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Warming increases the
differences among spring
phenology models under
future climate change

Yunhua Mo1, Xiran Li2*, Yahui Guo2 and Yongshuo Fu1

1College of Water Sciences, Beijing Normal University, Beijing, China, 2College of Urban and
Environmental Sciences, Central China Normal University, Wuhan, China
Phenological models are built upon an understanding of the influence of

environmental factors on plant phenology, and serve as effective tools for

predicting plant phenological changes. However, the differences in

phenological model predictive performance under different climate change

scenarios have been rarely studied. In this study, we parameterized thirteen

spring phenology models, including six one-phase models and seven two-phase

models, by combining phenological observations and meteorological data.

Using climatic data from two Shared Socioeconomic Pathways (SSP) scenarios,

namely SSP126 (highmitigation and low emission) and SSP585 (nomitigation and

high emission), we predicted spring phenology in Germany from 2021 to 2100,

and compared the impacts of dormancy phases and driving factors on model

predictive performance. The results showed that the average correlation

coefficient between the predicted start of growing season (SOS) by the 13

models and the observed values exceeded 0.72, with the highest reaching

0.80. All models outperformed the NULL model (Mean of SOS), and the M1

model (driven by photoperiod and forcing temperature) performed the best for

all the tree species. In the SSP126 scenario, the average SOS advanced initially

and then gradually shifted towards a delay starting around 2070. In the SSP585

scenario, the average SOS advanced gradually at a rate of approximately 0.14

days per year. Moreover, the standard deviation of the simulated SOS by the 13

spring phenology models exhibited a significant increase at a rate of 0.04 days

per year. On average, two-phase models exhibited larger standard deviations

than one-phase models after approximately 2050. Models driven solely by

temperature showed larger standard deviations after 2060 compared to

models driven by both temperature and photoperiod. Our findings suggest

investigating the release mechanisms of endodormancy phase and

incorporating new insights into future phenological models to better simulate

the changes in plant phenology.
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1 Introduction

Global climate is undergoing unequivocal unprecedented

changes, including variations in extreme events that can be

attributed to the influence of human activities (Masson-Delmotte

et al., 2021). Since the 1970s, there has been a clear warming trend.

The Earth’s temperature is currently experiencing rapid increasing,

with the period 2016 to 2020 being the warmest five years since

1850 (Masson-Delmotte et al., 2021). One of the consequences of

global warming is the alteration of vegetation phenology (Brown

et al., 2012; Oberbauer et al., 2013; Park et al., 2015; Mo et al., 2019).

Plant phenology studies the cyclic variations in plant activities and

their relationship with environmental conditions (Cleland et al.,

2007). Phenological events such as leaf unfolding, flowering,

fruiting, and leaf senescence are external manifestations of plant

physiological activities, regulated by seasonal changes in

temperature, precipitation, and other environmental factors (Shen

et al., 2022). As a significant characteristic of climate change,

warming often leads to an earlier onset of spring phenology in

plants (Piao et al., 2006). Investigating changes in plant phenology

can enhance understanding of the impacts of climate change,

thereby providing insights for climate change mitigation.

As a sensitive bioindicator of climate change, variations in

vegetation phenology have extensive effects on the structure and

functioning of terrestrial ecosystems (Richardson et al., 2013). At

the individual scale, proper timing of dormancy allows plants to

avoid frost damage, which is crucial for their survival and growth

(Gu et al., 2008). At the population scale, an increase in the

asynchrony of phenology would reduce inter-species competition

for resources within plant communities and promote species

coexistence (Menzel, 2002). At the community scale, phenology

influences the ecological niches of interacting species (Chuine,

2010). At the ecosystem scale, vegetation phenology regulates

material cycles (such as carbon and water) and energy fluxes

within the ecosystem (Richardson et al., 2012). Additionally, plant

phenology influences surface albedo and canopy conductance,

exerting feedback on the climate system (Richardson et al., 2013).

Therefore, investigating changes in plant phenology under climate-

warming conditions is of great significance.

Plant dormancy is one of the key phenological stages. It can be

categorized into three phases: paradormancy, endodormancy, and

ecodormancy (Lang et al., 1987). In the paradormancy phase,

growth inhibition is primarily caused by physiological factors

outside the plant bud. In the endodormancy phase, the quiescent

state is mainly induced by the dormancy structures themselves, and

plants in this stage require the chilling accumulation. In the

ecodormancy phase, the quiescent state is primarily influenced by

external environmental factors, and plants in this stage require the

accumulation of heat units (forcing) (Lang et al., 1987; Kramer,

1994; Basler, 2016). Based on these mechanisms, several

environmental factor-driven phenological models have been

developed for predicting phenological changes. One of the earliest

spring phenology model can be traced back to 1735, driven solely by

temperature and involving the accumulation of heat units during

the ecodormancy phase, referred to as the Thermal Time model
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(Reaumur, 1735). Considering the influence of photoperiod on the

ecodormancy phase, the photothermal time model was developed

(Masle et al., 1989). Besides, these phenological models can also be

divided into two categories based on the number of dormant phases

they simulate. Models that exclusively account for the release during

the ecodormancy phase are referred to as one-phase models, while

models that account for both the release during the endodormancy

and ecodormancy phases are referred to as two-phase models. In

two-phase models, the sequential model refers to forcing

accumulation occurring after chilling accumulation, the parallel

model involves concurrent accumulation of chilling and forcing

(Hänninen, 1990; Kramer, 1994), and the alternating model

determines whether chilling or forcing accumulation occurs based

on the daily mean temperature (Murray et al., 1989). The

temperature response of the endodormancy phase can be a

triangular or bell-shaped function, while the temperature

response of the ecodormancy phase can be a linear or sigmoid

function (Basler, 2016). The differences in environmental driving

factors and dormant phases within phenological models may have

an impact on their simulation performance, particularly in the

context of climate warming.

The previous study indicates that under current climate

conditions, both one-phase and two-phase models exhibit similar

simulation performance due to the fulfillment of chilling

requirements (Vitasse et al., 2011). The differences in temperature

response functions, particularly the chilling response function, have

limited impacts on the simulation performance of the models (Mo

et al., 2023). However, with continued climate warming, meeting

chilling requirements may confront more challenges in the future.

Therefore, it is crucial to compare the performance of one-phase

and two-phase models under climate change, especially warming

scenarios. In a climate warming scenario, it is expected that spring

phenology will advance. However, photoperiod reduces the

sensitivity of plants to warming, preventing the onset of spring

phenology from occurring too early and avoiding the impacts of

frost (Fu et al., 2019). Additionally, photoperiod advances spring

phenology, maximizing resource acquisition for plants (Meng et al.,

2021). There exist complex interactions between temperature and

photoperiod, and it remains largely unknown whether existing

models can capture these mechanisms. Therefore, a thorough

comparison among phenological model performances under

various scenarios can be very informative.

In this study, the parameterization of 13 spring phenology

models was conducted by combining phenological observation

data with meteorological data. The spring phenology models

consisted of six one-phase models and seven two-phase models.

Subsequently, using data from two Shared Socioeconomic Pathways

(SSPs) scenarios, namely, SSP126 and SSP585, future spring

phenology from 2021 to 2100 was predicted, and the impacts of

driving factors and dormancy phases on the predictive performance

of the models were compared. The objectives of this research were:

(1) to assess the changes in spring phenology under different future

scenarios; (2) to compare the influences of driving factors and

dormancy phases on the predictive performance of the models

under climate change scenarios.
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2 Materials and methods

2.1 Study region and Phenological
observations

Our study region is located in Germany, with typically temperate

to alpine climate. The corresponding phenological observations were

collected from the Pan European Phenology (PEP) project. The PEP

project maintains and develops the Pan European Phenological

Database (PEP725), which has open access to science and education,

aimed at promoting phenological research, education, and

environmental monitoring (Templ et al., 2018). PEP725 records

phenological dates in day-of-the-year (Julian day) and phenological

codes in Biologische Bundesanstalt, Bundessortenamt und Chemische

Industrie (BBCH) scale (Meier, 2001). We selected records with BBCH

codes 10 and 11 as spring phenology (the start of growing season, SOS

hereafter). To obtain reliable spring phenology, we selected

phenological records according to the following criteria: (1) both leaf

unfolding and leaf senescence are available in the same year, and the

leaf senescence date is greater than the leaf unfolding date, (2) sites have

been available for observation for no less than 40 years, and (3) the

number of sites for each tree species is greater than 100. As a result, we

used records of four tree species, they are Aesculus hippocastanum

(AH), Betula pendula (BP), Fagus sylvatica (FS), and Quercus robur

(QR). The number of phenological sites for AH, BP, FS, and QR is 814,

770, 586, and 592, respectively. The spatial distributions of the selected

phenological sites for the four tree species are shown in Figure 1.

2.2 Meteorological data

2.2.1 E-OBS gridded dataset
The meteorological data for the model parameterization in this

study were obtained from the E-OBS dataset. It is a high-resolution

gridded dataset of daily climate over Europe, developed by the EU-
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funded ENSEMBLES project (Hofstra et al., 2009). E-OBS dataset is

constructed by interpolating the wider range of Europe’s most

complete station data (Klok and Klein Tank, 2009) and is intended

to support the validation of Regional Climate Models (RCMs) and

climate change research (Schrier et al., 2013). The dataset contains two

spatial resolutions of 0.1 and 0.25°, covering 25° N~71.5°N; 25°W ~ 45°

E. It provides daily mean temperature (TG), daily minimum

temperature (TN), daily maximum temperature (TX), daily

precipitation sum (RR), etc., since 1950 January 1st to present. Here,

we used the daily mean temperature data for E-OBS v23.1e at 0.1°,

covering the period from 1950-01-01 to 2020-12-31.

2.2.2 Climate change scenarios dataset
The climate change scenarios used in this study are derived

from the Scenario Model Intercomparison Project (ScenarioMIP) of

Phase 6 of the Coupled Model Intercomparison Project (CMIP6)

(O’Neill et al., 2016). ScenarioMIP provides a marix of multiple

shared socioeconomic pathways (SSPs) and radiative forcing levels

(Van Vuuren et al., 2012; O’Neill et al., 2016). SSPs describe

different socioeconomic change pathways resulting from different

development strategies and are used to estimate greenhouse gas

emissions. They include five pathways: SSP1 (Sustainability), SSP2

(Middle of the road), SSP3 (Regional rivalry), SSP4 (Inequality),

and SSP5 (Fossil-fuel development) (Meinshausen et al., 2020). The

radiative forcing levels by 2100 range from low to high, specifically

2.6 W/m², 4.5 W/m², 7.0 W/m², and 8.5 W/m². In this study, we

employed two climate change scenarios, namely SSP1-2.6 (SSP126)

and SSP5-8.5 (SSP585). The SSP126 simulated the scenario with

high mitigation and low emission. The SSP585 simulated no

mitigation and high emission. Therefore, our simulations could

illustrate the differences of SOS under the sustainable pathway and

the energy-intensive pathway. To reduce uncertainty, we computed

the ensemble mean of 13 CMIP6 climate models. Information on

these climate models is summarized in Supplementary Table 1.
FIGURE 1

Spatial distribution of phenological sites for four tree species in Germany: Aesculus hippocastanum (AH), Betula pendula (BP), Fagus sylvatica (FS),
and Quercus robur (QR).
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2.3 Spring phenological model

This study utilized 13 spring phenology models to analyze the

performance of phenology models under different climate change

scenarios. Among these models, there are six one-phase models and

seven two-phase models, with five models driven solely by temperature

and eight models driven by both temperature and photoperiod

(Table 1). The chilling temperature response functions include

triangular and bell-shaped functions, while the forcing temperature

response functions include linear and sigmoid functions. The formulae

employed by the 13 models and the meanings of the parameters within

the formulae are summarized in Supplementary Tables 2, 3, respectively.
2.4 Calculation of the photoperiod

The magnitude of the photoperiod varies with spatial location

and date. This study adopts the approach outlined in http://

herbert.gandraxa.com/length_of_day.xml, utilizing latitude and

day of the year to calculate the photoperiod. The calculation

formula is as follows:
Frontiers in Plant Science 04
axis = p
180 *23:439

m = 1� tan(lat)*tan(axis*cos(
p*doy
182:625 ))

b = arccos (1�m)
p

photoperiod = 24*b

(1)

where ‘axis’ represents the obliquity of the ecliptic, arising from the

Earth’s rotation axis not being perpendicular to its orbital plane. This

phenomenon results in the equatorial plane deviating from parallel

alignment with the ecliptic plane, forming a constant angle of 23.439°

in our study, with gradual changes occurring only over millennia. ‘m’

signifies the exposed radius part between sun’s zenith and sun’s circle.

‘b’ represents the fraction of the Sun’s circular exposed, a parameter

dependent on factors including geographical latitude (‘lat’) and the day

of the year (‘doy’). ‘doy’ denotes the day’s position within the year,

taking values between 1 and 365 (or 366 in leap years).
2.5 Model calibration and prediction

We used 80% of the observed SOS from the middle of the

available years to build the spring phenological models, reserving
TABLE 1 Summary of the spring phenology models.

Model
abbreviation1 Full model name release Drivers2

Comments/References

NULL NULL model Mean of the SOS3

TT Thermal Time model Ecodormancy release F (Kramer, 1994; Chuine et al., 1999; Reaumur, 1735)

TTs Thermal Time model Ecodormancy release F (Hänninen, 1990; Kramer, 1994)

PTT Photothermal Time model Ecodormancy release PF (Masle et al., 1989)

PTTs Photothermal Time model Ecodormancy release PF (Landsberg, 1974; Črepinsěk et al., 2006; Basler, 2016)

M1 M1 model Ecodormancy release PF (Blümel and Chmielewski, 2012)

M1s M1 model Ecodormancy release PF
M1 model using a sigmoid temperature response for

forcing

AT Alternating model
Endo- and ecodormancy

releases
CF (Murray et al., 1989)

SM1
Sequential model (M1

variant)
Endo- and ecodormancy

releases
CPF (Basler, 2016)

SM1b
Sequential model (M1

variant)
Endo- and ecodormancy

releases
CPF

SM1 model using a bell-shaped temperature response for
chilling

PA Parallel model
Endo- and ecodormancy

releases
CF (Hänninen, 1990; Kramer, 1994)

Pab Parallel model
Endo- and ecodormancy

releases
CF

PA model using a bell-shaped temperature response for
chilling

PM1 Parallel M1 model
Endo- and ecodormancy

releases
CFP (Basler, 2016)

PM1b Parallel M1 model
Endo- and ecodormancy

releases
CFP

PM1 model using a bell-shaped temperature response for
chilling
1In the model abbreviations: s: using a sigmoid temperature response function for forcing, otherwise employing a growing-degree-day temperature response function; b: using a bell-shaped
temperature response function for chilling, otherwise employing a triangular temperature response function.
2Driver abbreviations: C: chilling temperature, F: forcing temperature, and P: photoperiod.
3SOS: start of the growing season.
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the remaining 20% of the SOS – which were from the beginning and

the end of the available years - for evaluating the predictive

performance of the models. For instance, if phenological

observation data were available for the years 1961-2000 at a given

site, we chose data from 1965-1996 for model parameterization and

used data from 1961-1964 as well as 1997-2000 for model

validation. Considering the model’s application in forecasting, we

adopted this data partitioning approach, which is more conducive

to extrapolation beyond the years covered. Considering that all sites

have a minimum of 40 years of data, each site has a minimum of 32

years of modeling data and at least 8 years of validation data. We

employed generalized simulated annealing (GenSA) for model

parameter optimization (Xiang et al., 2013), and this work was

based on the PHENOR modeling framework (Hufkens et al., 2018).

Root Mean Square Error (RMSE) and Akaike Information

Criterion (AIC) (Akaike, 1974) were used to assess the goodness

of fit and to select the best models. RMSE is commonly used to

measure prediction deviation and reflects the concentration of data

around the best-fit line, with smaller values indicating higher model

accuracy. RMSE can be calculated using the following formula:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1ðobservedi − predictediÞ2
n

s
(2)

where observedi and predictedi are the i-th observation and the

model prediction, respectively, and n is the number of observations.

AIC can identify the best model that provides a good

explanation of the data with the fewest parameters, as well as

preventing overfitting. AIC can be calculated using the following

formula:

AIC = n* log(RMSE2) + 2k +
2k(k + 1)
n − k − 1

(3)

where k is the number of free parameters to be fitted in the model.

We employed E-OBS meteorological data and phenological

observations for model parameterization and validation. After

selecting the optimal parameters, we utilized climate change

scenario data as model inputs to predict and analyze model

differences under different scenarios.

3 Results

Overall, the spring phenology simulated by the 13 models

(Supplementary Figures 1A-M) has a similar spatial pattern to the

PEP725 observational records (Supplementary Figure 1N). Among

the four tree species, AH and BP had the earliest growing season

start dates, with an average SOS of about 110 days, while QR had the

latest growing season start date, about 123 ± 7 days.

We performed a linear regression between the predictions of 13

models and the observed values separately. The coefficient of

determination (R2) of the regression models ranged from 0.61 to

0.67 (Figures 2A-M), with the R2 of the model-mean as 0.67

(Figure 2N). The slopes varied from 0.66 to 0.71, with an average

of 0.7. Overall, the average correlation coefficient between the
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predicted and observed values of the average SOS across the 13

models exceeded 0.7, reaching a maximum of 0.8 (Supplementary

Figure 2). For AH, the correlation coefficients between the predicted

and observed SOS ranged from 0.74 to 0.78; for BP, the range was

0.76 to 0.8; for FS, it was 0.63 to 0.72; and for QR, it was 0.71 to 0.77.

Regarding the four tree species, the performances of the 13

models were superior to the NULL model (Table 2). Among these

models, the M1 model performed the best for all of the tree species,

achieving the lowest RMSE and AIC values. However, for AH, FS,

and QR, the TTs model exhibited the poorest performance, as it

obtained the highest RMSE and AIC values. For BP, the SM1 model

performed the worst.

Since most of the phenological observation sites for the four tree

species are coincident, the mean temperatures in their regions have

similar changes over the years. Figure 3 illustrates the average

temperature changes across all sites for four tree species during

the period from 2021 to 2100 under two SSP scenarios. Under the

SSP126 scenario, the average temperature initially rises and then

gradually decreases, with a turning point around 2070. In contrast,

under the SSP585 scenario, the average temperature gradually

increases, results in the study area over 4°C warmer than under

the SSP126 in 2100.

We computed the average of the simulated results from the 13

spring phenology models to reflect the phenological changes under

the two scenarios (Figure 4). Under the SSP126 scenario, the

average SOS first advances and then gradually delays, with a

turning point around 2070. In contrast, under the SSP585

scenario, the average SOS progressively advances, at a rate of

approximately 0.14 days per year. Although the spring phenology

of the four tree species differs, they exhibit similar trends under both

scenarios. Under the SSP585 scenario, among the four tree species,

BP exhibits the largest advance in SOS, approximately 0.16 days per

year, while FS shows the smallest advance, approximately 0.11 days

per year.

To analyze the predictive differences among models, we

computed the standard deviation of the predicted SOS from the

13 spring phenology models for the period from 2021 to 2100

(Figure 5). Under the SSP126 scenario, the standard deviation of the

model-predicted SOS remains relatively constant over the years for

the four tree species studied. However, under the SSP585 scenario,

the standard deviation of the simulated SOS by the 13 spring

phenology models exhibits a significant increase from 2021 to

2100, with an average increase of 0.04 days per year. Among the

four tree species, the SOS standard deviation shows the greatest

variation for QR, with a magnitude of 0.06 days per year, while the

other three tree species exhibit a variation of 0.03 days per year.

Overall, across both scenarios, the mean values of the predicted

SOS were very similar between the one-phase and two-phase

models (Supplementary Figure 3). In the SSP126 scenario, the

standard deviations of the model predictions were generally

smaller than 2 days, with slightly larger standard deviations

observed for the two-phase models (Figure 6). In the SSP585

scenario, on average, the two-phase models exhibited larger

standard deviations after approximately 2050. For BP, FS, and
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TABLE 2 Summary of the comparison between the simulated start of growing season (SOS) and PEP725 phenological observation of 13 models for
the four tree species: Aesculus hippocastanum (AH), Betula pendula (BP), Fagus sylvatica (FS), and Quercus robur (QR).

models AH BP FS QR

RMSE(days) AIC RMSE(days) AIC RMSE(days) AIC RMSE(days) AIC

NULL 12.1 11.3 9.6 11.6

TT 7.9 30787 7.3 27862 7.1 21003 7.7 21906

TTs 8.3 31516 7.5 28286 7.6 21712 8.3 22610

PTT 7.8 30561 7.0 27356 7.0 20879 7.5 21626

PTTs 8.3 31466 7.4 28129 7.5 21650 8.1 22382

M1 7.7 30360 6.9 26978 6.8 20510 7.5 21602

M1s 8.2 31231 7.3 27912 7.3 21330 8.0 22214

(Continued)
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FIGURE 2

Heat maps of model predictions and PEP725 phenological observations for four tree species. Panels (A–M) are compartisons of each model
separately. For Panel (N), the predicted start of growing season (SOS) is the mean of the 13 model predictions.
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QR, as temperatures increased, the two-phase models exhibited

greater prediction differences than one-phase models.

The mean of the predicted SOS was similar between the

temperature-driven models and the temperature and photoperiod-

driven models, across both scenarios (Supplementary Figure 4). In

the SSP126 scenario, the standard deviations of the model predictions

were generally small and exhibited a trend of initially increasing and

then decreasing (Figure 7). In the SSP585 scenario, on average, the

temperature-driven models showed larger standard deviations after

2060. For FS and QR, as temperatures increased, the temperature-

driven models showed greater prediction differences in the

SSP585 scenario.
4 Discussion

We parameterized and validated 13 spring phenology models

using E-OBS meteorological data and phenological observations. The

results indicate that model simulations exhibit spatial patterns similar

to phenological observations, with correlation coefficients exceeding

0.72 and reaching as high as 0.8. The RMSE values for all 13 models are

lower than those of the NULL model, with the M1 model being
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identified as the best predictive model for spring phenology among the

four tree species, in agreement with Basler’s study (Basler, 2016).

To investigate the sources of model prediction discrepancy, we

quantitatively examined the differences due to model structures

(i.e. one-phase vs two-phase models) and driving factors (i.e. only

temperature vs temperature and photoperiod).

Firstly, we compared the influence of dormancy release on the

predictive performance of the models. Our research demonstrates

that one-phase models and two-phase models exhibit similar

performance. Previous studies have also reached similar

conclusions (Hänninen and Kramer, 2007; Linkosalo et al., 2008;

Vitasse et al., 2011; Basler, 2016), including our previous research

(Mo et al., 2023). Both the one-phase and two-phase models involve

the process of heat accumulation, with the main difference being

that the two-phase model additionally incorporates the process of

chilling accumulation. Temperature manipulation experiments

indicate that chilling temperature can affect the spring phenology

of certain tree species (Murray et al., 1989; Heide, 1993a; Heide,

1993b). Therefore, when there are issues in meeting the chilling

requirement, the two-phase model can demonstrate better

performance. Our results imply that the chilling requirement of

the four tree species in our study area can be met under current
TABLE 2 Continued

models AH BP FS QR

RMSE(days) AIC RMSE(days) AIC RMSE(days) AIC RMSE(days) AIC

AT 7.9 30725 7.2 27737 7.1 21036 7.6 21778

SM1 8.3 31479 7.6 28397 7.4 21525 8.1 22384

SM1b 8.3 31380 7.5 28299 7.4 21522 8.1 22371

PA 8.0 30855 7.2 27744 7.0 20943 7.8 21989

PAb 7.9 30764 7.3 27793 7.1 21063 8.0 22221

PM1 7.8 30577 7.1 27528 7.0 20959 7.7 21796

PM1b 7.9 30647 7.1 27455 7.1 21002 7.6 21717
fron
The models are represented by abbreviations, as listed in Table 1, and their performance was evaluated using root mean squared error (RMSE), and Akaike information criterion (AIC).
FIGURE 3

The variation of the mean temperature with the years under two scenarios in the study area. The shading represents one standard deviation of
temperature from thirteen CMIP6 climate models under each scenario.
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climate conditions, which is consistent with previous research

findings (Vitasse et al., 2011; Basler, 2016). However, under

future climate warming scenarios, the fulfillment of chilling

requirements may face challenges.

The two-phase model used in this study consists of sequential,

parallel, and alternating models. The sequential model posits that

the chilling requirement must be fulfilled before heat accumulation

begins. The parallel model suggests that chilling accumulation and

heat accumulation can occur simultaneously, while the alternating

model proposes that the choice between chilling accumulation and

heat accumulation depends on temperature conditions. Under the

SSP585 scenario, the standard deviation of the two-phase model is

generally higher than that of the one-phase model, particularly after

2050. This may be attributed to the increasing temperature, which

poses challenges in meeting the chilling requirement and highlights

the importance of chilling accumulation in the two-phase model,

whereas the one-phase model assumes that the chilling requirement

has already been satisfied. Furthermore, the differences among the

two-phase models can be further amplified by variations in the

chilling temperature response function employed in each model.
Frontiers in Plant Science 08
We then compared models driven solely by temperature and

those driven by both temperature and photoperiod. When

considering about the mechanisms of how climate factors

influence spring phenology, for temperate and boreal regions, the

primary factor is the temperature, as well as the photoperiod (Flynn

and Wolkovich, 2018; Fu et al., 2019). The temperature has a dual

impact on spring phenology (Chuine et al., 2016). On one hand,

plants require chilling accumulation during winter to release the

endodormancy phase, and on the other hand, they need to

accumulate heat (experiencing forcing temperatures) to release

the ecodormancy phase. Studies have indicated that the

fulfillment of chilling requirements affects the demand for heat

accumulation (Murray et al., 1989; Carter et al., 2017). In addition

to temperature, photoperiod plays a role in regulating spring

phenology. When warming advances the SOS, photoperiod then

delays it to avoid plant exposure to frost. When temperature

variation delays the SOS, photoperiod triggers an advance to

provide more time for photosynthesis (Meng et al., 2021).

These response characters have been captured in our

simulations. Our results indicate that, under the SSP585 scenario,
A B

D

E

C

FIGURE 4

Changes in the mean start of growing season (SOS) of four tree species over the period 2021-2100 under two scenarios: (A) Aesculus
hippocastanum (AH), (B) Betula pendula (BP), (C) Fagus sylvatica (FS), (D) Quercus robur (QR) and (E) their mean. The shading represents one
standard deviation of the predicted SOS based on temperature data from thirteen CMIP6 climate models for each scenario.
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models that simultaneously consider the effects of both temperature

and photoperiod have smaller prediction differences in forecasting

the spring phenology of FS and QR, compared to models that only

consider temperature effects. However, there were no significant

differences for AH and BP. This may be attributed to the varying

sensitivity of different tree species’ spring phenology to

photoperiod. It has been shown that a 4°C increase in

temperature can limit the advancement of SOS in FS due to

photoperiod restrictions, while SOS in AH is not limited by

photoperiod (Fu et al., 2019). This characteristic of photoperiod

contributes to smaller prediction differences in models that consider

photoperiod effects, which aligns with the findings of this study.

With ongoing climate warming, the spring phenology of

photoperiod-sensitive tree species may experience greater impacts.
Frontiers in Plant Science 09
Comprehensively, our results show that the average predicted

SOS of the two-phase model and the one-phase model are relatively

close under both scenarios (Supplementary Figure 3), suggesting the

need for further investigation of the endodormancy phase release

mechanism. Additionally, it has been shown that the lack of

endodormancy break date data often leads to inaccurate

predictions of endodormancy break dates and can result in

substantial differences in prediction outcomes under warming

scenarios (Chuine et al., 2016). When warming reaches a certain

level, photoperiod restricts the advancement of plant spring

phenology, leading to predictions from models that consider both

temperature and photoperiod to be higher than those from models

that only consider temperature. However, our results do not

support this expectation (Supplementary Figure 4). Therefore,
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FIGURE 5

Changes in the standard deviation of the predictive results of 13 spring phenology models under two scenarios between 2021 and 2100: (A)
Aesculus hippocastanum (AH), (B) Betula pendula (BP), (C) Fagus sylvatica (FS), (D) Quercus robur (QR) and (E) their mean.
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there is still uncertainty regarding the synergistic effects of

temperature and photoperiod on plant spring phenology, and

further research, such as manipulation experiments, is needed to

improve existing spring phenology models.

Furthermore, some previous studies have suggested that

temperature exhibits asymmetric effects on spring phenology,

including our previous research (Mo et al., 2023). In this study,

we also considered the asymmetric impact of temperature and

parameterized the model using daily mean temperature, daily

maximum temperature, and daily minimum temperature

separately. The results, not shown, indicated that simulations

based on parameterizations using daily mean temperature and

daily maximum temperature generally exhibited closer alignment

in terms of accuracy, both outperforming the results obtained from

parameterization using daily minimum temperature. In this study,

we exclusively utilized daily mean temperature for modeling and

forecasting. Given that warming amplifies differences between
Frontiers in Plant Science 10
models, the influence of temperature asymmetry on model

performance under climate change scenarios deserves investigation.
5 Conclusion

Overall, the average correlation coefficient between the

predicted SOS by the 13 models and the observed values exceeded

0.72, with the highest reaching 0.80. All models performed better

than the NULL model, and the M1 model performed the best for all

of the tree species. Under the SSP126 scenario, the average SOS

advanced initially and then gradually delayed, with a turning point

around 2070. In the SSP585 scenario, the average SOS gradually

advanced at a rate of approximately 0.14 days per year. Under the

SSP126 scenario, the models exhibited relatively small and stable

standard deviations. In the SSP585 scenario, from 2021 to 2100, the

standard deviation of the simulated SOS by the 13 spring phenology
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FIGURE 6

Comparing the standard deviations of the predicted start of growing season (SOS) for the four tree species considering different dormancy release
scenarios: (A) Aesculus hippocastanum (AH), (B) Betula pendula (BP), (C) Fagus sylvatica (FS), (D) Quercus robur (QR), and (E) their mean. One-phase
represents the one-phase models, which solely explains ecodormancy release, while two-phase represents two-phase models, which explains both
endodormancy and ecodormancy release.
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models showed a significant increase, with an average annual

increase of 0.04 days. On average, compared to one-phase

models, two-phase models exhibited larger standard deviations

after approximately 2050. Compared to models driven by both

temperature and photoperiod, models driven solely by temperature

showed larger standard deviations after 2060. Our results

emphasize the differences in existing phenological models under

warming scenarios and suggest investigating the release

mechanisms of the endodormancy phase and incorporating new

insights into future phenological models to better simulate changes

in plant phenology.
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