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Phylogeny more than plant
height and leaf area explains
variance in seed mass

Yingnan Wang1†, Yang Wang2†, Fei Yu2* and Xianfeng Yi1*

1School of Life Sciences, Qufu Normal University, Qufu, China, 2College of Life Sciences, Henan
Normal University, Xinxiang, China
Although variation in seed mass can be attributed to other plant functional traits

such as plant height, leaf size, genome size, growth form, leaf N and phylogeny,

until now, there has been little information on the relative contributions of these

factors to variation in seed mass. We compiled data consisting of 1071 vascular

plant species from the literature to quantify the relationships between seedmass,

explanatory variables and phylogeny. Strong phylogenetic signals of these

explanatory variables reflected inherited ancestral traits of the plant species.

Without controlling phylogeny, growth form and leaf N are associated with seed

mass. However, this association disappeared when accounting for phylogeny.

Plant height, leaf area, and genome size showed consistent positive relationship

with seed mass irrespective of phylogeny. Using phylogenetic partial R2s model,

phylogeny explained 50.89% of the variance in seedmass, muchmore than plant

height, leaf area, genome size, leaf N, and growth form explaining only 7.39%,

0.58%, 1.85%, 0.06% and 0.09%, respectively. Therefore, future ecological work

investigating the evolution of seed size should be cautious given that phylogeny

is the best overall predictor for seed mass. Our study provides a novel avenue for

clarifying variation in functional traits across plant species, improving our better

understanding of global patterns in plant traits.

KEYWORDS
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Introduction

Seed mass, a key ecological trait that affects many aspects of plant ecology (Moles et al.,

2005a; Moles et al., 2005b; Mason et al., 2008), has great influences on the regeneration

strategies of plants, including seed output for a given amount of energy, seed dispersal and

seedling survival (Leishman et al., 2000; Chen et al., 2022; Cui et al., 2023). Variation in

seed mass reflects the fundamental trade-off between seed number and seed mass (Henery

and Westoby, 2001) and between seed mass and persistence in the seed bank (Thompson

et al., 1993). An increasing body of evidence has shown that large-seeded species produce

fewer seeds than those bearing small seeds (Henery and Westoby, 2001; Moles et al., 2004).

Compared to small-seeded species, large-seeded species are more likely to produce large
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seedlings that are supposed to survive better than small seedlings

under a variety of hazardous environments (Armstrong and

Westoby, 1993; Leishman and Westoby, 1994a; Leishman and

Westoby, 1994b; Burke and Grime, 1996; Westoby et al., 1996;

Harms and Dalling, 1997; Leishman et al., 2000; Dalling and

Hubbell, 2002; Westoby et al., 2002; Moles and Westoby, 2004;

Dainese and Sitzia, 2013). Seed masses of present-day species have

been observed to range over 11.5 orders of magnitude, from the

0.0001-mg dust-like seeds of orchids to the 20-kg seeds of the

double coconut (Leishman et al., 1995). It has been recognized,

therefore, that understanding the influencing factors that drive

changes in seed mass can help elucidate plant ecological history

(e.g., Moles et al., 2005b).

To date, there have been many potential explanations for the

variation in seed mass. The leaf-height-seed (LHS) scheme

proposed by Westoby (1998), which encompasses variation in a

number of correlated plant characteristics (leaf area, plant height,

and seed size), has been used to quantify the strategy to explain the

variation in seed mass in response to the other two functional traits.

At the same time, seed mass could be correlated with other basic

life-history traits, such as growth form, genome size, leaf N and

other potential explanatory variables. Moreover, seed mass might be

best predicted by phylogeny, showing phylogenetic conservatism in

evolution of seed size. Although knowledge is available for the effect

of single trait on seed size variation, incorporating multiple ones is

expected to illustrate to which degree seed size will be influenced by

the potential explanatory variables.

As a crucial component of a plant species’ ecological strategy

(Westoby, 1998), plant height not only determines a plant’s ability

to compete for light but also a species’ carbon gain strategy, which is

supposed to play an important role in another life-history trait, seed

mass. A pioneering study by Levin (1974) found that the mean seed

mass of 832 plant species increase along the growth form height

gradient of herbs, shrubs, vines, shrubby trees, and trees. Leishman

et al. (1995) showed that seed masses are consistently correlated

with plant height across 1659 species, representing a worldwide

flora. Similar pattern of the correlation between seed mass and plant

height was observed by Moles et al. (2004) and Carly et al. (2009).

However, Grime et al. (1997) found no significant correlation

between plant height and seed mass across 43 common British

species. Thompson and Rabinowitz (1989) analyzed 816 plant

species around Sheffield and found significant relationships

between seed mass and plant height within some families, but not

in other taxa. In a southeastern Sweden flora, seed mass was only

marginally correlated with plant height of 126 species (Bolmgren

and Cowan, 2007). Rees (1996) analyzed 382 species of Sheffield

flora and found that the relationship between seed mass and plant

height is inconsistent and dependent on dispersal modes. Although

plant height has been considered one of the strongest correlates of

seed mass (Leishman et al., 1995; Moles et al., 2004), much

uncertainty still remains to be tackled, possibly because of

sampling and taxonomic breadth in earlier literature.

As the main organ of plants that contributes to photosynthesis,

leaves act as a key determinant of the amount of energy available for

reproduction (Wright et al., 2004). Although leaves may vary in

their traits (e.g., area and N nutrition) in response to growing
Frontiers in Plant Science 02
conditions (Givnish, 1987; Witkowski and Lamont, 1991; Ackerly

and Reich, 1999; Cornelissen et al., 2003; McDonald et al., 2003; Xu

et al., 2009; Milla and Reich, 2011), a strong connection between

total leaf mass and net annual reproductive biomass has been

observed (Niklas and Enquist, 2002). Therefore, the ecological

significance of leaf traits may relate to resource capture in

productive organs, implying that leaf area and seed mass should

be positively correlated (Westoby and Wright, 2003). Leaf area was

found to be positively correlated to seed mass across plant species in

South Africa, England, Spain and northern Arizona, USA (Midgley

and Bond, 1989; Laughlin et al., 2010; Hodgson et al., 2017). In

contrast, Cornelissen (1999) showed a non-linear relationship

between leaf area and seed mass of 58 woody species from

Europe. Recently, Santini et al. (2017) showed that the triangular

relationship also holds for 401 annual plants belonging to 37

families from the United Kingdom. However, Westoby and

Wright (2003) failed to find the triangular relationship between

leaf area and seed mass as reported by Cornelissen (1999),

indicating that the pattern seems not universal between seed mass

and leaf area.

In addition, seed mass is not independent of growth form,

which is often a predictor of other plant traits (Moles et al., 2005a,

b). Plant growth form, like seed mass, may also be phylogenetically

constrained (Li et al., 2017). Evidence has shown that woody plants

are more likely to have larger seeds, while non-woody species are

more likely to produce small seeds (Jurado et al., 1991). Therefore,

the phylogenetic constrains of plant growth form might have an

indirect impact on the variations in seed mass. Furthermore,

genome size appears to be one of the most studied factors that

are related to variations in seed mass. The relationship between

genome size and seed mass has been shown to vary among life

forms in flowering seed plants (Beaulieu et al., 2007). Carta et al.

(2022) found that species with very large genome sizes never had

small seeds. Therefore, apart from the influence of plant height and

leaf area, phylogeny, growth form, and genome size may also

contribute to seed mass variations.

Phylogenetic conservatism in plant traits has been well studied

(Wiens et al., 2010; Cornwell et al., 2014; Tozer et al., 2015) and

such studies are helping to illuminate the role of the evolutionary

past in determining the characteristics of species. Seed mass has

been accepted as an ecologically important trait phylogenetically

constrained within local floras. This may also be true for plant

height and leaf area. Therefore, it would provide deeper insight into

the variations in plant traits associated with phylogeny, before

analyzing relationships between seed mass and other plant

ecological attributes, e.g., growth form, plant height, and leaf area.

However, the potential influence of phylogeny on the leaf-height-

seed (LHS) plant ecology strategy scheme has not previously been

well evaluated (Cornelissen, 1999; Laughlin et al., 2010; Hodgson

et al., 2017).

Previous data on the relationship between plant traits has been

published across the world (Lord et al., 1995; Kang and Primack,

1999; Zhang et al., 2004; Vandelook et al., 2018). The rapid

accumulation of databases on plant traits provides us an ideal

opportunity to illustrate a general pattern of the relationship

between plant traits (Salguero-Gómez et al., 2015; Kattge et al.,
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2020; Carta et al., 2022), which helps us to have a better

understanding of the leaf-height-seed (LHS) plant ecology

strategy scheme. In the present study, we first used phylogenetic

partial R2s (Ives, 2019) to tease apart the effects of multiple plant

traits (plant height, leaf area, genome size, growth form and leaf N)

and phylogeny, to quantify extent to which they contribute to

variations in seed mass of plant species when each predictor

variable and the phylogeny is removed one-by-one.
Materials and methods

Data collection

Plant traits were derived from the large currently available

databases TRY plant trait database (Kattge et al., 2020) and Plant

DNA C-values Database (Royal Botanic Gardens Kew, 2022) as well

as published literature (Westoby andWright, 2003; Dıáz et al., 2016;

Santini et al., 2017). Raw data collected from various sources was

cleaned and curated. For example, mean value was calculated if a

single species has multiple trait values. Plant traits included: 1) seed

mass (mg seed-1), maximum plant height (m), genome size (1C, pg),

leaf area (mm2), leaf N (mg/g), and growth form. The growth form

was split into two functional groups: “woody” and “non-woody”

because sample size was not sufficient for extracting more detailed

growth form classes. We took advantage of big data and compiled a

globally distributed dataset containing 1071 vascular plant species,

covering 553 genera, 136 families, 52 orders with information of

seed mass, maximum plant height, genome size, leaf area, and leaf

N. Our final data base for the main analysis contained 404 woody

and 667 non-woody species with known trait values, representing

0.3% vascular plants in the world. In total, 1002 angiosperms were

analyzed together with 69 gymnosperms in which different LHS

strategy has been observed. Following Westoby (1998), all variables

were log10-transformed prior to analysis to correct for skewness in

trait distributions because trait values can vary by several orders of

magnitude, and are often log normally distributed between species.
Phylogenetical signal

Phylogenetic signal in seed mass, plant height, leaf area, growth

form and leaf N was calculated using a phylogenetic tree

(GBOTB.extended.tre) obtained by pruning the largest phylogeny

for vascular plants so far, containing 10587 genera and 74533

vascular plant species (Zanne et al., 2014; Smith and Brown,

2018). The R package ‘V. PhyloMaker’ was used because it can

generate very large phylogenies for vascular plants at a relatively fast

speed (Jin and Qian, 2019). Species names in this study were

checked and standardized according to the Plant List v.1.1 (http://

www.theplantlist.org/).

Pagel’s lambda (l) estimates the strength of phylogenetic signal

in a continuous trait, therefore, we calculated Pagel’s l to

quantitatively estimate if the similarity of seed mass, plant height,

genome size, leaf area, and leaf N among species is correlated with

the phylogenetic similarity of plant species. We utilized the canned
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randomizations by running the package ‘phytools’ (Revell, 2012) in

R to test for the significance of l. In our study, Pagel’s l can range

from 0 to 1, with a l of 0 indicating no phylogenetic signal and

whereas a l of 1 indicating the strongest phylogenetic signal

(Pagel, 1999).

We tested the strength of the phylogenetic signal in growth

form using the D statistic that is for binary traits (Fritz and Purvis,

2010), using the package ‘caper’ in R. Growth form of the 1071

species is supposed to come from the time of their independent

evolution if the D is not significantly different from 0 (PBrownian >

0.05). Whereas, if D value is equal to or not significantly different

from 1 (Prandom > 0.05), which indicates that the interspecific

differences in growth form are distributed randomly across a

phylogenetic tree.
Statistical analysis

All analyses were conducted in R (R Development Core Team,

2021). As plant traits vary with growth form, we analyzed for

differences in plant traits between woody and non-woody species.

We employed the general linear model to detect the differences in

seed mass, plant height, genome size, leaf area, leaf N between plant

species with different growth forms (woody vs non-woody). We also

constructed generalized linear model (GLM) to see the association

between seed mass, plant height, growth form, genome size, leaf

area and leaf N across all plant species and groups, with the seed

mass as dependent variable and other plant traits as independent

variables. To investigate which plant traits were more important to

variations in seed mass across plant species, we applied a multi-

variable phylogenetic generalized linear mixed model (PGLMM) to

incorporate phylogenetic information and then correct for

phylogenetic effects among species, as closely related organisms

are more likely to share similar biological traits. We used a Gaussian

distribution with phylogenetic trees, implemented in the R packages

‘phyr’ and ‘ape’ (Paradis and Schliep, 2019; Li et al., 2020). We

considered plant height, leaf area, genome size, growth form and

leaf N as predictor variables, seed mass as the response variable and

phylogeny as a random intercept.

To tease apart the relative contributions of plant traits and

phylogeny to the variation in seed mass of the plant species, we used

partial R2s for the logistic regression model (Ives, 2019)

implemented by the R package “rr2” (Ives and Li, 2018). The

partial R2
lik for each factor was calculated by comparing the full

model with reduced models in which a given factor was removed,

and measuring the consequent reduction in the likelihood (Wang

et al., 2022).
Results

By analyzing worldwide variation in several plant traits, we

found strong and statistically significant phylogenetic signal of seed

mass (l = 0.976, P < 0.001), plant height (l = 0.964, P < 0.001),

genome size (l = 0.956, P < 0.001), leaf area (l = 0.883, P < 0.001),

leaf N (l = 0.771, P < 0.001) and growth form (D = -0.190, Prandom =
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0, PBrownian = 0.982) across the plant species (Figures 1, 2), showing

that plant traits covary in direct proportion to their shared

evolutionary history.

General linear model showed that seed mass and plant height

were higher in the woody plants than in the non-woody species (t =

-6.676, P < 0.001; t = -38.42, P < 0.001; Figures 3A, B). Although

there was a trend for woody plants to have larger genome size and

leaf area than non-woody species, this was not significant (t = 0.735,

P = 0.462; t = 0.595, P = 0.552; Figures 3C, D). However, leaf N was

lower in the woody plants than in the non-woody species (t = 8.782,

P < 0.001; Figure 3E). We found no difference in seed mass between

angiosperms and gymnosperms, but a significant difference in leaf

N between Leguminosae and other families (P < 0.05).

Without controlling phylogeny, we identified statistically

significant relationships between seed mass and plant height

across 1071 species based on multi-variable generalized linear

model (t = 3.299, P = 0.001; Table 1). Although seed mass and

leaf area were positively correlated (t = 6.961, P < 0.001; Table 1), we

detected significant interactive effect of plant height and leaf area on

variations in seed mass (t = 2.204, P = 0.028; Table 1). Significant

relationship was found between seed mass and genome size (t =

5.034, P < 0.001; Table 1) but not between seed mass and leaf N in

the absence of phylogeny (t = 1.646, P = 0.099; Table 1). Growth

form, however, well predicted variations in seed mass across the

plant species (t = 5.784, P < 0.001; Table 1).

In analysis that controlled for the phylogeny, plant height, leaf

area, and genome size alone appeared to be a reliable predictor of

variations in seed mass (z = 4.268, P < 0.001; z = 2.549, P = 0.011; z
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= 4.514, P < 0.001; Table 1). After correcting for phylogenetic

effects, growth form and leaf N failed to predict variations in seed

mass (z = 0.838, P = 0.402; z = 0.850, P = 0.395; Table 1). There was

no significant interactive effect of plant height and leaf area on seed

mass in the presence of phylogenetic considerations (z = 0.437, P =

0.662; Table 1).

Phylogeny explained the vast majority of seed mass variation

across the plant species (partial R2
lik = 50.89%, DlogLik = 380.8, P <

0.001), while plant height, leaf area, genome size explained a

minority of variation (R2
lik = 7.39%, DlogLik = 41.1, P < 0.001;

R2
lik = 0.58%, DlogLik = 3.1, P = 0.01; R2

lik = 1.85%, DlogLik = 10.0,

P < 0.001; Figure 4). Leaf N and growth form failed to explain the

variance in seed mass (R2
lik = 0.06%, DlogLik = 0.3, P = 0.41; R2

lik =

0.09%, DlogLik = 0.5, P = 0.33; Figure 4).
Discussion

By conducting an analysis of a collated dataset of 1071 plant

species, our results suggest phylogenetic clustering for the majority

of plant traits tested in this study, i.e., seed mass, plant height, leaf

area, genome size, and leaf N, as observed in previous studies

(Moles et al., 2005b; Swenson and Enquist, 2009; Davies et al., 2013;

Wang et al., 2022). This is most likely due to the similar traits of

phylogenetically closely related species rather than the similarity of

traits at higher taxonomic levels, e.g., genus and family. Apart from

phylogenetic signal of these traits, we showed that growth form of

the 1071 species was not randomly distributed but followed a
FIGURE 1

Plant traits (seed mass, plant height, leaf area, genome size, leaf N, and growth form) mapped onto a plant phylogeny. Note that data were log 10-
transformed prior to mapping. Note: orders covering > 10 species are shown outside the phylogeny tree.
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Brownian model of trait evolution, indicating that the closely

related species are more likely to have similar growth form than

might be expected by chance (Kerkhoff et al., 2006). As geographic

distribution of plant species is greatly shaped by growth form (Xu

et al., 2018; Zhao et al., 2018), identifying the phylogenetic

distribution of woody versus non-woody species will advance our

knowledge of terrestrial plant distribution in various ecosystems.

Previous studies have looked at the patterns of associations of

seed mass with other plant traits (Westoby, 1998; Guo et al., 2010;

Santini et al., 2017). By controlling phylogeny, plant height appears

to be a reliable predictor of seed mass across species based on the

results of PGLMM. Although dispersal mode and growth form may

modify the pattern of association of plant height with seed mass

(Thompson and Rabinowitz, 1989; Leishman and Westoby, 1994c;

Leishman et al., 1995), we found consistent positive correlation

between seed mass and plant height. The positive relationship

between seed mass and plant height may facilitate long-distance

seed dispersal because seed dispersal distance is more strongly

correlated with plant height than with seed mass (Thomson

et al., 2011).

Plant height is also closely related to leaf area (Falster and

Westoby, 2003), therefore positive relationships between leaf area

and plant height are likely to lead to a positive correlation between

seed mass and leaf area. In our study, there were also consistent and

positive correlations between seed mass and leaf area, suggesting

that the correlations between leaf area and seed mass are conserved

across life-forms. These patterns accord well with independently

gathered data on the relationship between seed mass and leaf area

both in the woody and annual species (Senn et al., 1992; Niinemets

and Kull, 1994; Cornelissen, 1999; Santini et al., 2017).
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The role of the relationship between genome size and seed mass

has gained much less attention over the two decades (Moles et al.,

2005a, b; Beaulieu et al., 2007). Despite several studies that found a

quadratic relationship between genome size and seed mass

(Beaulieu et al., 2007; Knight and Beaulieu, 2008; Krahulcová

et al., 2017), our GLM and PGLMM models showed positive

association between genome size and seed mass across 1017

species. To understand the forces shaping the evolution of seed

mass, we will also need to consider other plant traits, such as leaf N

and growth form. Without controlling phylogeny, seed size was

associated with growth form and woody plants tended to have

larger seeds than smaller herbaceous plants, possibly due to the

larger height of woody plants than of herbaceous species (Jurado

et al., 1991). However, incorporating phylogenetic affiliations into

the model failed to detect the clear association between seed mass

and growth form across the plant species, indicating that growth

form is phylogenetically conserved. This finding may not be in

agreement with the observation that variations in seed mass are

consistently associated with those in growth form (Moles

et al., 2005a).

Despite the strong phylogenetic signal in several plant traits, our

study successfully teased apart the relative contributions of

phylogeny, plant height, leaf area, genome size, leaf N and growth

form on explaining variations in seed mass across the plant species.

We first showed that phylogeny had much more power to explain

variations in seed mass than did other plant traits, whereas plant

height, leaf area and genome size only explained the minority of

these variations although the leaf-height-seed (LHS) scheme states

that plant height and leaf area are closely correlated with seed mass

(Westoby, 1998). Growth form and leaf N explained little variation
B C

D E F

A

FIGURE 2

Tests of phylogenetic signal in plant traits. A statistically significant phylogenetic signal was detected in seed mass (A, l = 0.976, P < 0.001), plant
height (B, l = 0.964, P < 0.001), genome size (D, l = 0.956, P < 0.001), leaf area (C, l = 0.883, P < 0.001), leaf N (E, l = 0.771, P < 0.001), and
growth form (F, D = -0.148, Prandom = 0, PBrownian = 0.982) of 1071 plant species.
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in seed mass, reflecting the main effect of phylogeny on affecting

seed mass variation. Therefore, our study suggests that divergences

in seed mass have been more closely correlated with phylogeny than

with divergences in other plant traits. If this pattern holds equally

for plants of different taxa, investigation on the correlations between

plant traits should not ignore the contribution of phylogeny.

We admit that there are some limitations to our study.

Although we acknowledge that the trait data is inherently limited
Frontiers in Plant Science 06
when multiple functional traits of plants are included, 1071 species

investigated in our study account for a very small minority of total

global vascular plant species, which is unable to completely

represent the full diversity of seed plants. In addition, species

analyzed in our study are mainly included in families such as

Compositae, Lamiaceae, Plantaginaceae, Leguminosae, Rosaceae,

Fagaceae, Ranunculaceae, Poaceae, Cyperaceae, and Pinaceae,

whereas rarely found in Aristolochiaceae, Chloranthaceae,
B

C D

E

A

FIGURE 3

Comparison of seed mass (A), plant height (B), leaf area (C), genome size (D) and leaf N (E) between plant species with different growth forms
(woody vs non-woody) derived from general linear model (GLM).
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Schisandraceae, Nymphaeaceae, Liliaceae, Pontederiaceae, and

Flagellariaceae, which in turn results in many taxa lacking in

biodiversity-rich areas such as Africa. Therefore, some potential

bias will be present due to plant species over-sampled or under-

sampled in our study. Failure to include masses of plant taxa in the

model will not provide an unbiased pattern of seed mass variation.

Moreover, a global dataset without considering the geographic

heterogeneity of the 1071 vascular species were analyzed using

the partial R2s for the logistic regression model, which may

overestimate the contributions of phylogeny and other plant traits

to variations in seed mass across plant species.
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Taken together, our results indicate that although various plant

traits (seed mass, plant height, leaf area, genome size, leaf N and

growth form) are phylogenetically conserved and closely correlated,

phylogeny appears to explain variations in seed mass better than

other explanatory variables. Based on the partial R2s for the logistic

regression model, our results provide solid evidence that phylogeny

is the best overall predictor for seed mass, warning that future

ecological work on the correlations of seed size with other plant

traits and external variables should be cautious. The strong

phylogenetic signals of plant traits in this study provide an

implication that the external, abiotic, climatological factors are
TABLE 1 Multivariate phylogenetic generalized linear mixed model (PGLMM) and generalized linear model (GLM) constructed with seed mass of the
1071 species as response variable.

Model AIC Predictor variable Estimate (SE) t P

GLM 2731.5

Intercept -0.822 (0.233) -3.522 < 0.001

Plant height 0.330 (0.100) 3.299 0.001

Leaf area 0.231 (0.033) 6.961 < 0.001

Genome size 0.281 (0.056) 5.034 < 0.001

Leaf N 0.271 (0.165) 1.646 0.099

Growth form 0.527 (0.091) 5.784 < 0.001

Plant height*Leaf area 0.081 (0.037) 2.204 0.028

Model AIC Predictor variable Estimate (SE) z P

PGLMM 1976.6

Intercept 0.614 (0.893) 0.688 0.492

Plant height 0.409 (0.096) 4.268 < 0.001

Leaf area 0.071 (0.028) 2.549 0.011

Genome size 0.304 (0.067) 4.514 < 0.001

Leaf N 0.103 (0.121) 0.850 0.395

Growth form 0.075 (0.089) 0.838 0.402

Plant height*Leaf area 0.015 (0.035) 0.437 0.662
fronti
FIGURE 4

The relative contribution of different factors to the variation in seed mass using partial R2s for the logistic regression model.
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potentially less important for determining variations in plant traits,

though variation in plant traits can be partially explained by the

habitat characteristics. It can be expected that the observed patterns

in our study will be true for a majority of vascular plants within

certain ecosystems because 533 genera belonging to 136 families

were included in our analyses, representing a worldwide flora. Our

results may also suggest a tight relationship between plant

phylogeny and the geographic distributions because of similar

selection pressures experienced by species from a common

ancestor in similar habitats (Chen et al., 2022). Given that seed

mass and plant height are so tightly linked with reproductive

potential and dispersal (Leishman et al., 2000; Thomson et al.,

2011; Hou, et al., 2021; Wang and Yi, 2022), the phylogenetic

relatedness of plant species may influence their distribution range

size (Moles et al., 2005b). Therefore, our work is expected to open

the door to further investigate the contributions of phylogeny and

explanatory attributes to the variation in given plant traits.
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