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and Yingshan Dong1,2*
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Powdery mildew (PMD), caused by the pathogen Microsphaera diffusa, leads to

substantial yield decreases in susceptible soybean under favorable

environmental conditions. Effective prevention of soybean PMD damage can

be achieved by identifying resistance genes and developing resistant cultivars. In

this study, we genotyped 331 soybean germplasm accessions, primarily from

Northeast China, using the SoySNP50K BeadChip, and evaluated their resistance

to PMD in a greenhouse setting. To identify marker-trait associations while

effectively controlling for population structure, we conducted genome-wide

association studies utilizing factored spectrally transformed linear mixed models,

mixed linear models, efficient mixed-model association eXpedited, and

compressed mixed linear models. The results revealed seven single nucleotide

polymorphism (SNP) loci strongly associated with PMD resistance in soybean.

Among these, one SNPwas localized on chromosome (Chr) 14, and six SNPs with

low linkage disequilibrium were localized near or in the region of previously

mapped genes on Chr 16. In the reference genome of Williams82, we discovered

96 genes within the candidate region, including 17 resistance (R)-like genes,

which were identified as potential candidate genes for PMD resistance. In

addition, we performed quantitative real-time reverse transcription polymerase

chain reaction analysis to evaluate the gene expression levels in highly resistant

and susceptible genotypes, focusing on leaf tissues collected at different times

after M. diffusa inoculation. Among the examined genes, three R-like genes,

including Glyma.16G210800, Glyma.16G212300, and Glyma.16G213900, were

identified as strong candidates associated with PMD resistance. This discovery

can significantly enhance our understanding of soybean resistance to PMD.

Furthermore, the significant SNPs strongly associated with resistance can serve

as valuable markers for genetic improvement in breeding M. diffusa-resistant

soybean cultivars.

KEYWORDS

soybean, powdery mildew, single nucleotide polymorphism, GWAS, candidate genes
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1268706/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1268706/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1268706/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1268706/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1268706&domain=pdf&date_stamp=2023-11-02
mailto:wangdech@msu.edu
mailto:wangym@cjaas.com
mailto:ysdong@cjaas.com
https://doi.org/10.3389/fpls.2023.1268706
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1268706
https://www.frontiersin.org/journals/plant-science


Sang et al. 10.3389/fpls.2023.1268706
1 Introduction

Cultivated soybean (Glycine max L.) is a significant oil crop

worldwide, providing essential food, oil, and protein (Hartman

et al., 2011). Powdery mildew (PMD), caused by the pathogen

Microsphaera diffusa Cooke & Peck, is a widespread fungal disease

inflicting substantial economic losses in soybean production

regions, such as Brazil, Japan, northeast India, south China,

Australia, and parts of the USA (Dunleavy, 1976; Leath and

Carroll, 1982; Gonçalves et al., 2002; Takamatsu et al., 2002;

Mctaggart et al., 2012; Baiswar et al., 2016; Li et al., 2016). PMD

development is favored by moderate rainfall, high humidity, and

low temperatures (Phillips, 1984). Mignucci and Boyer (1979)

discovered 18°C to be favorable for PMD development on

susceptible cultivars, while Alves et al. (2009) reported that

temperatures around 23°C and 24°C favored PMD intensity

progress in Conquista and Suprema cultivars, respectively. Hence,

the optimal temperature range for PMD development is 18°C to 24°

C. Below 15°C and above 30°C, the infection severity may decrease

(Mignucci and Boyer, 1979; Phillips, 1984; Alves et al., 2009). PMD

symptoms on susceptible plants include white powder patches on

leaf surfaces, chlorosis, yellow islands, rusty stains, defoliation, and

a combination of these (Grau, 2006; Mctaggart et al., 2012). PMD

often reduces soybean yield by 30–40% and can even result in total

loss in susceptible cultivars during epidemic years (Gonçalves et al.,

2002; Jun et al., 2012).

Host plant resistance is the most effective measure to reduce

PMD damage (Ramalingam et al., 2020). Three alleles at the Rmd

locus—Rmd, Rmd-c, and rmd—determine soybean’s response to

PMD (Lohnes and Bernard, 1992). Although the Rmd-c allele

provides resistance to PMD throughout the soybeans’ entire

growth cycle, the Rmd gene governs adult plant resistance to

PMD (Mignucci and Lim, 1980). In contrast, soybean plants

carrying the homozygous recessive allele rmd are susceptible

throughout their life cycle (Lohnes and Bernard, 1992). The

Rmd-c gene of Williams isoline L76-1988 is located on soybean

classical LG19 equivalent to chromosome (Chr) 16 between Rps2

and Rj2, with genetic distances of 2.3 cM and 1.9 cM, respectively

(Lohnes et al., 1993; Polzin et al., 1994). Rmd_PI243540 from

cultivated soybean PI 243540 is situated within a 10.9 cM region

flanked by the single-nucleotide polymorphisms (SNPs) marker

BARC-021875-04228 and the simple sequence repeat (SSR)

marker Sat_224 (Kang and Mian, 2010). Rmd_PI567301B in

cultivar PI567301B is located within a 1.4 cM region flanked by

t h e S S R m a r k e r s B A R C S O Y S S R _ 1 6 _ 1 2 9 8 a n d

BARCSOYSSR_16_1272 (Jun et al., 2012). Rmd_V97-3000 in

cultivar V97-3000 is located between two SSR markers Satt547

and Sat_396, at distances of 3.8 cM and 3.9 cM, respectively

(Wang et al., 2013). Similarly, Rmd_B3 in cultivar B3 is located

between SSR markers GMES6959 and Satt_393, with distances of

7.1 cM and 4.6 cM, respectively. Furthermore, Rmd_B13 in

cultivar B13 is delimited to a 188.06 kb region harboring 28

genes (Jiang et al., 2019). Recently, the PMD adult plant resistance

gene Rmd_ZH24 from cultivar ZH24 was precisely located within

a 32.8-kb genomic interval region delimited by the markers

Gm16_428 and InDel14 on Chr16. To date, PMD resistance (R)
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genes from seven donor soybean cultivars or lines have all been

mapped to the end of Chr16 (Zhou et al., 2022).

Genome-wide association studies (GWAS) have become a

powerful alternative to linkage mapping for analyzing complex

trait variations at the genomic level, utilizing ancient

recombination events at the population level (Zhu et al., 2008).

GWAS significantly improves the precision and accuracy of

marker-phenotype associations compared to linkage analysis with

biparental mapping populations. In soybean, GWAS has been

utilized to identify markers linked to various disease resistance

traits, including soybean cyst nematode resistance (Chang et al.,

2016; Zhang et al., 2016; Tran et al., 2019; Shi et al., 2021), sudden

death syndrome (Zhang et al., 2015; Chang et al., 2016), Sclerotinia

stem rot (Wei et al., 2015; Wei et al., 2017; Jing et al., 2021), Soybean

mosaic virus (Chang et al., 2016; Che et al., 2017), white mold

(Bastien et al., 2014; Wen et al., 2018), root knot nematode

(Alekcevetch et al., 2021), Phytophthora root rot (Chang et al.,

2016; Li et al., 2022), southern root knot nematode (Passianotto

et al., 2017), and brown stem rot (Chang et al., 2016; Rincker et al.,

2016), as well as resistance to bacterial pustule, Diaporthe stem

canker, soybean rust, reniform nematode, Bean pod mottle virus,

and Peanut mottle virus (Chang et al., 2016). Despite identifying

PMD R-genes through bi-parental crosses (Kang and Mian, 2010;

Jun et al., 2012; Wang et al., 2013; Jiang et al., 2019; Zhou et al.,

2022), GWAS is rarely used to investigate traits associated with

soybean PMD resistance. Therefore, this study aimed to (i) identify

genes linked to PMD resistance using GWAS and (ii) explore

potential genes at GWAS-identified loci through differential gene

expression analysis. The results can enhance our understanding of

the genetic control of PMD resistance and provide potential

molecular markers for breeding PMD-resistant soybean cultivars

against M. diffusa.
2 Results

2.1 Phenotypic analysis of PMD resistance

In the association mapping population, we observed a

substantial variance in PMD resistance based on the disease

severity index (DSI) (Supplementary Table S1). The DSI values

for the 331 soybean germplasm accessions (SGAs) ranged from 0 to

100, with a mean of 36.92, and followed a reverse normal

distribution. Among the 331 SGAs evaluated, 85 accessions were

highly resistant (HR), 20 were resistant (R), 69 were moderately

resistant (MR), 45 were moderately susceptible (MS), 39 were

susceptible (S), and 83 were highly susceptible (HS) (Figures 1A, B).
2.2 Quality control and linkage
disequilibrium decay

A total of 331 SGAs were genotyped using the SoySNP50K

BeadChip, resulting in the characterization of profiles for 52,041

single nucleotide polymorphisms (SNPs). After filtering SNPs with

a minor allele frequency of less than 5% in at least 80% of
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genotypes, 30,602 high-quality SNPs were obtained, providing

widespread coverage across the entire soybean genome.

Population structure analysis and association mapping were

performed using these high-quality SNPs. Within a 1000 kb

window, pairwise linkage disequilibrium (LD) was estimated,

and the LD decay rate, measured by the point at which the

correlation coefficient (r2) dropped to half of its maximum value,

was determined to be 109 kb at r2 = 0.422 (Figure 2). The LD

decay observed was lower than previously reported values for

improved lines (233 kb) and landraces (187 kb) (Wen et al., 2015).

This difference may be attributed to the involvement of fewer

genotypes in the two panels, as the same BeadChip was used

for genotyping.
2.3 Analysis of population structure of
331 SGAs

The population structure of the 331 SGAs was analyzed using

STRUCTURE 2.3.4 software (Pritchard et al., 2000) based on 1643

unlinked SNPs. A sharp peak of Delta K at K=2 (Figure 3A)

indicated the presence of two sub-populations, designated as

clusters Q1 and Q2. Among the 331 SGAs, 155 were assigned to

the Q1 sub-population, comprising 56 from Hei Long Jiang

Province (HLJ), 60 from Ji Lin Province (JL), 31 from Liao Ning

Province (LN), 7 from Inner Mongolia (IM), and 1 from Bei Jing

(BJ). The Q2 sub-population consisted of 176 SGAs, including 63

from HLJ, 87 from JL, and 26 from LN (Figure 3C; Supplementary

Table S2). A Q-matrix was obtained and utilized for association

mapping after determining the optimal K value. Principal

component analysis (PCA) and phylogenetic tree analysis of the

331 SGAs confirmed the clustering patterns predicted by the

STRUCTURE analysis (Figures 3B, C). These results indicated a

subpopulation structure among the 331 SGAs, and the Q matrix

could be incorporated as a covariate to reduce the false positive rate

in the GWAS model.
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2.4 GWAS for PMD resistance

SNP-trait associations for DSI were investigated using four

models: factored spectrally transformed linear mixed models

(FaST-LMM), compressed mixed linear model (CMLM), mixed-

model association eXpedited (EMMAX), and efficient mixed linear

model (MLM). Quantile-quantile plots (Q-Q plots) of the four

models showed initial consistency between observed and expected

P values, with significant deviation beginning from the expected P

value as the -log10P value increased to approximately 3.5 (Figure 4).

The four models demonstrated very effective control of error

associations. The significance threshold with Bonferroni correction

was set at -log10(1/30,602) = 4.49. From the greenhouse evaluations,

we identified seven strongly associated SNPs with DSI (Table 1,

Figure 4): one SNP on Chr14 (ss715619284) and six on Chr16

(ss715624888-60.2kb-ss715624901-214.6kb-ss715624926-51.1kb-

ss715624931-4.8kb-ss715624933-73.3kb-ss715624939). Among

these, ss715624933 exhibited the highest significance across all four

GWAS models, followed by ss715624939 and ss715624901. The

pairwise LD of the six significant SNPs on Chr16 was relatively

low, indicating no tight linkage between them (Figure 5). Comparing

the locations of the significant SNPs identified in this study with

published R-genes from previous bi-parental mapping results,

ss715624888 and ss715624901 were found in the overlapped region

of Rmd_B3 and Rmd_V97-3000, while the other four SNPs were

located in front of Rmd_B3, but not within the genomic regions of

Rmd_B13, Rmd_PI567301B, and Rmd_ZH24 (Figure 6).
2.5 Prediction of candidate genes
underlying PMD resistance

We focused on six significant SNPs on Chr16: ss715624933

(Gm16_37,051,712, MAF=0.207), ss715624939 (Gm16_37,125,034,

MAF=0.486), ss715624901 (Gm16_36,781,107, MAF=0.483),

ss715624931 (Gm16_37,046,875, MAF=0.356), ss715624926
BA

FIGURE 1

Disease severity of 331 SGAs to M.diffusa. (A) Bio-assay phenotyping results of 331 SGAs for PMD resistance. (B) Bio-assay phenotypic distribution
results of 331 SGAs for PMD resistance.
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(Gm16_36 , 995 , 747 , MAF=0 .446 ) , and s s715624888

(Gm16_36,720,932, MAF=0.474). Soybean plants carrying the

favorable allele (GG) on ss715624933, ss715624888, ss715624926,
Frontiers in Plant Science 04
and ss715624931 showed significantly higher PMD resistance (mean

DSI=30.10, 27.39, 27.58, and 22.38, respectively) than those carrying

the unfavorable allele (AA) (mean DSI=63.28, 45.61, 45.07, and 45.05,

respectively) (Figures 7A–D). Similarly, soybeans carrying the

favorable allele (AA) on ss715624901 exhibited significantly higher

PMD resistance (mean DSI=28.19) than those carrying the adverse

allele (GG) (Mean DSI=46.35) (Figure 7E). Soybeans carrying the

favorable allele (CC) on ss715624939 also displayed significantly

higher PMD resistance (mean DSI=28.04) than those carrying the

alternative allele (AA) (mean DSI=46.53) (Figure 7F). Due to the low

LD between the six significant SNP loci, we focused on a 622.1kb

region (from 109kb before ss715624888 to 109kb after ss715624939)

and performed candidate gene prediction based on gene models of

the cultivated soybean genome assembly version Glyma.Wm82.a2.v1.

Within this region, we identified a total of 96 putative causal genes, of

which 17 genes possessed the Toll-interleukin receptor (TIR)-

nucleotide binding site (NBS)-leucine-rich repeat (LRR) domain,

known for its significance in soybean disease resistance

(Supplementary Table S3). The 17 R-like genes were annotated

using the Gene Ontology (GO, https://www.ebi.ac.uk/QuickGO/)

and the eukaryotic orthologous groups (KOG, https://

www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=KOG1493)

databases. Most of these genes displayed similar functional

descriptions, including protein kinase activity, innate immune

response, ADP binding, apoptosis, protein phosphorylation, protein
FIGURE 2

Average LD decay of 331 SGA associated populations. The average
LD decay rate was estimated as r2 employing all pairs of SNP
markers located within a 1000 kb physical distance in euchromatic
and heterochromatic regions in 331 SGAs.
B

C

A

FIGURE 3

Population structure analysis of 331 SGAs. (A) The average of LnP(k) and Delta k values when k varies from 1 to 10. (B) In a two-dimensional scatter
plot of PCA, subgroups 1 and 2 are represented by the red and blue dots, respectively. (C) Combination map of population structure and neighbor-
joining tree for 331 SGAs, with each segment representing the percentage of individuals in the population. Grouped by population structure.
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B

C

D

A

FIGURE 4

GWAS of PMD in 331 SGAs. (A) Manhattan plot and Q-Q plot generated from genome-wide analysis of PMD resistance in 331 SGAs using MLM(Q+K).
Negative log10 P-values from a genome-wide scan are displayed against the position on each soybean chromosome. The horizontal red dotted line
indicates the Bonferroni test threshold as 1/total (-log10P=4.49). (B) Manhattan plot and Q-Q plot generated from genome-wide analysis of PMD
resistance in 331 SGAs using CMLM (Q+K), as in (A). (C) Manhattan plot and Q-Q plot generated from genome-wide analysis of PMD resistance in
331 SGAs using EMMAX (Q+K), as in (A). (D) Manhattan plot and Q-Q plot generated from genome-wide analysis of PMD resistance in 331 SGAs
using FaST-LMM (K), as in A.
TABLE 1 List of significant SNPs detected by different statistic models.

Year Method SNP Physical position Significant region -log10(P)

Chr. Position Start End

2019 MLM ss715624933 16 37051712 36942712 37160712 6.3

ss715624939 16 37125034 37016034 37234034 5.22

ss715624901 16 36781107 36672107 36890107 5.2

ss715624888 16 36720932 36611932 36829932 4.67

ss715619284 14 46661760 46552760 46770760 4.59

ss715624931 16 37046875 36937875 37155875 4.56

ss715624926 16 36995747 36886747 37104747 4.5

(Continued)
F
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binding, nucleic acid binding, signal transduction, and other

biological and metabolic processes (Supplementary Table S4).

Additionally, they participated in plant cell signal transduction

mechanisms by producing leucine-rich repeat proteins, serine or

threonine protein kinases, and some proteins containing F-box and

apoptotic ATPase (Supplementary Table S5). Moreover,

Glyma.16g208100, Glyma.16g208200, and Glyma.16g208300 were

identified to play roles in plant defense mechanisms by producing

arylacetamide deacetylase (Supplementary Table S5). These three

genes shared similar functional descriptions, including pollen tube

growth, hydrolase activity, carboxylic ester hydrolase activity, and

other catabolic and metabolic processes (Supplementary Table S4).

Based on these findings, we considered these 17 R-like genes and the

trio of carboxyesterase 18 genes as potential candidate genes.
2.6 Expression profiling for
candidate genes

We analyzed the expression patterns of 20 candidate genes in

ZDD06944 (which carries unfavorable alleles at ss715624888,

ss715624901, ss715624926, ss715624931, ss715624933, and
Frontiers in Plant Science 06
ss715624939 loci and is considered susceptible, HS.) and

ZDD00359 (which carries favorable alleles at ss715624888,

ss715624901, ss715624931, ss715624933, and ss715624939 loci

and is considered resistant, HR) using real-time reverse

transcription polymerase chain reaction (qRT-PCR) analysis

(Figure 8). Among the 20 genes, three genes (Glyma.16G210800,

Glyma.16G212300, and Glyma.16g213900) displayed differential

expression between ZDD06944 and ZDD00359, and were up-

regulated in the highly resistant accession ZDD00359 after M.

difusa treatment. In ZDD00359 (HR), the expression patterns of

these three putative candidate genes significantly increased at 6 and

12 h after treatment, with peak expression observed at 12 h.

Glyma.16G212300 also showed increased expression at 6 h,

reaching the maximum value (approximately 216.8-fold) at 12 h,

and then rapidly decreased at 24, 48, and 72 h. A comparable

expression pattern was observed for Glyma.16g213900, where the

expression level peaked (approximately 6.5-fold) at 12 h after

treatment, followed by a rapid decrease. In contrast, the

expression level of Glyma.16G210800 in ZDD00359 (HR) reached

the maximum value (approximately 8.56-fold) at 6 h after treatment

and started to decrease at 48 h. Based on these expression patterns,

we concluded that these three R-like genes were induced by M.
TABLE 1 Continued

Year Method SNP Physical position Significant region -log10(P)

Chr. Position Start End

CMLM ss715624933 16 37051712 36942712 37160712 6.3

ss715624939 16 37125034 37016034 37234034 5.22

ss715624901 16 36781107 36672107 36890107 5.2

ss715624888 16 36720932 36611932 36829932 4.67

ss715619284 14 46661760 46552760 46770760 4.59

ss715624931 16 37046875 36937875 37155875 4.56

ss715624926 16 36995747 36886747 37104747 4.5

EMMAX ss715624933 16 37051712 36942712 37160712 7.39

ss715624939 16 37125034 37016034 37234034 5.45

ss715624901 16 36781107 36672107 36890107 5.33

ss715624931 16 37046875 36937875 37155875 4.79

ss715624926 16 36995747 36886747 37104747 4.73

ss715624888 16 36720932 36611932 36829932 4.73

ss715619284 14 46661760 46552760 46770760 4.52

FastLMM ss715624933 16 37051712 36942712 37160712 7.66

ss715624939 16 37125034 37016034 37234034 5.56

ss715624901 16 36781107 36672107 36890107 5.5

ss715624931 16 37046875 36937875 37155875 4.93

ss715624888 16 36720932 36611932 36829932 4.83

ss715624926 16 36995747 36886747 37104747 4.75

ss715619284 14 46661760 46552760 46770760 4.56
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FIGURE 6

Comparison of physical location between candidate regions of the large-effect marker (ss715624933) and reported resistance genes to PMD in
soybean. (A) Relative physical location of the PMD resistance gene Rmd_V97-3000. (B) Relative physical location of the PMD resistance gene
Rmd_PI24540. (C) Relative physical location of the PMD resistance gene PMD_PI567301B. (D) Relative physical location of the PMD resistance gene
Rmd_B3. (E) Relative physical location of the PMD resistance gene Rmd_B13. (F) Relative physical location of the PMD resistance gene Rmd_ZH24.
(G) Relative physical location of the PMD resistance gene Rmd_ZDD00359. Rmd_ZDD00359: The linkage region of the six significant SNP loci on
Chr16 (ss715624888-60.2kb-ss715624901-214.6kb-ss715624926-51.1kb-ss715624931-4.8kb-ss715624933-73.3kb-ss715624939).
FIGURE 5

Candidate regions of the six significant SNP loci associated with PMD in soybean. The -log10 P-values of the SNPs from the PMD GWAS are
displayed in the top panel for the physical location of a given chromosome region. The bottom panel represents the horizontal range of LD in the
area calculated using R2, and the color key shows R2 values. The horizontal red dotted line represents a significant threshold for GWAS (-log10(p)
>4.49). a: significant SNP ss715624888; b: significant SNP ss715624901. c: significant SNP ss715624926; d: significant SNP ss715624931. e:
significant SNP ss715624933; f: significant SNP ss715624939.
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diffusa and may play a role in the soybean ’s disease

defense mechanism.
3 Discussion

In this study, we identified a total of seven SNPs significantly

associated with PMD resistance, and the LD analysis revealed that
Frontiers in Plant Science 08
they were not tightly linked. Previous studies consistently identified

the end of Chr16 as the location of all PMD R-genes in different

soybean varieties or lines (PI567301B, V97-3000, PI243540, B13, B3,

and ZH14). These gene regions were determined through a blast

search of flanking markers based on the cultivated soybean reference

genome (Williams 82.a2.v1) (Figure 6). Specifically, Rmd_V97-3000

was located within a region of approximately 3.6 Mb, covering all

other mapped R-genes. The regions of Rmd_PI24540 differed from
B

C D

E F

A

FIGURE 7

Differences in PMD resistance between accessions carrying different alleles. (A) Allele effect of PMD marker ss715624888 in 331 SGAs. (B) Allele
effect of PMD marker ss715624901 in 331 SGAs. (C) Allele effect of PMD marker ss715624926 in 331 SGAs. (D) Allele effect of PMD marker
ss715624931 in 331 SGAs. (E) Allele effect of PMD marker ss715624933 in 331 SGAs. (F) Allele effect of PMD marker ss715624939 in 331 SGAs. The
effects of different alleles were statistically analyzed using an unpaired two-tailed Mann–Whitney’s t-test. **** denotes the statistical significance
level at P < 0.0001.
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those of Rmd_B1, Rmd_ZH14, and PMD_PI567301B. Additionally,

the regions of Rmd_B1 and Rmd_ZH14 were distinct from that of

PMD_PI567301B. Rmd_B13’s location partly overlapped with the

region of Rmd_PI567301B, while it was different from that of

Rmd_PI24540. Previous studies have suggested that soybean PMD

resistance sources, such as PI567301B, PI243540, and the cultivated

variety CNS, may carry different R-genes based on map positions and

verification tests of three markers (Jun et al., 2012). Combining the

comparative analysis of the mapping results of these R-genes with our

GWAS findings, it could be possible that three or more loci were

involved in controlling PMD resistance. However, confirmation

through experimental support, such as allelism tests, was required.

Furthermore, if the sources mentioned above carried distinct R-genes,

a gene pyramid composed of different R-genes could potentially

enhance resistance to PMD. Nevertheless, our study demonstrated

that GWAS analysis was an excellent tool for identifying the gene(s)

underlying soybean PMD resistance. Moreover, the SNPs strongly

linked to PMD resistance identified in this study were valuable for

molecular marker-assisted selection (MAS).

GWAS signals are often challenging to interpret biologically, as

they frequently reside in gene deserts or regions with multiple

plausible causative genes (Nica et al., 2010). Examining differential

gene expression patterns has been proposed as a promising method
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to understand GWAS signals biologically better (Emilsson et al.,

2008). In this study, we identified a total of 96 putative genes within

a 622.1 kb region, including 17 genes with the TIR-NBS-LRR

domain crucial for disease resistance in plants. Among these,

Glyma.16G210800, Glyma.16G212300, and Glyma.16g213900

exhibited differential expression between ZDD06944 and

ZDD00359, with up-regulated expression in the highly resistant

accession ZDD00359 after M. diffusa infection. Previous studies

have suggested that genes showing distinct expression patterns

among different accessions tend to be associated with

susceptibility or resistance results, either directly or indirectly.

Conversely, genes with different expression dynamics across time

may represent the general plant reactions to pathogen infections

without necessarily conferring increased resistance (Calla et al.,

2009). Therefore, these genes are considered as strong candidate

genes. Jiang et al. (2019) discovered that nine of the 17 R-like genes

in Rmd_B13 exhibited differential expressions in resistant and

susceptible parents. As the 622.1 kb candidate region partially

overlapped with Rmd_B13, the nine R-like genes within the

overlapped region were assayed by qRT-PCR in this experiment.

Among them, Glyma.16g213900 consistently demonstrated altered

expressions after M. diffusa treatment, suggesting its potential role

in regulating soybean PMD defense. However, another gene,
FIGURE 8

Relative expression levels of candidate genes of Rmd_ZYDD00359 in ZYDD06944 (HS) and ZYDD00359 (HR). ZYDD06944 and ZYDD00359
seedlings were cultivated for 10 d, followed by spraying M. diffusa spore suspension (1×105 cfu/ml) and examined at 0, 6, 12, 24, 48, and 72 h post-
inoculation. Values are presented as means ± SEs (n ≥ 3).
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Glyma.16G212300, located near the peak SNP, showed significantly

up-regulated expression in the highly resistant accession ZDD00359

and deserved special attention. Future studies will focus on verifying

the functional effects of these R-like genes and elucidating the

molecular mechanisms underlying soybean PMD resistance.

Currently, a substantial number of plant disease-resistant genes

have been identified, with approximately 80% belonging to the

NBS-LRR gene family, which includes a central NBS domain and C-

terminal LRR based on whether the N-terminal is homologous to

TIR (Meyers et al., 1999; Bai et al., 2002; Cannon et al., 2002). Kang

et al. (2012) reported the presence of 175 disease-resistant

quantitative trait loci (QTLs) and 319 hypothetical NBS-LRR

genes in soybean. Among these, 40 genes encoded NBS-LRR

proteins, and 19 disease-resistant QTLs were clustered on Chr16.

It is believed that gene families providing disease resistance may

have clustered together through duplication and divergence of

common ancestors (Ribas et al., 2011). Notably, PMD resistance

loci contain clustered R-like genes, and nearby regions have been

discovered to harbor disease R-genes or QTLs for resistance to

biotic stressors in the soybean genome, such as a cluster of

resistance gene analogs (Graham et al., 2002). For plant breeders,

clustering these R-genes poses challenges in pyramiding and

introgressing various resistance alleles into a single breeding line,

especially when recombination suppression is present (Verlaan

et al., 2011). Previous studies have demonstrated that some R-

gene clusters act as natural pyramids of resistance genes against

different pathogens. For example, certain Mi-1 homologs in NIL-

Ol-4 have been identified to confer resistance to aphids, nematodes,

and PMD (Seifi et al., 2011). Therefore, the efforts to identify

soybean sources with multiple resistances to different causal

pathogens hold great promise for enhancing soybean

breeding programs.
4 Conclusions

In this study, GWAS identified seven SNPs significantly

associated with PMD resistance. Three genes (Glyma.16G210800,

Glyma.16G212300, and Glyma.16g213900) presented differential

expression between highly susceptible and highly resistant

accessions after M. diffusa infection, suggesting their potential as

candidate genes. These PMD resistance-associated SNPs could

serve as valuable markers for MAS in soybean breeding.
5 Materials and methods

5.1 Plant materials and inoculation

All 331 SGAs used in this study were provided by the National

Genebank of China (Beijing, China) and maintained by the Soybean

Institute of Jilin Academy of Agricultural Sciences (Supplementary

Table S1). The SGAs mainly originated from Northeast China,

comprising 127 bred varieties (lines) and 204 landraces
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(Supplementary Table S6). The greenhouse experiment was

conducted at the Jilin Academy of Agricultural Sciences

(Gongzhuling, China) in September 2019. Each SGA, along with

resistant and susceptible controls, was sown in a 2-gallon plastic pot

with 10 seeds, and after emergence, the seedlings were thinned to 5

plants. The experiment followed a complete block randomized

design with three replications. For infection, soybean leaves from

HS plants were used to obtain M. diffusa spores. The spores were

then cleaned from the leaves of susceptible plants and sprayed

evenly on each plant’s leaves at the V1 stage using a 1×105 cfu/ml

spore suspension until the top leaves were completely wet (Jun et al.,

2012). The inoculated soybeans were maintained in the greenhouse

with a temperature range of about 18–25°C and a photoperiod of 8

h night and 16 h light. Daily plant management was performed, and

water spray was done twice a day at 8:00 AM and 5:00 PM to

maintain leaf wetness for one week.
5.2 Resistance evaluation in greenhouse

Four weeks after inoculation, the disease response of leaves to

PMD was evaluated using a modified criterion from Li et al. (2016).

Each plant in the 2-gallon plastic pot was individually assessed on a

scale of 0 to 5, where 0 indicated no foliar symptoms, 1 indicated a

few white powdery spots (1–33% leaves infected), 2 indicated a few

more white powdery spots (33–66% leaves infected), 3 indicated

significantly more white powdery spots (66–80% leaves infected), 4

indicated almost the whole leaf covered by disease spots with slight

necrosis (> 80% leaves infected), and 5 indicated the whole plant

leaves covered entirely with disease spots and serious yellowing

(Supplementary Figure 1). The DSI for each of the 331 SGAs was

calculated using the formula: DSI = (S (rating of each plant)/5×total

numbers of plants rated) × 100. The DSI scale ranges from 0 to 100,

where 0 represents no disease symptoms and 100 represents

complete fungal coverage. Based on DSI values, the PMD

resistance of all SGAs was classified as highly resistant (HR, DSI

< 5.00), resistant (R, DSI 5.01–15.00), moderately resistant (MR,

DSI 15.1–30.00), moderately susceptible (MS, DSI 30.01–50.00),

susceptible (S, DSI 50.01–70.00), or highly susceptible (HS, DSI

> 70.01).
5.3 DNA extraction, genotyping, and
quality control

Genomic DNA was extracted from fresh young soybean leaves

using the hexadecyl trimethyl ammonium bromide method as

previously published (Kisha et al., 1997). Genotyping of the 331

SGAs was performed with the Illumina SoySNP50k iSelect

BeadChip (Illumina, San Diego, Calif. USA), which included

52,041 SNPs (Song et al., 2013). Using the GenomeStudio

Genotyping Module v1.8.4 (Illumina, Inc., San Diego, CA), the

SNP alleles were called. A total of 42,509 SNP loci were successfully

obtained, where 429 SNP loci were not mapped to the 20 soybean
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genomes. Therefore, 42080 SNP loci were used as genotypic data in

this study.The SNP data were represented using the International

Union of Pure and Applied Chemistry standard codes for

nucleotides. Each SNP marker’s quality was individually assessed

following previous reports (Yan et al., 2010). SNPs without physical

position information and displaying low quality (missing data <

20% and/or minor allele frequency (MAF) < 0.05) across all samples

were excluded from the dataset. The remaining 30,602 high-quality

SNP markers were retained for further analysis.
5.4 Population structure and LD

Population stratification was inferred using PCA, neighbor-

joining (NJ) phylogenetic trees, and population structure analysis.

Tassel V5.2.60 was employed for PCA and kinship matrix

calculations based on 30,602 SNPs from the 331 SGAs, where the

kinship Matrix_Type was Centered_IBS. The NJ tree was

constructed using the Maximum Composite likelihood model in

MEGA-X, in which the Bootstrap value was 1000 replicates, the

Gaps/Missing Data Treatment selected partial deletion, and the Site

Coverage Cutoff was 80%. Linkage SNP filtering was performed

using PLINK V1.09, with a window size of 50 kb, SNP step size of

10, SNP correlation threshold of 0.2, and retention of unlinked

SNPs, resulting in 1643 SNPs for population structure inference

using STRUCTURE 2.3.4 (Pritchard et al., 2000). The number of

subgroups (K) was set from 1 to 10 with 5 replications. The length

of the burn-in period was set to 10,000, and the number of Monte

Carlo Markov Chain replications was set to 100,000, with other

options using the default values of the software. The most likely K

value was determined using Structure Harvester (Earl and

Vonholdt, 2012) based on Delta K (Evanno et al., 2005). Pairwise

LD (MAF< 0.05) estimation was conducted on 30,602 SNPs using

squared allele frequency correlations (r2) with PLINK1.09. Mean

LD decay plots were generated using an R script (Remington et al.,

2001), plotting r2 values for SNPs within 1000 kb pairwise distances

against the physical distance on each chromosome. The LD decay

rate was determined as the chromosomal physical distance at which

the mean r2 decreased to half its maximum value (Huang et al.,

2010). The LD analysis and identification of haplotype blocks for

significant SNPs were conducted utilizing LDBlockShow Software

(Dong et al., 2021).
5.5 GWAS

Missing SNP genotypes in the filtered dataset were imputed

using Beagle software (Browning et al., 2021). A total of 30,602 SNP

markers from 331 SGAs were employed to detect association signals

between the SNPs and DSI. The GWAS analysis utilized GAPIT

with MLM (Yu et al., 2006) and CMLM (Lipka et al., 2012), as well

as FaST-LMM (Lippert et al., 2011) and EMMAX (Kang et al.,

2010). The analysis included a reduced population structure matrix

(Q) and a kinship matrix as covariates for population structure and

familial relatedness, respectively. Significant association signals
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were identified using the Bonferroni threshold, with a threshold

set at P ≤ 1/30,602, or -Log10(P) ≥ 4.49 (Li et al., 2019).
5.6 Candidate gene prediction and
qRT-PCR assay

We concentrated on significant SNPs associated with large-

effect quantitative trait nucleotides and performed a targeted search

within their genomic regions to identify candidate genes generating

the causal signals. Candidate physical regions were defined based on

either the mean LD decay distance or the LD block. Gene

identification was achieved by obtaining functional annotations of

gene models (Glyma.Wm82.a2.v1) or known genes within the

target genomic regions from the Soybase Database (http://

www.soybase.org/). Utilizing soybean genome annotations, we

predicted putative causal genes associated with the identified

regions. Furthermore, functional annotations of genes in the

target genomic regions were retrieved from Phytozome (http://

www.phytozome.net). For the gene expression analysis, the M.

diffusa spore suspension (1×105 cfu/ml) was sprayed onto

seedlings of ZDD06944 (HS, DSI=100.0) and ZDD00359 (HR,

DSI=0.0) after they had been grown for 10 d. The seedlings were

then stored in a growth chamber at 75% relative humidity, 23°C,

and a photoperiod of 16 h of light and 8 h of darkness. Primary

leaves were sampled at 0, 6, 12, 24, 48, and 72 h after inoculation,

and total RNA was extracted using an Easy Pure Plant RNA kit

(QUANSHIJIN, China). Reverse transcription was performed on

1.5 mg of DNase-treated RNA utilizing a PrimeScript™ RT Reagent

kit with gDNA Eraser from Takara (Japan). The qRT-PCR primers

were designed using the Oligo7 software (Supplementary Table S7),

and the housekeeping gene actin was selected as the control gene.

The qRT-PCR analyses were applied to identify the expression level

of each candidate’s PMD resistance gene. Real-time RT-PCR

amplifications were performed on the CFX48 ECO™ Real-Time

PCR System (Illumina, USA) utilizing the RT-PCR kit according to

the manufacturer’s instructions (Takara, Japan). The qRT-PCR

reaction was prepared by combining 0.2 µM primer premix, 5 µL

TB Green Premix Ex Taq II (TaKaRa, Japan), 2 µL of cDNA

synthesis solution, and using ultra-pure water to adjust the final

volume to 10 µL. The qRT-PCRs were performed as follows: 50°C

for 2 min, 95°C for 3 min, followed by 40 cycles, 95°C for 10 s, 50 or

61°C (associated with the gene), and 72°C for 30 s. In order to

ensure reliable statistical analysis, three independent biological

replicates were conducted, and the comparative 2−DDCt method

was adopted to evaluate the relative expression levels of the

candidate genes (Livak and Schmittgen, 2001).
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