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Denoising Diffusion Probabilistic
Models and Transfer Learning
for citrus disease diagnosis

Yuchen Li, Jianwen Guo*, Honghua Qiu, Fengyi Chen
and Junqi Zhang

School of Mechanical Engineering, Dongguan University of Technology, Dongguan,
Guangdong, China
Problems: Plant Disease diagnosis based on deep learningmechanisms has been

extensively studied and applied. However, the complex and dynamic agricultural

growth environment results in significant variations in the distribution of state

samples, and the lack of sufficient real disease databases weakens the

information carried by the samples, posing challenges for accurately

training models.

Aim: This paper aims to test the feasibility and effectiveness of Denoising

Diffusion Probabilistic Models (DDPM), Swin Transformer model, and Transfer

Learning in diagnosing citrus diseases with a small sample.

Methods: Two trainingmethods are proposed: The Method 1 employs the DDPM

to generate synthetic images for data augmentation. The Swin Transformer

model is then used for pre-training on the synthetic dataset produced by

DDPM, followed by fine-tuning on the original citrus leaf images for disease

classification through transfer learning. The Method 2 utilizes the pre-trained

Swin Transformer model on the ImageNet dataset and fine-tunes it on the

augmented dataset composed of the original and DDPM synthetic images.

Results and conclusion: The test results indicate that Method 1 achieved a

validation accuracy of 96.3%, while Method 2 achieved a validation accuracy of

99.8%. Both methods effectively addressed the issue of model overfitting when

dealing with a small dataset. Additionally, when compared with VGG16,

EfficientNet, ShuffleNet, MobileNetV2, and DenseNet121 in citrus disease

classification, the experimental results demonstrate the superiority of the

proposed methods over existing approaches to a certain extent.

KEYWORDS

plant disease diagnosis, citrus, Denoising Diffusion Probabilistic Models (DDPM),
Transfer Learning, Swin Transformer
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1 Introduction

Early detection of crop disease symptoms is a vital means of

protecting crops and containing outbreaks (Thomas et al., 2018).

Machine vision provides an intuitive and visual representation of

crop growth, fruit quality, maturity, and can accurately identify

healthy crops, diseased crops, and the types of pathogens (Sankaran

et al., 2010; Jahanbakhshi et al., 2021; Momeny et al., 2022; Azadnia

et al., 2023; Hadipour-Rokni et al., 2023). Throughout the various

stages of crop cultivation, plant diseases often manifest in the leaves,

making leaf disease identification critically important (Kailasam

et al., 2022).

Research has been conducted on the automatic recognition of

plant disease leaf images using machine learning techniques.

Hossain et al. (2019) proposed a method for detecting and

characterizing plant leaf diseases using KNN classifiers. Gupta

et al. (2021) introduced a machine learning-based intelligent

optimization algorithm to handle noise in dataset for plant leaf

disease diagnosis. Zhu et al. (2017) proposed a hyperspectral

imaging method for pre-detecting tobacco disease symptoms

based on continuous projection algorithm and machine learning

classifiers. Iniyan et al. (2020) utilized Support Vector Machines

and Artificial Neural Networks for plant disease recognition and

detection. Bhatia et al. (2020) investigated the application of

Extreme Learning Machines in predicting plant diseases in highly

imbalanced dataset. Arora et al (Arora and Agrawal, 2020).

developed a deep forest method for classifying maize plant

leaf diseases.

The aforementioned research were based on shallow machine

learning models, and their identification performance heavily

depended on expert experience, which limited their generalization

ability (Sujatha et al., 2021). In contrast, deep learning models can

effectively reduce the interference of expert experience while

ensuring recognition accuracy (Lee et al., 2020). Currently,

mainstream methods are shifting towards the application of deep

learning (Lee et al., 2020; Sujatha et al., 2021). Intelligent diagnostic

methods based on deep learning mechanisms can effectively address

complex input and classification problems and have been applied to

establish intelligent models for disease and pest diagnosis in crops

such as maize, wheat, citrus, and potatoes (Lee et al., 2020; Sujatha

et al., 2021). However, the complex and dynamic agricultural

growth environment results in significant variations in the

distribution of state samples, with existing research mostly relying

on laboratory public dataset, such as Plantvillage (Hughe and

Salathé, 2015). The scarcity of real disease databases weakens

the information carried by the samples (Arnal, 2018), posing

higher requirements for establishing deep learning intelligent

diagnosis models.

In recent years, the combination of diffusion models and the

Swin Transformer model has proven to be highly effective in small

sample application environments, yielding satisfactory results.

Inspired by non-equilibrium thermodynamics, the Denoising

Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) define a

Markov diffusion step chain, where each diffusion step depends

solely on the data distribution state of the previous step. Compared

to Generative Adversarial Networks (GANs), DDPM offers more
Frontiers in Plant Science 02
stable training and can generate more diverse samples (Croitoru

et al., 2023). The Self-Attention Mechanism (SAM) (Yang, 2020;

Pan et al., 2022) is widely used in various fields of artificial

intelligence and has successfully boosted the performance of

different models. Swin Transformer (Liu et al., 2021) introduces a

hierarchical transformer structure, giving the transformer a layered

structure similar to Convolutional Neural Networks (CNNs), with

multi-scale features. Swin Transformer has achieved promising

results in object recognition tasks on datasets such as CIFAR-10,

CIFAR-100, SVHN, and ImageNet (Lee et al., 2021).

This paper establishes a practical citrus disease database and

proposes two methods to test the effectiveness of diffusion models

and the Swin Transformer model in diagnosing citrus diseases with

small-sample. Furthermore, we compare the method 2 with various

deep learning approaches, and the results indicate certain

advantages of the proposed methods.

The subsequent organization of this paper includes: the second

part, which presents related research; the third part, explaining the

principles and the two proposed methods; the fourth part, which

covers the experiments and discussions; and the final part,

providing conclusions and future work.
2 Related research

Deep learning models can effectively reduce the reliance on

expert experience while ensuring satisfactory recognition

performance. In recent years, there has been much research in the

field of intelligent diagnosis utilizing deep learning. Sujatha et al.

(2021) compared various machine learning and deep learning

methods for plant disease detection, such as Support Vector

Machines (SVM), Random Forest (RF), and deep learning models

like Inception-v3, VGG-16, and VGG-19. Their experimental

results showed that deep learning outperformed machine learning

methods in citrus plant disease detection accuracy. Zhang et al.

(2019) proposed a cucumber leaf disease recognition method based

on CNN. Geetharamani et al (Geetharamani and Pandian, 2019).

employed a nine-layer deep CNN for plant leaf disease recognition.

Tang et al. (2020) utilized CNN for grape disease image

classification. Agarwa et al (Agarwal et al., 2020). developed an

Efficient CNN model for tomato crop disease recognition. Sathiand

et al (Dananjayan et al., 2022). studied advanced CNN detectors for

citrus leaf disease detection and evaluated each model based on

parameters such as accuracy and recall rate, finding that CenterNet2

and Res2Net-101-DCN-BiFPN achieved high-precision prediction

of early citrus leaf diseases.

Few-shot learning and Transfer Learning were initially

introduced within the context of applications with limited sample

sizes. Argueso et al (Argüeso et al., 2020). studied Few-shot learning

methods for plant disease classification using field-collected images.

They employed Few-shot Learning algorithms to learn new plant

leaf and disease types from extremely small dataset, achieving

superior performance compared to classical learning methods

while reducing training data by approximately 90%. Lee et al

(Douarre et al., 2019). designed two new data generation

methods, based on plant canopy simulation and GAN, to address
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the challenging segmentation task of apple scab disease in apple

canopy images using CNN, obtaining satisfactory results on small

dataset. Atila et al. (2021) proposed an efficient deep learning

architecture for plant leaf disease classification, using Transfer

Learning to train EfficientNet and other deep learning models.

Jiang et al. (2021) improved the VGG16 model based on multi-task

learning for the identification of three types of rice leaf diseases and

two types of wheat leaf diseases, using pre-trained models from

ImageNet for transfer learning, resulting in simultaneous

recognition of rice and wheat leaf diseases and providing a

reliable method for identifying multiple plant leaf diseases. Chen

et al. (2020) studied Transfer Learning with deep CNNs for

identifying plant leaf diseases, considering using pre-trained

models learned from massive dataset and then transferring them

to specific tasks. Compared to other methods, their validation

accuracy on public dataset was not lower than 91.83%. Even

under complex background conditions, their method achieved an

average classification prediction accuracy of 92.00% on rice

plant images.

While deep learning and its related techniques have

demonstrated impressive results in the diagnosis of plant diseases,

obtaining a sufficient number of disease samples continues to be a

challenge. This difficulty hampers the development of robust deep

diagnostic models. Moreover, employing models optimized in a

controlled laboratory setting proves ineffective in real-world

scenarios due to the challenge of meeting the independent and

identically distributed condition between experimental data and

practical application data. Addressing these challenges and

harnessing the full potential of deep learning mechanisms to

create intelligent diagnostic models tailored for agricultural

applications represents a crucial problem that needs to

be addressed.
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3 Principles and methods

3.1 DDPM

The DDPM (Sohl-Dickstein et al., 2015) can be used as a data

augmentation technique to increase the size of the dataset and

prevent overfitting of the network. DDPM consists of two processes:

the Forward Diffusion Process and the Reverse Denoising Diffusion

Process. Both processes are parameterized Markov Chains. The

essence of the DDPM diffusion model is learning a “denoising”

process, as shown in Figure 1. From an individual image’s

perspective, the Forward Diffusion Process gradually adds

Gaussian Random Noise to the image until it becomes a pure

noise image. On the other hand, the Reverse Denoising Diffusion

Process generates an image from a pure noise image. By training the

DDPM diffusion model to learn the diffusion process of the image

data, when properly trained, random noise images are input into the

DDPM. The Reverse Denoising Diffusion Process is executed,

gradually “denoising” the pure noise image, resulting in a

synthesized image similar to the real image.
3.2 Transfer Learning

Transfer Learning (Zhuang et al., 2020) is a training method

that involves transferring the network architecture and weights

originally used for solving task A to task B, and achieving good

results in task B as well. In scenarios with a small sample size,

Transfer Learning can be employed to transfer the learned generic

features from other pre-trained networks, saving training time and

obtaining better recognition results. Fine-Tuning (Too et al., 2019)

is a commonly used implementation approach within transfer
Denoising Diffusion Probabilistic Model
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learning. Fine-Tuning preserves the existing network architecture

and pre-trained model parameters while retraining, making minor

adjustments to the model parameters. It does not involve pruning

and reconstructing network parameters, making it a holistic, global,

and subtle improvement.

In this study, we used Transfer Learning with Fine-Tuning,

implemented as follows: we imported pre-trained weights into the

classification model, removed the weights related to the fully

connected layer for classification, retained the other weights in

the model, and did not freeze the weight parameters. We modified

the model’s classification output categories (from 1000 to 3), and

trained the modified classification model with the training data in

batches. This process resulted in retraining the weights of the fully

connected layer and fine-tuning the other pre-trained weight

parameters in the model.
3.3 Self-attention mechanism

The SAM (Vaswani et al., 2017) is a neural network architecture

that allows the computer to automatically learn and focus on the

most important information when processing input data, thus

improving its processing efficiency and reducing the time spent in

noise. The implementation of SAM can be divided into three steps:

(1) Building the attention layer, which uses learnable parameters to

measure the importance of input information; (2) Mapping the

input data and the attention layer’s parameters to the output

information; (3) Calculating the loss function and updating the

parameters of the attention layer to enable better focus on the most

important information.

Figure 2 illustrates the application of SAM to an image. The self-

attention computation for input feature maps, denoted as Image

Feature Map X, can be expressed as shown in Equation 1.
Frontiers in Plant Science 04
Attention(Q,K ,V) = SoftMax(
QKT

ffiffiffi
d

p )V (1)

Where Q, K, and V represent Query, Key, and Value,

respectively. Query can be considered as the Question, Key as the

Index, and Value as the Answer. Q = Wq • I, K = Wk • I, and V =

Wv • I is the vector corresponding to the position on the input

matrix X. Reshape X into three matrices: K, Q, and V. Compute the

product of the Transpose of K and Q, then divide the result by
ffiffiffi
d

p
.

Apply the Softmax Function to normalize the values and obtain the

Attention Map. Finally, multiply the Attention Map by V and

reshape it usingW to obtain the output feature maps, known as Self-

Attended Feature Maps.
3.4 Swin Transformer

The Swin Transformer model is illustrated in Figure 3, and the

model parameters are shown in Table 1. As an instance of the

‘encoder-decoder’ architecture of the Transformer, its encoder and

decoder consist of stacked modules based on self-attention. The

embeddings of the source (input) sequence and the target (output)

sequence are augmented with positional encoding and then

separately fed into the encoder and decoder. The Swin

Transformer introduces a hierarchical structure, which differs

from the standard Transformer architecture, as it computes non-

overlapping windows for self-attention. This endows the

Transformer with a hierarchical structure similar to CNN,

providing multi-scale features and better applicability in

downstream tasks.

In the Swin Transformer network architecture, the Swin

Transformer Block employs Windows Multi-Head Self-Attention

(W-MSA) (Li et al., 2021) and Shifted Window Multi-Head Self-

Attention (SW-MSA) (Han et al., 2023). The purpose of W-MSA is
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to reduce computational complexity. As illustrated in Figure 4,

Figure 4A depicts a standard Multi-Head Self-Attention (MSA)

(Rao et al., 2021), where each pixel (or token, patch) in the Feature

Map needs to compute attention with all other pixels during the

Self-Attention process. In Figure 4B, when utilizing W-MSA, the

Feature Map is initially divided into separate windows of size M*M

(where M=2 in the example), and then Self-Attention is

independently calculated within each window.

When using the W-MSA module, Self-Attention calculations

are performed only within each window, and there is no

information exchange between different windows. To address this
Frontiers in Plant Science 05
issue, Swin Transformer introduces SW-MSA. As shown in

Figure 5A, W-MSA and SW-MSA are used in pairs. W-MSA is

used in the Lth layer, and since W-MSA and SW-MSA are used in

pairs, the (L+1)th layer uses SW-MSA, as shown in Figure 5B. In

Figure 5A, windows have been shifted, and by comparing the left

and right diagrams, it can be observed that the windows have

shifted. For example, the 2x4 window in the first row and second

column can facilitate information exchange between the two

windows in the Lth layer; similarly, the 4x4 window in the second

row and second column can facilitate information exchange

between the four windows in the Lth layer, and so on for others.
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This effectively solves the problem of no information exchange

between different windows.
3.5 Method

In this study, we established our own practical on-site citrus

disease database to test the feasibility and effectiveness of diagnosing

citrus diseases with small samples. Two testing methods

were employed.

3.5.1 The Method 1
The DDPM model was used to generate synthetic images for

data augmentation, and the Swin Transformer model was pre-
Frontiers in Plant Science 06
trained on the synthetic dataset generated by DDPM. Subsequently,

Fine-Tuning was performed on the original citrus leaf images for

disease classification using the pre-trained Swin Transformer

model, as illustrated in Figure 6.

3.5.2 The Method 2
The DDPM model was used to generate synthetic images for

data augmentation. We utilized the pre-trained Swin Transformer

model on the ImageNet dataset (Deng et al., 2009) and performed

Transfer Learning by Fine-Tuning it on an expanded dataset

composed of the original dataset and the synthetic images

generated by DDPM, as depicted in Figure 7.
4 Experiment and discussion

4.1 Dataset preparation

The original dataset used in this project was a citrus image

dataset established by the project team. Figure 8 is an example of

Citrus Dataset Images. The dataset has 2,648 images and consists of

three categories: Huanglongbing-infected leaves (758 images),

Magnesium-deficient leaves (739 images), and Healthy leaves

(1,151 images). The images are in the format of 4000 * 3000 * 3.

The citrus image dataset was collected in the field under adaptive

photography mode, making it more suitable for practical

application environments.
4.2 Algorithm performance metrics

The performance of the proposed methods was evaluated using

nine performance metrics: Accuracy, Precision, Recall, F1 score, F2

Score, Specificity, Matthews correlation coefficient (MCC), True
TABLE 1 Parameters of the Swin-T (tiny) network architecture.

Stage Dowmsp.rate(output size) Swim-T(tiny)

Stage1 4� (56� 56)

Concat4� 4, 96 − d, LN

win:sz: 7� 7

dim96 head 3

2
4

3
5� 2

Stage2 8� (28� 28)

Concat2� 2, 192 − d, LN

win:sz: 7� 7

dim192 head 6

2
4

3
5� 2

Stage3 16� (14� 14)

Concat2� 2, 384 − d, LN

win:sz: 7� 7

dim384 head 12

2
4

3
5� 6

Stage4 32� (7� 7)

Concat2� 2, 768 − d, LN

win:sz: 7� 7

dim768 head 24

2
4

3
5� 2
A B

FIGURE 4

W-MSA example.
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Positive Rate (TPR), and False Positive Rate (FPR). The descriptions

of these performance metrics are shown in Table 2.

We use Confusion Matrix (Görtler et al., 2022) as a visualization

tool to compare the classification results with the actual values. As

shown in Figure 9, each column of the Confusion Matrix represents

the predicted class, and the total count in each column indicates the

number of data instances predicted as that class. Each row

represents the true class of the data, and the total count in each

row indicates the number of data instances belonging to that class.

The Receiver Operating Characteristic Curve (ROC Curve) is a
Frontiers in Plant Science 07
graphical analysis tool used to determine the optimal threshold

within the same classifier model. The ROC Curve is a plot with the

False Positive Rate (FPR) on the x-axis and the True Positive Rate

(TPR) on the y-axis, allowing the classifier to be mapped to a point

on the ROC plane (FPR, TPR). By adjusting the threshold used for

classification in this classifier, a curve passing through points (0, 0)

and (1, 1) can be obtained, which is the ROC Curve for that

classifier. The Area Under the Curve (AUC) is defined as the area

under the ROC Curve, and a higher AUC value, closer to 1.0,

indicates greater classifier accuracy.
A B

FIGURE 5

SW-MSA example.
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4.3 Experimental configuration

4.3.1 Experimental environment
The experiments were conducted on a Lenovo R7000P2020

edition device (running Windows 11 with an AMD Ryzen 7 4800H

processor and an RTX 2060 6GB graphics card). The Python

environment used was Anaconda3 (Python 3.7), with Torch 1.9.0,

Torchvision 0.10.0, and OpenCV 4.5.1 installed. The training

process was accelerated using the GPU.

4.3.2 Data classification
The experiment utilized a citrus leaf dataset for training. The

dataset was split into training (train), validation (val), and testing (test)

sets in an 8:1:1 ratio. The input images were normalized to 224 x 224 x

3 and fed into the neural network for training and evaluation. During

the training process, the training and validation sets were used, while

the testing set was utilized for subsequent performance testing.

4.3.3 Parameter settings
The training process employed the SGDM optimizer with L2

regularization. The momentum was set to 0.9, and the weight decay

was set to 5E-5. The batch_size was 16, and num workers was set to

0. The Initial Learning Rate was set to 0.001, and the Cosine

Annealing Learning Rate adjustment strategy was used. The

Minimum Learning Rate was set to 0, and the learning rate was

reduced in a cosine manner over 100 epochs.
4.4 Algorithm performance experiments

The Algorithm Performance Experiments aimed to test and

evaluate the performance of the proposed methods, and were

divided into four experiments:
Frontiers in Plant Science 08
Experiment 1: DDPM Synthetic Citrus Leaf Dataset

Generation. The DDPM model was trained on the

original citrus leaf dataset, and the model’s fitting effect

was evaluated and the weights were updated after each

training epoch to produce synthetic images that closely

resembled real images. After the network training was

completed, the DDPM model was used to generate

synthetic citrus leaf images for each of the three

categories, resulting in a total of 1000 synthetic images

for each citrus leaf category to form the synthetic citrus

leaf dataset.

Experiment 2: Swin-T (Orgin). The Swin Transformer model

was trained on the original citrus dataset for 100 epochs

without utilizing any pre-trained weight models, serving as

the control group.

Experiment 3: Swin-T (DDPM data Pre-train model + Orgin

data). The Swin Transformer model was initially pre-

trained using the DDPM synthetic citrus leaf dataset and

subsequently fine-tuned on the original citrus leaf dataset.

The pre-training on the DDPM synthetic dataset

was conducted for 100 epochs, followed by fine-

tuning on the original dataset for an additional 100

epochs. This experiment employed the method proposed

in this study.

Experiment 4: Swin-T (ImageNet data Pre-train model +

Expanded data). The Swin Transformer model, pre-

trained on the ImageNet dataset, was fine-tuned on the

extended dataset comprising the original citrus leaf dataset

and the DDPM synthetic dataset. The pre-trained model

from the ImageNet dataset was transferred to the extended

dataset for fine-tuning, which was conducted for 100

epochs. This experiment also employed the method

proposed in this study.
Capacity expansion dataset

ImageNet Dataset

Model Model

Pre-training model

Original 

Images

Fine_Turning＆Decision Making

Disease 

Prediction  

DDPM Composite 

Images

FIGURE 7

The Method 2.
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The comparison of accuracy between the Experiment 2 and the

Experiment 3 aimed to verify the superiority of the proposed

Method 1 in the training process. Similarly, the comparison of
Frontiers in Plant Science 09
accuracy between the Experiment 2 and the Experiment 4 aimed to

verify the superiority of the proposed Method 2.

The evaluation metrics for different disease categories in the

Experiments 2, 3, and 4 are shown in Tables 3–5, respectively. In the

three different training approaches, Swin-T(Original), Swin-T

(DDPM data Pre-train model + Original data), and Swin-T

(ImageNet data Pre-train model + Expanded data), the ROC

Curves are shown in Figures 10–12, respectively. The Confusion

Matrixs are shown in Figure 13. The training validation accuracy

data curve is depicted in Figure 14, while the cumulative training

time for each epoch is shown in Figure 15. We evaluated the

performance of the proposed method for the citrus disease leaf

classification task. Table 6 represents the classification performance

of the proposed method on the original citrus leaf dataset. The

proposed method achieved the highest validation accuracy of 99.8%

for citrus disease leaf classification. From Table 6, it can be observed

that compared to the original dataset, the Swin Transformer model

showed improvements in accuracy, precision, recall, F1 score, and

specificity for all classes after using the expanded dataset composed

of original citrus data and DDPM-generated synthetic data, along

with transfer learning. This improvement in classification

performance clearly indicates that data augmentation

with the DDPM model and the Transfer Learning method

effectively prevent overfitting of the network and enhance its

generalization ability.

We evaluated the training speed of the proposed methods for

citrus disease leaf classification tasks, as shown in Table 7, Figure 14,

and Figure 15. In the Experiment 2, employing the Orgin training
TABLE 2 Performance metrics.

Performance Index Formula

Accuracy TP + TN
TP + TN + FP + FN

Precision TP
TP + FP

Recall TP
TP + FN

F1 Score 2TP
2TP + FN + FP

F2 Score 5� Accuracy � Recall
4� Accuracy + Recall

Specificity TN
TN + FP

MCC TP � TN − FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

p

TPR TP
TP + FN

FPR FP
FP + TN
TP (True Positive) refers to the cases where the true class is positive, and the predicted class is
also positive; FP (False Positive) refers to the cases where the true class is negative, but the
predicted class is positive; FN (False Negative) refers to the cases where the true class is
positive, but the predicted class is negative; TN (True Negative) refers to the cases where the
true class is negative, and the predicted class is also negative.
Huanglong

Disease

Magnesium

Deficiency
NormalNormal

FIGURE 8

Example of citrus dataset images.
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approach, the average time per epoch was 6.337 minutes. The initial

validation accuracy (epoch 1) was 0.591, and the best validation

accuracy (epoch 89) reached 0.948, with a total training duration of

559.162 minutes. In the Experiment 3, employing the Swin-T

(DDPM data Pre-train model + Orgin data) training approach,

the average time per epoch was 6.286 minutes. The initial validation

accuracy (epoch 1) was 0.817, and the best validation accuracy

(epoch 85) achieved 0.963, with a total training duration of 534.425

minutes. In the Experiment 4, employing the Swin-T (DDPM data

Pre-train model + Orgin data) training approach, the average time

per epoch was 1.671 minutes. The initial validation accuracy (epoch
Frontiers in Plant Science 10
1) was 0.949, and the best validation accuracy (epoch 35) reached

0.998, with a total training duration of 58.901 minutes.

Comparatively, it was shown that the training time for the Swin-

T (DDPM data Pre-train model + Orgin data) group is slightly

shorter than that of the Orgin group, and significantly shorter than

both the Swin-T (DDPM data Pre-train model + Orgin data)

and Orgin groups. The experimental data clearly demonstrates

that, on the Swin-T model, the first proposed method exhibits

slightly faster training speed than the original training method,

while the second proposed method exhibits significantly faster

training speed.
TABLE 3 Experiment 2: Results of Swin-T(orgin).

Data
Type

Huanglong
disease

Magnesium
deficiency

Normal

Accuracy 0.946 0.931 0.967

Precision 0.889 0.916 0.947

Recall 0.926 0.831 0.978

F1 Score 0.936 0.878 0.972

F2 Score 0.930 0.849 0.976

Specificity 0.954 0.970 0.958

MCC 0.869 0.826 0.933
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FIGURE 9

Confusion matrix.
TABLE 4 Experiment 3: Results of Swin-T(DDPM data Pre-train model +
Orgin data).

Data
Type

Huanglong
disease

Magnesium
deficiency

Normal

Accuracy 0.957 0.950 0.983

Precision 0.912 0.929 0.978

Recall 0.942 0.890 0.984

F1 Score 0.949 0.919 0.983

F2 Score 0.945 0.901 0.984

Specificity 0.964 0.974 0.983

MCC 0.897 0.875 0.966
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We evaluated the performance of the proposed methods for

citrus disease leaf classification tasks. As depicted in Table 8, when

compared to the original dataset, the Swin Transformer model

demonstrated significant enhancements in various critical

performance metrics, including accuracy, precision, recall, F1

score, F2 score, specificity, and MCC across all categories. These
Frontiers in Plant Science 11
improvements were observed when the model was trained on an

augmented dataset, which combined the original citrus dataset with

a synthetic dataset generated by DDPM, followed by the application

of transfer learning techniques. This notable enhancement in

classification performance unequivocally signifies the effectiveness

of data augmentation using the DDPM model and the transfer
FIGURE 10

ROC Curve of the Experiment 2.
FIGURE 11

ROC Curve of the Experiment 3.
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learning. These strategies not only mitigated overfitting but also

bolstered the network’s capacity for generalization, underlining

their crucial role in our approach.
4.5 Algorithm performance
comparison experiments

The algorithm performance comparison experiment involves

applying the Swin Transformer, VGG16 (Xuemei et al., 2017),

EfficientNet (Heidary-Sharifabad et al., 2021), ShuffleNet (Pani

et al., 2019), MobileNetV2 (Dong et al., 2020), and DenseNet121

(Nandhini and Ashokkumar, 2022) models to the task of citrus

disease classification. All six algorithm models undergo three sets

of experiments.
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Experiment 5 (Orgin): The six algorithm models are trained on

the original dataset without using pre-trained weights, serving as

the control group.

Experiment 6 (DDPM data Pre-train model + Orgin data): The

six algorithm models are first pre-trained on the synthetic dataset

generated by the DDPM model and then fine-tuned on the original

citrus leaf dataset.

Experiment 7 (ImageNet data Pre-train model + Expanded

data): The six algorithm models use their respective pre-trained

models on the ImageNet dataset and then fine-tune on the

expanded dataset consisting of the original citrus dataset and the

DDPM synthetic dataset.

The experimental results are shown in Table 9. The Swin

Transformer model achieves a validation accuracy of 94.8% in

Experiment 5 (Orgin), ranking in the middle among the six
FIGURE 12

ROC curve of the Experiment 4.
Experiment 2 Experiment 3 Experiment 4

FIGURE 13

Confusion matrix of the Experiment 2-4.
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trained models. In Experiment 6 (DDPM data Pre-train model +

Orgin data), the Swin Transformer model achieves a validation

accuracy of 96.3%, ranking the lowest among the six trained models.

However, in Experiment 7 (ImageNet data Pre-train model +

Expanded data), the Swin Transformer model achieves a

validation accuracy of 99.8%, ranking first among all six training

models, and achieving the highest rank in all experiments.
4.6 Abalation experiments

Neural networks are also a black box system, and conducting

ablation experiments can verify the connection between the

proposed method and the component as a whole. Five Abalation

experiments were conducted for each of the six different models,

namely Swin-T, Vgg16, EfficientNet, ShuffleNet, MobileNetv2, and
Frontiers in Plant Science 13
Densenet121, as outlined in Table 10. These experiments

correspond to five training methods: Base, Base+A, Base+B, Base

+C, and Base+B+C. Comparing the results between Base and Base

+A reveals the effectiveness of Component A in improving overall

accuracy. Likewise, the comparison between Base and Base+B

demonstrates the impact of Component B on enhancing overall

accuracy, and the comparison between Base and Base+C illustrates

the contribution of Component C to overall accuracy improvement.

Furthermore, by comparing the results of Base+A, Base+B,

and Base+C, we can evaluate the performance differences among

the three components in terms of their effect on overall

accuracy improvement.

As shown in Table 11, the comparisons of accuracy between

Base and Base+A, Base+B, and Base+C across different models

confirm that components A, B, and C individually contribute to

improving model accuracy. For the Swin-T, EfficientNet_b0,
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Validation accuracy of the Experiment 2-4.
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The cumulative training time for each epoch of the Experiment 2-4.
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ShuffleNet_v2_x0_5, and MobileNetv2 models, Component C has

the most significant impact on improving accuracy. However, for

the Vgg16 and Densenet121 models, Component A has the greatest

influence on accuracy improvement. Notably, for the Vgg16 and

Densenet121 models, the first proposed method (Base+A) achieves

the highest model accuracy among the five groups. On the other

hand, for the Swin-T, EfficientNet_b0, ShuffleNet_v2_x0_5, and

MobileNetv2 models, the second proposed method (Base+B+C)

attains the highest model accuracy among the five groups. It’s worth

mentioning that in all five sets of experiments for each model, the

Swin-T model in the Base+B+C group, using the Method 2

presented in this paper, achieves the best performance, reaching

an impressive accuracy of 99.8%.
4.7 Discussion

In general, the CNN architecture has proven to be highly

successful in visual tasks. It efficiently learns from samples by

performing hard feature induction. The hierarchical structure of

CNN is achieved through convolution and pooling operations,

which capture local features in images and gradually abstract higher-

level features. CNNmodels capture local context relationships through

local receptive fields and parameter sharing. Compared to
Frontiers in Plant Science 14
Transformers, CNNs generally have lower computational complexity

and a stronger hierarchical structure.

The strong inductive bias of CNNs enables them to achieve high

performance even with minimal data (high lower bounds).

However, this same inductive bias may limit these models when

abundant data is available (low upper bounds). As shown in the

Table 9, CNN architectures such as VGG16, EfficientNet,

ShuffleNet, MobileNetV2, and DenseNet121 generally outperform

the Swin Transformer model in Experiment 5 (Orgin) and

Experiment 6 (DDPM data Pre-train model + Orgin data) in

terms of accuracy.

Visual models based on self-attention mechanisms do not

perform well with small-scale data (low lower bounds) but have

the potential to surpass CNN performance on large-scale datasets
TABLE 6 Evaluation results of the three different training methods.

Model
Swin-T
(orgin)

Swin-T
(DDPM data
Pre-train
model +
Orgin data)

Swin-T
(ImageNet data
Pre-train model
+ Expanded data)

Accuracy 0.948 0.963 0.998

Precision 0.917 0.940 0.997

Recall 0.912 0.939 0.997

F1 Score 0.928 0.950 0.998

F2 Score 0.918 0.943 0.997

Specificity 0.961 0.974 0.997

MCC 0.876 0.912 0.995
TABLE 7 Time parameters of the Swin-T model under the three
training methods.

Mode
Swin-T
(orgin)

Swin-T
(DDPM data
Pre-train
model +

Orgin data)

Swin-T
(ImageNet

data Pre-train
model +
Expanded

data)

Initial
verification
Accuracy

0.591 0.817 0.949

Best
validation
Accuracy

0.948 0.963 0.998

Average training
time per

epoch(minute)
6.337 6.286 1.671

Total time spent
from initial to

Best
accuracy(minute)

559.162 534.425 58.901

Total epochs
spent from initial
to Best accuracy

(Up to
100 epochs)

89 85 35
TABLE 8 The performance of the three training methods.

Model
Swin-T
(Orgin)

Swin-T
(DDPM data
Pre-train
model +
Orgin data)

Swin-T
(ImageNet data
Pre-train model
+ Expanded data)

Accuracy 0.948 0.963 0.998

Precision 0.917 0.940 0.997

Recall 0.912 0.939 0.997

F1 Score 0.928 0.950 0.998

F2 Score 0.918 0.943 0.997

Specificity 0.961 0.974 0.997

MCC 0.876 0.912 0.995
TABLE 5 Experiment 4: Results of Swin-T(ImageNet data Pre-train
model + Expanded data).

Data
Type

Huanglong
disease

Magnesium
deficiency

Normal

Accuracy 0.998 0.998 0.999

Precision 0.999 0.992 0.999

Recall 0.992 0.999 0.999

F1 Score 0.995 0.999 0.999

F2 Score 0.993 0.999 0.999

Specificity 0.996 0.996 0.999

MCC 0.994 0.994 0.999
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(high upper bounds). Unlike CNNs, self-attention-based visual

models can capture global relationships between image elements

and have stronger representational capabilities. However,

Transformer architecture models need to learn this type of

information from a large amount of data.

Since this study uses a small sample dataset, Swin Transformer’s

performance on Experiment 5 and Experiment 6 with this dataset

does not significantly outshine CNN models. However, when a pre-

trained model from the large-scale ImageNet dataset is used and

fine-tuning is performed with the original citrus dataset and DDPM

synthetic dataset, the Swin Transformer achieves the best

performance in Experiment 7 among all models. Therefore, when
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balancing factors such as dataset size, training approach, and the

choice between CNN and Transformer models, decisions should be

made based on the specific experimental conditions.

Both the Method 1 and the Method 2 proposed in this paper can

be applied to both CNN and Transformer visual applications, as

shown in Table 8. In Experiments 5, 6, and 7, when CNN and

Transformer models use the Method 1 or the Method 2, model

performance is generally improved compared to the original

(Orgin) training method.
5 Conclusion and future work

In response to the challenges of difficult data collection, limited

dataset size, and the diversity of plant diseases, in the context of

recognition tasks using small-scale datasets, this paper proposes the

use of the DDPM for data augmentation and dataset expansion. The

DDPM can generate high-quality images, providing better coverage

of the sample distribution compared to GANs and producing more

diverse data compared to OpenCV-based augmentation techniques.

In contrast to traditional data augmentation techniques such as

OpenCV and GAN-based methods, DDPM diffusion model

augmentation enhances the model’s generalization capabilities

more effectively. Furthermore, this paper introduces a training

approach using transfer learning fine-tuning. In cases of limited

samples, transfer learning is applied to transfer the model’s generic

features from other pre-trained networks, leading to better initial

model performance, improved training convergence, and greater

progressive learning. The methods proposed in this paper, Method

1 and Method 2, can be applied to various model types, including

CNN and vision-based Transformers.

In future work, we will carry out the following research:
(1) To address the challenge of recognizing plant leaf disease

images with high complexity, which makes training more

difficult, our research team will enhance relevant model

structures to cater to different needs. For example, we will

explore the use of swarm intelligence techniques to

optimize the Swim Transformer, thereby further

improving the recognition of citrus leaf diseases and

pests. We will also attempt to incorporate the ‘FreeU’

technique to enhance the DDPM diffusion model, thereby

improving the quality of samples generated by the

diffusion model.
TABLE 9 Validation accuracy of different models under three
training methods.

Methods Orgin

DDPM data
Pre-train
model +
Orgin data

ImageNet data
Pre-train
model +
Expanded data

Swin-T(tiny) 0.948 0.963 0.998

Vgg16 0.957 0.992 0.990

EfficientNet_b0 0.969 0.985 0.995

ShuffleNet_v2_x0_5 0.931 0.964 0.988

MobileNetv2 0.990 0.985 0.995

Densenet121 0.988 0.997 0.990
TABLE 10 Abalation experiments.

Methods Dataset Training method

Base Orgin Dateset Training from scratch

Base+A Orgin Dateset
Fine-Tuning with DDPM pre-

trained models

Base+B
Augmented
dataset,

Training from scratch

Base+C Orgin Dateset
Fine-Tuning with ImageNet pre-

trained models

Base+B+C
Augmented
dataset,

Fine-Tuning with ImageNet pre-
trained models
A: Fine-Tuning with DDPM pre-trained models, B: using augmented dataset, C: Fine-Tuning
with ImageNet pre-trained models.
TABLE 11 Verifying accuracy of ablation experiments.

Methods Base Base+A Base+B Base+C Base+B+C

Swim-T(tiny) 0.948 0.963 0.957 0.992 0.998

Vgg16 0.957 0.992 0.981 0.992 0.990

EfficientNet_b0 0.969 0.985 0.985 0.988 0.995

ShuffleNet_v2_x0_5 0.931 0.964 0.955 0.981 0.988

MobileNetv2 0.990 0.985 0.986 0.989 0.995

Densenet121 0.988 0.997 0.995 0.990 0.990
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Fron
(2) We will attempt to apply the research findings to plant

inspection vehicles or drones. On one hand, this will enable

the automated collection of field plant leaf disease datasets.

On the other hand, by using improved training methods

and models for image classification and object detection,

our goal is to deploy them on unmanned vehicles and

drones to achieve automated plant disease inspection. This,

in turn, will provide support for plant disease prevention

and control.

(3) We will further delve into the research of plant disease

recognition, collecting datasets with a wider variety of plant

species and different types of diseases, including those in

peppers, grapes, apples, and more. Our aim is to transfer

and apply the findings from this paper and future related

work to these new datasets.
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