Mbp

Missouri MLM
HG
2.5.7

(Race 1)
784

18 1,562,536 ss715629144 85% Glyma.18g022500

11 32,959,788 ss715610417 75% Glyma.11g234500

8 8,273,185 ss715602749 59% Glyma.08g108900

HG
1.2.5.7
(Race 2)

801
18 1,562,536 ss715629144 82% Glyma.18g022500

11 32,959,788 ss715610417 74% Glyma.11g234500

HG 0
(Race 3)

1136
18 1,621,020 ss715629217 28% Glyma.18g022500

8 8,273,185 ss715602749 53% Glyma.08g108900

HG
2.5.7

(Race 5)
657

18 1,562,536 ss715629144 83% Glyma.18g022500

11 32,959,788 ss715610417 73% Glyma.11g234500

8 8,273,185 ss715602749 61% Glyma.08g108900

HG
1.3.6.7
(Race
14)

150 18 1,621,020 ss715629217 33% Glyma.18g022500

MLMM
HG
2.5.7

(Race 1)
784

18 1,562,536 ss715629144 85% Glyma.18g022500

11 32,959,788 ss715610417 75% Glyma.11g234500

8 7,959,982 ss715602729 58% Glyma.08g108900

HG
1.2.5.7
(Race 2)

801

18 1,562,536 ss715629144 82% Glyma.18g022500

11 32,959,788 ss715610417 74% Glyma.11g234500

14 4,069,652 ss715618685 30% Glyma.14g054900

HG 0
(Race 3)

1136
18 1,621,020 ss715629217 28% Glyma.18g022500

8 8,273,185 ss715602749 54% Glyma.08g108900

HG
2.5.7

(Race 5)
657

18 1,562,536 ss715629144 83% Glyma.18g022500

11 32,959,788 ss715610417 73% Glyma.11g234500

8 8,273,185 ss715602749 61% Glyma.08g108900

HG
1.3.6.7
(Race
14)

150 18 1,621,020 ss715629217 33% Glyma.18g022500

NUST MLM HG
2.5.7

(Race 1)
512 18 1,562,536 ss715629144 61% Glyma.18g022500

HG 0
(Race 3)

512
18 1,621,020 ss715629217 82% Glyma.18g022500

7 36,493,756 ss715597434 27% Glyma.07g195900

MLMM HG
2.5.7

(Race 1)
512 18 1,562,536 ss715629144 61% Glyma.18g022500

HG 0
(Race 3)

512

18 1,621,020 ss715629217 82% Glyma.18g022500

6 9,163,989 ss715595659 48% NA

14 45,991,145 ss715619181 51% NA
F
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(VanRaden, 2008). The resulting population structure (Q Matrix)

and kinship matrix (K Matrix) were incorporated into the statistical

models as covariates to account for false positives (Wang and

Zhang, 2021).

After the initial unfixed GWASs, each panel was fixed separately

for the alternate allele of the chromosome 18 QTNs detected in

individual SCN population GWASs by eliminating all the

individuals carrying the Williams 82 version of this QTN in each

panel. Consequently, the Missouri panel was fixed for the alternate

allele of QTN18a (ss715629144 SNP) for HG 2.5.7 (Race 1), HG

1.2.5.7 (Race 2), and HG 2.5.7 (Race 5), while for HG 0 (Race 3) and

HG 1.3.6.7 (Race 14), the panel was fixed for the alternate allele of

QTN18b (ss715629217 SNP). Similarly, the NUST panel was fixed

for the alternate allele of QTN18a for HG 2.5.7 (Race 1) and the

alternate allele of QTN18b for HG 0 (Race 3). After the creation of

each new panel, all the GWASs were conducted again using only the

MLMM method with the same criteria as defined for the unfixed

GWASs. These subsequent GWASs are referred to as fixed GWASs

from here onward.

The average accuracy values for individual SNPs in each GWAS

were computed using the Accuracy concept (Škrabisǒvá et al.,

2022), which enables the assessment of direct correspondence

between a phenotype and a genotype and can be implemented

using the AccuCalc package (Biová et al., 2023). Since the Accuracy

concept can be utilized only for the binomial phenotypes, the SCN

virulence phenotypes were converted based on the female index

into a binary format where the lines with FI ≤ 30 were assigned a

mutant (MUT) phenotype while the lines with FI ≥ 30 were

assigned wild-type (WT) phenotypes. The average accuracy

(Avr_acc) for individual SNPs was computed according to the

following equation devised by Škrabisǒvá and colleagues:

Average Accuracy( % )

=
WT Accuracy +Mutant Accuracy

2

� �
� 100

This accuracy measure was integrated into the individual

Manhattan plots to illustrate the measure of direct correspondence

between the SNP markers and the binary phenotypes. Further,

reported SCN resistance or a-SNAP genes within 1 Mbp from the

QTNs were included in the plots along with their distance from

the QTNs.
2.4 Evaluation of SCN phenotypes by
allelic combinations

To evaluate the differences in mean FIs for Missouri panel lines

carrying different allelic combinations of QTNs detected in

individual population GWAS, the female indices for genotypes

were plotted by allelic combinations. Separate plots were created

for QTNs detected in fixed and unfixed GWASs. The Rhg1

genotypes derived from two KASP assays (Rhg1-2 and SNAP18-

1) were used to distinguish between reference susceptible allele

Rhg1-c and two resistance alleles rhg1-a and rhg1-b and overlaid on

the resulting plots (Kadam et al., 2016; Usovsky et al., 2021).
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2.5 Rhg alleles and accuracy analysis

To confirm variant positions of previously proposed causal

mutations (CMs) and to analyze additional alleles at the different

Rhg loci, we explored allelic variation by utilizing the Soybean Allele

Catalog (Chan et al., 2023). Here, we queried Rhg1/GmSNAP18

(Glyma.18g022500), Rhg4/GmSHMT08, and Rhg2 (Glyma.11g234500)

and visualized the results.

Accuracy analysis serves the purpose of direct correspondence

assessment between a genotype and a phenotype and a binary

phenotype and a variant position (Škrabisǒvá et al., 2022). Briefly, it

is based on the fact that many genetic variants are of a biallelic

nature. Therefore, if an observed phenotype is categorized into a

binomial distribution (WT/MUT), Accuracy can be calculated for

every variant position in the genotype. Therefore, in forward

GWASs, Accuracy serves as a measure of direct correspondence

between a binarized phenotype and a marker position derived from

low-density genotyping data. In forward GWASs, Accuracy

explores the correspondence between an observed phenotype and

variant positions (markers, CM, or other variant positions), whereas

in inverse GWASs, the landscape of association with the CM is

revealed if the gene has been cloned and CM is known. In inverse

GWASs, the CM variant position is used as a synthetic phenotype

(Škrabisǒvá et al., 2022). Here, we used Accuracy in both GWAS

directions. By inverse GWASs, we aimed to evaluate how well the

associated markers of the SoySNP6K chip can predict the individual

CMs. In forward GWASs, we ascertained the correspondence of

individual CMs and other associated variant positions to resistance

against individual SCN populations.

First, we performed the inverse GWAS with the Soy775 whole-

genome sequencing (WGS) data set in the AccuTool (https://

soykb.org/AccuTool/index.php) (Škrabisǒvá et al., 2022) by using

the following candidate CMs: rhg1-a (Gm18:1,643,660 Wm.82.a2.;

allele D208E), rhg1-b (Gm18:1,643,643; allele Q203K), Rhg4-a

(Gm08:8,361,148; allele P200R) (Patil et al., 2019), and previously

identified splice site position at the Rhg2 (Gm11:32,969,916; splice)

(Lakhssassi et al., 2017; Bayless et al., 2018; Shaibu et al., 2022). We

used CMs as synthetic phenotypes (reference base at the CM

position as WT phenotype and alternate base as MUT

phenotype) individually and defined an arbitrary range of plus

and minus 2 Mbp around the CM for the inverse GWASs. We

selected the option to return only SoySNP50K positions and sorted

the results for descending Average accuracy.

For Accuracy analysis, we utilized a subset of 1,066 whole

genome resequenced (WGRS) soybean accessions (Soy1066 data

panel) available at SoyKB (https://soykb.org/). This panel contains

publicly available data sets and has been filtered to contain

approximately 38 million high-quality polymorphic positions

(Chan et al., 2023). The panel was subsetted to include the lines

for which SCN female indices were reported by Patil et al. (2019).

Two categories of SCN resistance status as a binarized phenotype

(WT or MUT) were used for this analysis, and all the lines with FI >

60 were coded as SCN-susceptible and therefore assigned as WT. In

contrast to WT accessions, we categorized only those accessions as

MUT that exhibited resistance to SCN with FI< 30 for the rhg1 and
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Rhg2 calculations or FI< 10 for the Rhg4 calculation. To maximize

the statistical power of the Accuracy analysis, we increased the

number of WT accessions by adding those of Soy1066 with

susceptible SCN resistance status according to phenotypes

publicly available in the GRIN database (https://www.ars-grin.gov;

downloadable at Soybase, https://soybase.org/grindata/). For this,

we considered an accession as being susceptible (WT) if it had

susceptible phenotypes for all SCN populations available in the

GRIN. In total, there were 135 accessions in the Soy1066 that we

coded as WT/SCN-susceptible phenotype. For each SCN resistance

locus, a 10-Mbp genomic region around the tagging markers was

analyzed by the AccuCalc tool to ascertain accuracy (Biová

et al., 2023).

Finally, to dissect the effect of individual Rhg alleles on

resistance to SCN populations, we performed the Accuracy

analysis independently for HG 2.5.7 (Race 1) and HG 0 (Race 3).

For this purpose, we subsetted the accessions based on their rhg1-a,

rhg1-b, and Rhg4 allele status and calculated Accuracy for every

variant position in the 10-Mbp regions by AccuCalc. Further, we

processed the results as follows: we filtered the variant positions for

WT accuracy (Acc_WT) ≥90.00%, sorted the variant positions by

descending Average accuracy, and further subsetted the results for

functional effect predicted variant positions only (moderate and

high SNPEff (Cingolani et al., 2012) effect classes).
3 Results

3.1 Genome-wide marker associations for
SCN resistance in Missouri panel

GWASs were performed for individual SCN populations using

MLM and MLMM statistical models in the individual curated

panels of breeding lines (Missouri and NUST panels). Here, we

used both MLM and MLMM statistical models to determine the

model with higher statistical power and accuracy. The QTNs

detected in each of these analyses are reported in Table 1. A total

of four significant QTNs on chromosomes 8, 11, and 18 (QTN08,

QTN11, QTN18a, and QTN18b) were detected as significantly

associated (−log10 (p-val) >5) with SCN resistance using the

MLM statistical model (Figure 1). For HG 2.5.7 (Race 1) and HG

2.5.7 (Race 5) populations, three identical QTNs were detected on

chromosomes 8, 11, and 18 (QTN08, QTN11, and QTN18a)

(Figures 1A, D). Identical QTNs were detected on chromosomes

11 and 18 (QTN11 and QTN18a) for resistance to HG 1.2.5.7

population (Figure 1B); however, no QTN was detected on

chromosome 8. A QTN on chromosome 18 (QTN18b) was also

detected for HG 0 (Figure 1C) and HG 1.3.6.7 (Figure 1E), which

was ~60,000 bp upstream from QTN18a identified for other HG

types. Additionally, QTN08 was identified for HG 0; however, no

further QTNs were detected for HG 1.3.6.7.

A total of six significant QTNs were detected on chromosomes

8, 11, 14, 17, and 18 (QTN08, QTN11, QTN14, QTN17, QTN18a,

and QTN18b) within the Missouri panel (Supplementary Figure 1)

using the MLMM statistical model. Additional QTNs on

chromosomes 14 and 17 were detected for HG 1.2.5.7 and HG
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2.5.7 (Race 5), respectively (Supplementary Figures 1B, D). The

average accuracy values for the QTN11 and QTN18a were above

70% for HG 2.5.7 (Race 1), HG 1.2.5.7 (Race 2), and HG 2.5.7 (Race

5), indicating high direct correspondence between associated

markers and the phenotype; however, the accuracy values were

approximately 50% for QTN08, indicating lower correspondence.

The average accuracy values of QTNs detected for resistance to HG

0 (Race 3) and HG 1.3.6.7 (Race 14) were approximately 50% or

below, indicating the low direct correspondence between associated

markers and phenotypes. QTN08, QTN11, QTN14, and QTN18a/

QTN18b identified in these analyses were within a 1-Mbp genomic

region surrounding the annotated genes GmSHMT08, GmSNAP11,

GmSNAP14, and GmSNAP18, respectively, while no such known

SCN resistance genes were identified within a 1-Mbp region

surrounding QTN17.
3.2 Genome-wide marker associations for
SCN resistance in NUST panel

In total, five loci on chromosomes 6, 7, 14, and 18 (QTN06,

QTN07, QTN14n, QTN18a, and QTN18b) were detected as

significantly associated (−log10 (p-val) >5) with SCN resistance

within the NUST panel. For HG 2.5.7 (Race 1), QTN18a was

detected using both MLM and MLMM methods (Figure 2A,

Supplementary Figure 2A). A QTN on chromosome 18

(QTN18b) was detected for HG 0 along with a QTN on

chromosome 7 (QTN07) using MLM analysis (Figure 2B). In

addition to the QTN18b, QTNs on chromosomes 6 and 14 were

detected for HG 0 (Race 3) when using the MLMMmodel; however,

the QTN07 was not detected (Supplementary Figure 2B). The

average accuracy value for QTN18a and QTN18b in this analysis

was above 60%, while low average accuracies were observed for

other QTNs identified in this panel. The QTN07, QTN18a, and

QTN18b identified in these analyses were within the 1-Mbp

genomic region surrounding the reported GmNSFRAN07 and

GmSNAP18 genes, while no genes related to SCN resistance have

been identified in the 1-Mbp genomic region surrounding QTN06

and QTN14n. Due to the discrepancy of QTN06 and QTN14n

between MLM and MLMM models and the lack of reported SCN

resistance genes in the surrounding regions, these QTNs were

considered spurious associations in this analysis.
3.3 Fixed-effect genome-wide marker
associations for minor effect QTNs
contributing to SCN resistance

After the initial GWASs using the Missouri and NUST panels,

we fixed both panels for the alternate allele of the chromosome 18

QTNs (QTN18a or QTN18b) detected in each SCN population

GWAS. This was achieved by discarding lines that carried the

reference (Williams 82) version of these QTNs from the unfixed

panel. Using these fixed-effect panels, we performed GWASs to

identify minor effect loci relative to the large effects of the rhg1-a

and rhg1-b alleles. We utilized MLMM for this analysis due to its
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superiority in statistical power over MLM. The total number of

genotypes in each analysis and the peak significant SNPs are

reported in Table 2.

For the fixed Missouri panel, QTN17 was detected for HG 2.5.7

(Race 1) in addition to HG 2.5.7 (Race 5) (Figure 3). A QTN on

chromosome 17 (QTN17) was also detected for HG 0; however, this

QTN was located 1.6 Mbp upstream of QTN17 detected for HG

2.5.7 (Race 1) and HG 2.5.7 (Race 5). An additional QTN on

chromosome 2 was identified for HG 1.2.5.7. Furthermore, the

QTN14 detected for HG 1.2.5.7 in the unfixed GWAS was also

detected for HG 2.5.7 (Race 1 and 5) in this analysis. The

chromosome 2 QTN identified in this analysis was within the 1-

Mbp genomic region surrounding the annotated GmSNAP02 gene.

The chromosome 17 QTN average accuracy value in this analysis

was above 70%, while low average accuracies were observed for all

other QTNs identified in this panel.

For the fixed NUST panel, no additional QTNs were detected

for HG 2.5.7 (Race 1). However, for HG 0, the previously detected
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QTNs on chromosomes 6, 7, and 14 were not detected in this

analysis, while an additional QTN on chromosome 20 was detected

(Supplementary Figure 3B). No reported SCN resistance genes were

located within a 1-Mbp region surrounding the chromosome 20

QTN, and the average accuracy value for all the QTNs identified in

this panel was low. The chromosome 20 QTN identified in the fixed

NUST GWASs was not analyzed further in our study due to

inconsistency across different methodologies and a lack of

reported SCN resistance genes in the region.
3.4 Impact of allelic combinations on
different SCN populations in Missouri panel

To elucidate the complex genetic architecture of resistance to

different SCN populations, we plotted the allelic combinations of

the observed QTNs in the Missouri panel against their FIs. Further,

we added the information from KASP marker data to distinguish
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FIGURE 1

Manhattan plots generated from genome-wide association study (GWAS) analyses for soybean cyst nematode (SCN) resistance within the Missouri panel
using Mixed Linear Model (MLM). The Manhattan plots highlight the average accuracy calculations (using a color scale on the right) for individual single-
nucleotide polymorphisms (SNPs), calculated using the AccuCalc package. (A) Manhattan plot for HG 2.5.7 (Race 1). (B) Manhattan plot for HG 1.2.5.7
(Race 2). (C) Manhattan plot for HG 0 (Race 3). (D) Manhattan plot for HG 2.5.7 (Race 5). (E) Manhattan plot for HG 1.3.6.7 (Race 14).
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between the effect of Rhg1 resistance alleles (rhg1-a and rhg1-b).

This analysis was not performed for the NUST panel due to the lack

of availability of the KASP marker data for that panel.

For HG 2.5.7 (Race 1), among the allelic combinations for the

QTN08, QTN11, and QTN18a detected in the unfixed GWAS,

the combination containing alternate alleles for all three QTNs was

the most resistant genotype (median FI = 7) (Figure 4A). The

combination with reference allele for QTN08 and alternate alleles

for other detected QTNs was the second most resistant genotype

among all combinations (median FI = 20) and had a larger

phenotypic range than the three alternate allele combinations.

Furthermore, the Rhg1 allele genotypes from KASP markers

indicated that rhg1-a allele is necessary for resistance in the allelic

combinations described above, while rhg1-b does not contribute to

resistance in identical combinations with QTN08 and QTN11. All

the other combinations showed susceptible phenotypes regardless

of the allelic status of the QTN18a.

When we fixed the Missouri panel for the alternate allele of

QTN18a, KASP marker data showed that the remaining lines

contained only the reference and rhg1-a alleles of Rhg1. The

absence of rhg1-b alleles from the fixed panel highlights the

accuracy of the QTN18a in distinguishing between rhg1-b and

rhg1-a alleles within this panel of soybean lines (Figure 4B). The

allelic combinations of QTNs detected in the HG 2.5.7 fixed GWAS

panel indicated that the combinations with alternate alleles of

QTN08 and QTN11 were resistant to HG 2.5.7 (Race 1) in the

presence of the rhg1-a allele. Furthermore, it was observed that the

alternate alleles for QTN17 and QTN14 imparted resistance

(median FI = 2) in combination with rhg1-a and rhg2 when the

reference allele was present for QTN08. Only moderate resistance

was observed when the reference allele of QTN17 was present in

such a combination.

For HG 1.2.5.7, the combination with alternate alleles for

QTN11 and QTN18a detected in unfixed GWAS exhibited a wide

range of phenotypes ranging from susceptible to resistant

(Figure 5A). Genotypes from KASP marker analysis indicated

that most lines in this combination carried the rhg1-a allele. All
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the other combinations in this analysis exhibited susceptible

phenotypes. Fixing the panel for alternate allele of QTN18a

resulted in lines containing only the reference and rhg1-a alleles

of Rhg1. Among the allelic combinations of the QTN02, QTN11,

and QTN14 in the HG 1.2.5.7 fixed GWAS (Figure 5B), the

combination with alternate alleles of QTN11 and QTN14 and

reference allele of QTN02 showed resistant phenotype (median FI

= 0), while the combination of the three alternate alleles together

showed a moderately resistant phenotype with a larger range of

female indices among those lines (median FI = 21). Combined with

genotypes from KASP markers, this result indicates that rhg1-a with

the alternate alleles QTN11 and QTN14 conferred resistance to

HG 1.2.5.7.

The lines with alternate alleles of QTN08 and QTN18b detected

in HG 0 unfixed GWAS demonstrated resistance (median FI = 5)

(Figure 6A). The combination with the reference allele of QTN08

and alternate allele QTN18b also showed resistance (median FI =

19); however, the spread of FIs among lines was much wider than

the combination with alternate alleles of both QTNs. Further, from

the KASP marker genotypes, it was observed that both rhg1-a and

rhg1-b alleles were involved in resistance to HG 0 and that the

QTN18b detected here was unable to distinguish between these

alleles. The allelic combinations of QTN08, QTN11, and QTN17

detected for the HG 0 using fixed GWAS indicated that the

combination of alternate alleles of these QTNs had the lowest

median FI (Figure 6B). The KASP marker data revealed this

allelic combination in the presence of rhg1-a conferred high

resistance to HG 0 (median FI = 0). Further, it was observed that

the rhg1-b allele conferred resistance to HG 0 regardless of the

allelic status of other QTNs.

For HG 2.5.7 (Race 5), the allelic combination with alternate

alleles for QTN08, QTN11, and QTN18a detected in HG 2.5.7 (Race

5) unfixed GWAS had a resistant phenotype with median FI equal

to 6 (Figure 7A). The combination with the reference allele of

QTN08 and alternate alleles of QTN11 and QTN18a displayed a

moderately susceptible phenotype (median FI = 36) with a wide

distribution of FIs. With insights from KASP marker data, this
B
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FIGURE 2

Manhattan plots generated from genome-wide association study (GWAS) analyses for soybean cyst nematode (SCN) resistance within the NUST
panel using Mixed Linear Model (MLM). The Manhattan plots highlight the average accuracy calculations (using a color scale on the right) for
individual single-nucleotide polymorphisms (SNPs), calculated using the AccuCalc package. (A) Manhattan plot for HG 2.5.7 (Race 1). (B) Manhattan
plot for HG 0 (Race 3).
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indicates that rhg1-a along with alternate alleles of QTN08 and

QTN11 conferred resistance to HG 2.5.7 (Race 5). When we fixed

the Missouri panel for the alternate allele of QTN18a, the KASP

marker data showed that the remaining lines only contained

reference and rhg1-a alleles of Rhg1. Among the allelic

combinations for QTN08, QTN11, QTN14, and QTN17 detected

in HG 2.5.7 (Race 5) fixed GWAS, the combinations with alternate

alleles of QTN08 and QTN11 demonstrated resistant phenotypes

(median FI = 7) (Figure 7B). Additionally, it was observed that the

alternate alleles of QTN14 and QTN17 imparted resistance when

the reference allele of QTN08 and the alternate allele of QTN11

were present. The remaining combinations in this analysis were not

effective and exhibited susceptible phenotypes.
3.5 Accuracy of GWAS QTN to the
causal mutations

To analyze previously identified alleles of SCN resistance genes

in the context of a diverse panel of 1,066 soybean resequenced

accessions, we queried Rhg loci in the Soybean Allele Catalog.
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Among the alleles, we identified variant positions of the known

causal and candidate mutations. For Rhg1 (Glyma.18g022500), we

detected the resistance alleles rhg1-a (Gm18:1,643,660 Wm82.a2;

allele D208E) and rhg1-b (Gm18: 1, 643, 643; allele Q203K). For

Rhg4 (Glyma.08g108900), we identified the resistance allele at

pos i t ion (Gm08:8 ,361 ,148 ; a l l e l e P200R) . For Rhg2

(Glyma.11G234500), we detected the resistance allele rhg2 at the

position Gm11:32,969,916 that causes mis-splicing resulting in a

premature stop codon (Lakhssassi et al., 2017; Bayless et al., 2018).

We used these positions in subsequent Accuracy analyses.

By inverse GWAS, we aimed to evaluate how well the associated

markers of the SoySNP6K chip can predict the individual CMs. To

assess the direct correspondence between the individual CMs and

the low-density markers, we calculated the Accuracy of each of the

CMs that were used as a synthetic phenotype (Škrabisǒvá et al.,

2022). Here, we used variant positions of the identified CMs for

rhg1-a, rhg1-b, Rgh4 (Patil et al., 2019), and rhg2 (Matsye et al.,

2012) in inverse GWASs with SoySNP6K chip low-density data as

the genotype. The results revealed 85% average accuracy

(Avg_Accu) for rhg1-a (D208E) to QTN18a detected for HG

2.5.7 (Races 1 and 5) and HG 1.2.5.7 (Race 2). For the rhg1-b
TABLE 2 Summary table of QTNs identified for individual SCN populations in fixed GWASs for Missouri and NUST panels along with average
accuracies (%).

Panel
Statistical
model

HG
(race)

Number
of

genotypes

QTN SNP
chromosome

QTN SNP
position

(Wm82.a2.v1)

QTN
SNP ID

Average
accuracy

(%)

Candidate SCN
resistance gene
within 1 Mbp

Missouri MLMM

HG
2.5.7
(Race
1)

306

11 32,959,788 ss715610417 23% Glyma.11g234500

8 8,273,185 ss715602749 56% Glyma.08g108900

14 4,100,480 ss715618699 34% Glyma.14g054900

17 13,176,053 ss715626052 67% NA

HG
1.2.5.7
(Race
2)

311

11 32,959,788 ss715610417 27% Glyma.11g234500

14 4,100,480 ss715618699 22% Glyma.14g054900

2 44,427,664 ss715583112 52% Glyma.02g260400

HG 0
(Race
3)

273

8 8,273,185 ss715602749 56% Glyma.08g108900

18 2,229,173 ss715629936 25% Glyma.18g022500

11 32,959,788 ss715610417 47% Glyma.11g234500

17 18,790,751 ss715626347 46% NA

HG
2.5.7
(Race
5)

263

11 32,959,788 ss715610417 25% Glyma.11g234500

8 8,273,185 ss715602749 59% Glyma.08g108900

17 13,176,053 ss715626052 75% NA

14 4,856,342 ss715619352 42% Glyma.14g054900

NUST MLMM HG
2.5.7
(Race
1)

481 18 1,621,020 ss715629217 63% Glyma.18g022500

HG 0
(Race
3)

128
18 665,442 ss715632544 25% Glyma.18g022500

20 44,272,285 ss715638506 38% NA
QTNs, quantitative trait nucleotides; SCN, soybean cyst nematode; GWAS, genome-wide association study; SNP, single-nucleotide polymorphism; MLM, Mixed Linear Model; MLMM, Multi-
Locus Mixed-Model; NA, Not Applicable.
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(Q203K) inverse analysis, QTN18b detected for HG 0 (Race 3) and

HG 1.3.6.7 (Race 14) had 76% Avg_Accu, while QTN18a had less

specificity (67% Avg_Accu). The Rhg4 (P200R) Avg_Accu to the

QTN08 was 94%, and the rhg2 (splice) Avg_Accu to QTN11 was

83%. This analysis demonstrated that QTN18a could be used as a

proxy for rhg1-a, while QTN18b could be used to a lesser extent for

rhg1-b. The QTN08 had the highest accuracy for detection of

resistance from Rhg4, and QTN11 could be used as a proxy for rhg2.

The observed phenotype accuracy analysis was performed with

the Soy1066 WGS data set with available SCN resistance phenotype

information: a subset of 135 fully SCN susceptible accessions and up

to 28 accessions with SCN resistance (FI< 30) specific to HG 2.5.7

(Races 1 and 5), HG 1.2.5.7 (Race 2), HG 0 (Race 3), and/or HG

1.3.6.7 (Race 14). Although this analysis had low power due to the

limited number of resistant accessions, the analysis prioritizing the

susceptible (WT) accessions was able to dissect the rhg1-a and rhg1-

b alleles and confirm the connection between the GWAS QTNs on

chromosomes 11 and 8 with rhg2 and Rhg4, respectively. The results

demonstrated that QTN18a more specifically predicted the rhg1-a

allele compared to rhg1-b, which is in accordance with the higher

frequency of rhg1-a allele in the indicator lines and thus also

represents the majority of SCN-resistant lines of the Soy1066 data
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set (Supplementary Table 1) (Patil et al., 2019). For highly resistant

accessions (FI = 0 to 9) to SCN population HG 2.5.7 (Race 1), the

Rhg4 tagging QTN08 had high accuracies (93% Avg_Accu) with the

SCN resistance phenotype (Supplementary Table 1). For accessions

resistant to HG 2.5.7 (Race 1) and HG 0, the accuracies were 89%

and 87% for the rhg2 tagging QTN11, respectively.

Another observed phenotype Accuracy analysis was performed

with the Soy1066 WGS data filtered for modifying variants using a

subset of accessions resistant (FI< 30) to HG 2.5.7 (Race 1) and HG

0. This analysis focused on the candidate CMs. For HG 2.5.7 (Race

1), higher accuracies were achieved for rhg1-a (D208E) compared to

rhg1-b (Q203K) (Supplementary Table 2). The missense SNP for

L288I, which may be the result of a small indel adjacent to that

position, was present in both the rhg1-a D208E and rhg1-b Q203K

alleles and therefore had very high accuracies. Both Rhg4 (P130R/

P200R) and rhg2 (splice) had very high accuracies for HG 2.5.7

(Race 1), 100%, and 91%, respectively (Supplementary Table 2). For

the HG 0 (Race 3), rhg2 (splice) had a very high accuracy 91%, while

a lower accuracy was observed for Rhg4 (78%), which appeared to

be the result of the more balanced presence of both rhg1-b and rhg1-

a alleles in resistant accessions (Supplementary Table 3). Though a

similar accuracy analysis was performed for the GWAS QTNs on
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FIGURE 3

Manhattan plots generated from Multi-Locus Mixed-Model (MLMM)-based genome-wide association study (GWAS) analyses for soybean cyst
nematode (SCN) resistance within Missouri panel fixed for the alternate allele of the chromosome 18 quantitative trait nucleotide (QTN) detected in
individual SCN race unfixed GWASs. The lines were fixed for the alternate allele of QTN18a (ss715629144) for HG 2.5.7 (Race 1), HG 1.2.5.7 (Race 2),
and HG 2.5.7 (Race 5), while for HG 0 (Race 3), the panel was fixed for the alternate allele of QTN18b (ss715629217). The Manhattan plots highlight
the average accuracy calculations (using a color scale on the right) for individual single-nucleotide polymorphisms (SNPs), calculated using the
AccuCalc package. (A) Manhattan plot for HG 2.5.7 (Race 1). (B) Manhattan plot for HG 1.2.5.7 (Race 2). (C) Manhattan plot for HG 0 (Race 3). (D)
Manhattan plot for HG 2.5.7 (Race 5).
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chromosomes 2, 14, and 17, the very small number of phenotyped

SCN-resistant accessions in the Soy1066 data set along with the

multigenic nature of the trait led to insufficient power to identify

candidates with high accuracy.
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4 Discussion

In this study, we provided a detailed overview of the SCN

resistance landscape in the University of Missouri soybean breeding
B
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FIGURE 4

Female index score for lines in Missouri panel to HG 2.5.7 (Race 1) plotted by resistance quantitative trait nucleotides (QTNs). (A) Grouped by
resistance QTNs identified in unfixed genome-wide association study (GWAS). (B) Grouped by resistance QTNs identified in GWAS with genotypes
fixed for QTN18a (ss715629144). The x-axis represents resistance QTNs in the breeding lines, while the y-axis represents female indices (FI %). The
data points are colored for different alleles of Rhg1 observed using KASP assays according to the color scheme in the legend. NG in the legend
stands for “not genotyped”.
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FIGURE 5

Female index score for lines in Missouri panel to HG 1.2.5.7 (Race 2) plotted by resistance quantitative trait nucleotides (QTNs). (A) Grouped by
resistance QTNs identified in unfixed genome-wide association study (GWAS). (B) Grouped by resistance QTNs identified in GWAS with genotypes
fixed for QTN18a (ss715629144). The x-axis represents resistance QTNs in the breeding lines, while the y-axis represents female indices (FI %). The
data points are colored for different alleles of Rhg1 observed using KASP assays according to the color scheme in the legend. NG in the legend
stands for “not genotyped”.
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programs and the USDA Uniform Soybean Tests—Northern

Region (NUST). Overall, through multiple GWASs using various

SCN populations with different levels of virulence, we identified

seven major QTNs on chromosomes 2, 7, 8, 11, 14, 17, and 18.

Further, we successfully linked the QTNs detected in our study to

the causal mutations previously reported for Rhg1, rhg2, and Rhg4

loci using accuracy calculations. However, our accuracy calculations

for QTN02, QTN07, QTN14, and QTN17 were limited by low

detection power due to the relatively small number of phenotyped

SCN-resistant accessions in the Soy1066 database. Due to the

proximity (<300,000 bp) of QTN02, QTN07, and QTN14 to

GmSNAP02, GmNSFRAN07, and GmSNAP14, respectively, we

hypothesize that our identified QTNs potentially represent these

candidate genes in this analysis.

Here, we confirmed the PI 88788 (rhg1-b) and Peking (rhg1-a +

Rhg4) sources of resistance to HG 0 in the Missouri panel and

additionally found that QTN17, in combination with rhg1-a, Rhg4,

and rhg2, contributed to resistance against HG 0 (Race 3). The

QTN17 reported in this study offers potential for further

investigation and introgression into breeding programs for HG 0

(Race 3) resistance. A QTL on chromosome 17 has earlier been

reported to be involved in resistance to HG 1.2.5.7 (Wu et al., 2009;

Kazi et al., 2010). Further, there is evidence that this genomic region

is also involved in resistance to HG 1.3.6.7 in combination with

other resistance loci (Schuster et al., 2001), and we show that

QTN17 also plays a role in resistance to HG 0 as well as HG 2.5.7

(Races 1 and 5).

Contrastingly, we observed that QTN18b (rhg1-b) in

combination with QTN07 (GmNSFRAN07) provided resistance to

HG 0 in the NUST panel. Previous studies have demonstrated the
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coinheritance of GmNSFRAN07 with disease resistance Rhg1 alleles

and its important protective function against Rhg1 a-SNAP-related
cytotoxicity (Bayless et al., 2016). Here, we expected this locus to be

largely fixed in the population and consequently non-significant in

the GWAS. However, the locus being significant in this analysis

indicates that there are genotypes in the NUST panel that do not

harbor SCN resistance. Further, the non-significance of this locus in

the Missouri panel is most likely attributed to this locus being fixed

in the majority of breeding lines in our study. These contrasting

results in our study provide a unique insight into breeding strategies

adopted for SCN resistance in Missouri breeding programs versus

the rest of the breeding programs in the northern United States.

Epistatic interaction between rhg1-a and rhg2 in combination

with Rhg4 has been demonstrated to confer resistance to virulent

HG 2.5.7 (Races 1 and 5) populations (St-Amour et al., 2020; Suzuki

et al., 2020; Basnet et al., 2022). We confirmed this in our GWASs

for the Missouri panel and additionally found QTN17 and QTN14

to be involved in resistance. These two QTNs helped to impart

resistance in combination with rhg1-a and rhg2 to both Races 1 and

5 in the absence of the Rhg4 resistance allele. All the combinations

containing the rhg1-b allele were susceptible to these populations in

our analysis. Further, we observed only the Rhg1 locus for resistance

to Race 1 in the NUST panel, which hints toward a general lack of

effective resistance toward this race in the lines submitted to

these trials.

Additionally, an epistatic effect between rhg1-a and rhg2 has

previously been shown to impart resistance to HG 1.2.5.7

populations (Guo et al., 2006; Wu et al., 2009; Basnet et al.,

2022). In this study, however, we determined that the lines

carrying such a combination of associated QTN had a largely
B

A

FIGURE 6

Female index score for lines in Missouri panel to HG 0 (Race 3) plotted by resistance quantitative trait nucleotides (QTNs). (A) Grouped by resistance
QTNs identified in unfixed genome-wide association study (GWAS). (B) Grouped by resistance QTNs identified in GWAS with genotypes fixed for
QTN18b (ss715629217). The x-axis represents resistance QTNs in the breeding lines, while the y-axis represents female indices (FI %). The data points
are colored for different alleles of Rhg1 observed using KASP assays according to the color scheme in the legend. NG in the legend stands for “not
genotyped”.
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bimodal distribution of phenotypes (FI) with a group of susceptible

lines and a group of resistant lines. Such distribution of phenotypes

could be attributed to multiple alternate alleles of the Rhg2 locus,

where some of these alleles are not involved in resistance to this

SCN population. Importantly, this also indicates that other loci are

involved in conferring resistance to this virulent SCN population.

Partitioning the SCN phenotypes based on markers from our

GWAS showed that QTN14 and QTN02, potentially representing

GmSNAP14 and GmSNAP02, contributed to resistance against this

virulent SCN population in addition to rhg1-a and rhg2. Further,

the GmSNAP14 and GmSNAP02 candidate genes, much like Rhg1

and Rhg2, are orthologs of each other, which hints at possible

interaction effects between the two loci in the downstream

molecular pathways. A previous study has suggested that

GmSNAP14 and GmSNAP02 play no role in resistance to HG 0

populations (Lakhssassi et al., 2017), yet most recently, GmSNAP02

has been proven to contribute to SCN resistance in HG 1.2.5.7

populations through a loss-of-function (Usovsky et al., 2023). From

our analyses, we conclude that further investigations are needed to

delineate the role of the candidate genes GmSNAP14 and

GmSNAP02 in molecular pathways governing resistance to

virulent nematode populations.

The absence of chromosome 8 and 11 QTNs in the NUST panel

indicates the low frequency of these important alleles and the

overutilization of SCN resistance conferred by the rhg1-b allele.

The lack of diverse SCN resistance sources in the NUST panel is

concerning as resistance governed by the rhg1-b allele is not as

effective as it once was due to the widespread increase in virulent

SCN populations. Contrastingly, diverse modes of resistance to

SCN observed in the Missouri panel highlight the historical
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by the University of Missouri’s southern breeding program. These

efforts started in the 1960s as a collaboration between Dr. Edgar

Hartwig (USDA, Mississippi) and Dr. Satish Anand (University of

Missouri) who aimed to develop breeding lines with Peking-type

SCN resistance. Consequently, some of the first SCN-resistant

cultivars developed in the United States included ‘Pickett’ (Brim

and Ross, 1966), ‘Dyer’ (Epps and Hartwig, 1967), and ‘Custer

(Luedders et al., 1968) and carried a combination of rhg1-a, Rhg4,

and rhg2 resistance loci from the cultivar Peking. Later, PI 437654

and PI 90763 were introduced into the breeding program as sources

of SCN resistance, and PI 437654 was backcrossed to Forrest to

develop ‘Hartwig’ (PI 543795). Hartwig was the first cultivar

reported to be resistant to all known populations of SCN (Anand,

1992). The cultivar Hartwig has been an essential part of the

southern breeding program at the Fisher Delta Research,

Extension, and Education Center (FDREEC) of the University of

Missouri. The next generation of soybean cultivars and germplasm

with supreme SCN resistance were released for soybean farmers by

Dr. J. Grover Shannon and included S97-1688 (Anand et al., 2004)

and S05-11482 (Shannon et al., 2015). These cultivars harbored

several sources of SCN resistance genes including Peking, Forrest,

PI 437654, and PI 90763. It is important to highlight the unique

genetic diversity, high allelic frequency, and unique allelic

combinations contributing to SCN resistance in the Missouri

panel, which enabled the detection of otherwise rare alleles in this

GWAS. The diversity of modes of resistance adopted in the

Missouri breeding programs can serve as a valuable resource for

other breeding programs in the region to tackle the increase in

virulent SCN populations.
B

A

FIGURE 7

Female index score for lines in Missouri panel to HG 2.5.7 (Race 5) plotted by resistance quantitative trait nucleotides (QTNs). (A) Grouped by
resistance QTNs identified in unfixed genome-wide association study (GWAS). (B) Grouped by resistance QTNs identified in GWAS with genotypes
fixed for QTN18a (ss715629144). The x-axis represents resistance QTNs in the breeding lines, while the y-axis represents female indices (FI %). The
data points are colored for different alleles of Rhg1 observed using KASP assays according to the color scheme in the legend. NG in the legend
stands for “not genotyped”.
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Overall in this study, we identified loci governing resistance to

virulent SCN populations and described various allelic

combinations that could be integrated into breeding programs for

SCN resistance. Notably, QTN02 and QTN14 identified in our

study are important resources to breed the next generation of SCN-

resistant soybeans. Further investigations into the candidate genes,

GmSNAP02 and GmSNAP14, associated with these QTNs will

enhance our understanding of molecular mechanisms governing

SCN resistance. Moreover, the QTN17 reported here holds promise

to delineate unique SCN resistance mechanisms along with helping

to breed soybean lines with diverse modes of SCN resistance.

Finally, we provide a list of breeding lines carrying favorable

allelic combinations that could be used in breeding for SCN-

resistant germplasm while minimizing the issue of linkage drag

associated with trait introgression (Supplementary Tables 4-7).
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