AUTHOR=Rahajaharilaza Koloina , Muller Bertrand , Violle Cyrille , Brocke Kirsten vom , Ramavovololona , Morel Jean Benoît , Balini Elsa , Fort Florian TITLE=Upland rice varietal mixtures in Madagascar: evaluating the effects of varietal interaction on crop performance JOURNAL=Frontiers in Plant Science VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1266704 DOI=10.3389/fpls.2023.1266704 ISSN=1664-462X ABSTRACT=Introduction

Rice plays a critical role in human livelihoods and food security. However, its cultivation requires inputs that are not accessible to all farming communities and can have negative effects on ecosystems. simultaneously, ecological research demonstrates that biodiversity management within fields contributes to ecosystem functioning.

Methods

This study aims to evaluate the mixture effect of four functionally distinct rice varieties in terms of characteristics and agronomic performance and their spatial arrangement on the upland rice performance in the highlands of Madagascar. The study was conducted during the 2021-2022 rainfall season at two close sites in Madagascar. Both site differ from each other’s in soil properties and soil fertility management. The experimental design at each site included three modalities: i) plot composition, i.e., pure stand or binary mixture; ii) the balance between the varieties within a mixture; iii) and for the balanced mixture (50% of each variety), the spatial arrangement, i.e., row or checkerboard patterns. Data were collected on yields (grain and biomass), and resistance to Striga asiatica infestation, Pyricularia oryzea and bacterial leaf blight (BLB) caused by Xanthomonas oryzae-pv from each plot.

Results and discussion

Varietal mixtures produced significantly higher grain and biomass yields, and significantly lower incidence of Pyricularia oryzea compared to pure stands. No significant differences were observed for BLB and striga infestation. These effects were influenced by site fertility, the less fertilized site showed stronger mixture effects with greater gains in grain yield (60%) and biomass yield (42%). The most unbalanced repartition (75% and 25% of each variety) showed the greatest mixture effect for grain yield at both sites, with a strong impact of the varietal identity within the plot. The mixture was most effective when EARLY_MUTANT_IAC_165 constituted 75% of the density associated with other varieties at 25% density. The assessment of the net effect ratio of disease, an index evaluating the mixture effect in disease reduction, indicated improved disease resistance in mixtures, regardless of site conditions. Our study in limited environments suggests that varietal mixtures can enhance rice productivity, especially in low-input situations. Further research is needed to understand the ecological mechanisms behind the positive mixture effect.