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Changes of physiological
characteristics, element
accumulation and hormone
metabolism of tea leaves in
response to soil pH

Xiaoli Jia1†, Qi Zhang1†, Yuhua Wang2, Ying Zhang1, Mingzhe Li3,
Pengyuan Cheng3, Meihui Chen1, Shaoxiong Lin3,
Jishuang Zou1, Jianghua Ye1* and Haibin Wang1*

1College of Tea and Food, Wuyi University, Wuyishan, China, 2College of Life Sciences, Fujian
Agriculture and Forestry University, Fuzhou, China, 3College of Life Science, Longyan University,
Longyan, China
Soil acidification is very likely to affect the growth of tea trees and reduce tea

yield. In this study, we analyzed the effects of soils with different pH on the

physiological characteristics of tea leaves and determined the multi-element

content and hormone metabolomes of tea leaves by ICP-MS and LC-MS/MS,

based on which we further analyzed their interaction. The results showed that

increasing soil pH (3.29~5.32) was beneficial to increase the available nutrient

content of the rhizosphere soil of tea tree, improve the antioxidant enzyme

activity and photosynthesis capacity of tea tree leaves, and promote the growth

of tea tree. Orthogonal partial least squares discriminant analysis (OPLS-DA) and

bubble characteristics analysis were used to screen key elements and hormones

for the effect of pH on tea leaves, which were further analyzed by redundancy

analysis (RDA) and interaction network. The results showed that an increase in

soil pH (3.29~5.32) favored the accumulation of seven key elements (C, K, Ca,

Mg, Mn, P, S) in tea tree leaves, which in turn promoted the synthesis of six key

hormones (salicylic acid, salicylic acid 2-O-b-glucoside, tryptamine, 2-oxindole-

3-acetic acid, indole-3-acetic acid, trans-zeatin-O-glucoside). It can be seen

that the increase in soil pH (3.29~5.32) enhanced the resistance of the tea tree

itself, improved the photosynthesis ability of the tea tree, and effectively

promoted the growth of the tea tree.
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1 Introduction

Tieguanyin (Camellia sinensis) tea tree is a perennial evergreen

plant native to Anxi County, Fujian Province, China (latitude 24°

50'-25°26'N, longitude 117°36'-118°17'E). Tea tree is an acidophilic

plant and is suitable for cultivation when soil pH is 4.0 - 5.5,

unsuitable when soil pH is less than 4.0, and optimal for tea tree

cultivation when soil pH is 5.0 - 5.5 (Mohammad et al., 2014; Mehra

and Baker, 2017). Lin et al. (2023) analyzed soil pH and its effect on

tea yield and quality in 145 tea plantations in Nanjing County,

Fujian Province, and found that 82.1% of tea plantations had soil

pH < 4.5 and soil pH was significantly and positively correlated with

tea yield and quality. Wang et al. (2018) and Wang et al. (2022)

found that 37.67% of tea plantation soils in Anxi County, Fujian

Province, China, had been acidified (pH < 4.5), and that tea yield

and quality tended to decrease after soil acidification. It is evident

that soil acidification can significantly reduce the yield and quality

of tea and limit the development of the tea industry.

In the early stage of this research team, from the perspective of

tea tree rhizosphere soil, we analyzed the effect of soil pH on the

growth of the tea tree and found that soil acidification would lead to

an increase in soil pathogenic bacteria and a decrease in probiotic

bacteria in the rhizosphere soil of the tea tree, a decrease in the

nutrient cycling capacity of the soil, and a decrease in the nutrient

uptake and utilization capacity of the tea tree, which would lead to a

decrease in the yield and quality of the tea leaves (Lin et al., 2022; Ye

et al., 2023b). Acidification is an abiotic stress on the plant itself, and

under stress conditions, plant uptake of soil elements was altered,

for different types of abiotic stress, there were significant differences

in the mechanisms of element uptake and utilization by plants

(Dhaliwal et al., 2022). For example, under drought stress, Rheum

tataricum increased the translocation and accumulation of Li, Se, Si,

and Mo, which in turn improved the Rheum tataricum own

antioxidant defense (Golubkina et al., 2022). Heavy metal stress

reduced the uptake of P, Mn, Ca, S, K and Mg, antioxidant enzyme

activities and photosynthetic capacity of Lemna minor (Alp et al.,

2023). Secondly, changes in the ability of plants to absorb and

accumulate soil nutrients could directly affect the synthesis of

phytohormones (Ampong et al., 2022).

Phytohormones are mainly simple small-molecule organic

compounds, they have complex physiological effects, and have

important regulatory roles in plant growth and development,

while adversity stress affects the synthesis and accumulation of

phytohormones, which in turn regulates plant growth (Waadt et al.,

2022). Liu et al. (2022) found that increased adversity stress led to

higher levels of abscisic acid and jasmonic acid in mulberry, reduced

plant resistance, and lowered yield and quality. Shikha et al. (2023)

found that under nutrient stress, plants modulated nutrient uptake

by regulating the synthesis of jasmonate hormones. Ahmad et al.

(2022) found that under salt stress, cotton mainly took increased

levels of gibberellin and salicylic acid to improve their resistance to

salt stress to secure their yield. It can be seen that significant changes

in plant hormones occurred under adversity stress, and there were

significant differences in the regulation of plant hormones by

different stress modalities (Mukherjee et al., 2022).
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Acidification is an adversity stress. Numerous scholars have

conducted numerous studies on the effects of acidification on

rhizosphere soil microorganisms, tea tree growth and tea quality,

and concluded that acidification alters the community structure of

soil microorganisms, which, in turn, reduces tea yield and quality (Lin

et al., 2022; Jia et al., 2023;Wang et al., 2023). The growth of tea tree is

closely related to its ability to absorb nutrients from the soil, which

affects the synthesis of hormones and thus the physiological

mechanisms of the tea tree. However, little research has been

reported on this aspect. In-depth study and revelation of the

changes of key hormones and key elements and their interactions

in tea tree leaves induced by acidification are of great significance for

exogenous regulation of tea tree growth. Accordingly, this study took

tea trees planted in soils with different pH values as the research

object to analyze the effects of soils with different pH values on the

resistance physiological indexes and photosynthetic physiological

indexes of tea tree leaves; at the same time, tea tree leaves were

collected for leaf multi-element determination and hormone

metabolome determination. On this basis, the key elements and

hormones significantly affected by soil pH were screened and

analyzed for their interactions, with a view to providing a

theoretical basis for the exogenous regulation of tea tree growth.
2 Materials and methods

2.1 Test tea plantation and sample
collection

Anxi County, Fujian Province, China, is the origin of Tieguanyin

tea tree. Based on our previous study (Wang et al., 2018; Wang et al.,

2022; Ye et al., 2023b), Tieguanyin tea plantations located in

Longjuan town (latitude 24° 97′ N, longitude 117°93′ E), Anxi

County, Quanzhou City, Fujian Province, China was selected as

experimental site. The total area of the experimental tea plantation

was about 14.5 hm² and contained soils with pH 3.29 (P1, severely

acidified soil), 4.74 (P2, suitable soil for planting), and 5.32 (P3,

optimal soil for planting).The experimental site has an average

altitude of 600 m, an average annual rainfall of 1800 mm, an

average annual relative humidity of 80%, and an average annual

temperature of 18 °C. In June 2022, photosynthetic physiological

indexes of tea trees were measured, with five replicates for each

treatment. The specific sampling method was briefly described as

follows: three tea trees were randomly selected to determine

photosynthetic physiological indexes of functional leaves, and the

average value was taken as one replication, and five replications were

set for each treatment. Meanwhile, one bud and three leaves and

rhizosphere soil of Tieguanyin tea tree planted in soils with different

pH were collected, and tea tree leaves were immediately stored in

liquid nitrogen while rhizosphere soil was stored in an ice box, and

three independent replicates were set up for each sample. Specific

sampling method of tea tree leaves was briefly described as follows: 5

tea trees were randomly selected using “S” sampling, one bud and

three leaves of the tea tree were collected, and one replicate was set up

after sufficient mixing, and three replicates were set up for each
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treatment. The collected tea tree leaves were used to determine

physiological indexes of leaf resistance, multi-element content and

hormone metabolome. The sampling method of rhizosphere soil of

tea tree is “S” sampling method, i.e., 5 tea trees were randomly

selected, litter was removed from the surface layer of soil, soil was dug

out layer by layer to a depth of about 40 cm, tea trees were dug out,

the adhered soil was shaken off the tea trees, and the soil that was still

adhered to the roots was collected, and it was mixed sufficiently, i.e., it

was a replication (Zhang et al., 2023a). Three replications were set up

for each treatment. The collected tea tree rhizosphere soil was used to

determine basic soil physicochemical indexes and elements.
2.2 Determination of basic
physicochemical indexes of soil

In this study, total nitrogen (TN), total phosphorus (TP), total

potassium (TK), available nitrogen (AN), available phosphorus (AP),

available potassium (AK) as basic physicochemical indexes were

determined, and specific methods were referred to the technical

manual “Soil agrochemical analysis methods” (Lu, 2000). Briefly,

the collected soil samples were naturally dried and then passed

through a 2 mm nylon mesh sieve. TN content was determined by

the Kjeldahl method, i.e., the collected soil was detected with

concentrated sulfuric acid, and when the decoction cooled down, it

was filtered and could be measured directly by Kjeldahl meter. TP

content was determined by alkaline dissolution molybdenum

antimony colorimetric method, collected soil was mixed with

NaOH and subjected to high temperature treatment, then distilled

water was used to dissolve the mixture, this mixture was filtered, and

the filtrate was added with molybdenum antimony colorimetry and

the absorbance was measured at 700 nm and then converted to TP

content. TK content was determined by flame photometer method,

the collected soil was mixed with NaOH and subjected to high

temperature treatment, then distilled water was used to dissolve the

mixture, this mixture was filtered and the filtrate was measured

directly by flame photometer to obtain TK content. AN content was

determined using the alkaline dissolution diffusion method, where

the collected soil was leached using 1 mol/L NaOH solution and the

extract was titrated using hydrochloric acid and then converted to

AN content. AP content was determined by the NaHCO3 leaching-

molybdenum antimony colorimetric method. The collected soil was

leached with 0.5 mol/L NaHCO3, leachate was filtered, and

molybdenum antimony colorimetric agent was added to leachate,

and absorbance was measured at 880 nm, and then converted to AP

content. AK content was determined by the ammonium acetate

leaching-flame photometric method, the collected soil was leached

with 1 mol/L neutral ammonium acetate, and leachate was filtered

and then determined directly by flame photometer.
2.3 Determination of photosynthetic
physiological indexes

The LI-6400XT Portable Photosynthesis System (Li-Cor,

Lincoln, NE, USA) was used to determine leaf photosynthetic
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rate, stomatal conductance, intercellular CO2 concentration, and

transpiration rate (Zhang et al., 2023b). Photosynthetic indexes

were measured from 9:30 a.m. to 11:30 a.m. on a sunny day, with a

photon flux density of 1500 mmol/m2·s, a spatial environment with

a CO2 concentration of 370 ppm, leaf temperatures at 26 ~ 27°C,

and a vapor pressure deficit (VPD) of less than 1 kPa in the

container. The chlorophyll content of leaves was determined

using a chlorophyll analyzer (SPAD-502 PLUS, Tokyo, Japan).

Each treatment was performed in five independent replicates.
2.4 Determination of physiological indexes
of resistance

Physiological indicators of resistance in tea leaves were

determined by the method of “Principles and Techniques of Plant

Physiological Biochemical Experiments” (Wang, 2006), and

superoxide dismutase, peroxidase, catalase activity, soluble sugar

content, and malondialdehyde content were measured. Briefly, 0.5 g

of fresh tea tree leaves were taken and added to 5 mL of pre-cooled

50 mmol/L phosphate extraction buffer (pH 7.0, containing 1%

polyvinylpyrrolidone), ground on an ice bath, homogenized at 4 °C,

and centrifuged at 12,000 rpm/min for 10 min, and the supernatant

was extracted for the physiological indexes. Superoxide dismutase

activity was determined by nitroblue tetrazonium chloride

ammonium method with an absorbance of 560 nm. Peroxidase

activity was determined by guaiacol colorimetric assay at 470 nm.

Catalase activity was determined by potassium permanganate

titration and enzyme activity was calculated as the amount of

decomposed catalase per minute. Soluble sugar content was

determined by anthrone colorimetry at 630 nm. Malondialdehyde

content was determined by the thiobarbituric acid method at 450,

532, and 600 nm and then converted to its content.
2.5 Determination and quantitative analysis
of multi-element content of leaves

The collected fresh tea leaves were rinsed with deionized water to

remove the adhering dust and impurities, and then the tea leaves were

dried at 80°C to constant weight, ground, and passed through a 75

mm nylon mesh for sample digestion and elemental determination.

Accurately weigh 0.5 g of sample powder in a high-pressure digestion

tank, 5 replicates for each sample, add 5 mL of HNO3, screw it tightly

and put it into the oven at 185°C for 4 h. After digestion, open the

tank to drive the acid for 1 h (Zhang et al., 2021). Wash the digestion

tank with deionized water and transfer it to a 50 mL volumetric flask,

and then determine the elemental content by inductively coupled

plasma mass spectrometry (ICP-MS). Measurements were repeated

three times for each sample and averaged.

The instrumental parameters of the inductively coupled plasma

mass spectrometer (Nexion 2000, PE, New York, USA) were 1350

W of RF power, carrier gas flow rate of 0.94 L/min, auxiliary gas

flow rate of 0.40 L/min, helium flow rate of 4.5 mL/min, the

temperature of the nebulization chamber of 2°C, sample lifting

rate of 0.3 r/s, sampling depth of 7 mm, dwell time 50 ms, the
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nebulizer was a PFA nebulizer, the sampling cone was a nickel cone,

the acquisition mode was peak hopping, and the number of scans

was 6 times (Bai et al., 2021).

The digestion of blank and standard solutions was carried out

according to the digestion method of the test samples, and a

standard curve was established. Sc, Ge, In, Rh, Re and Bi were

used as internal standards. The standard tea control sample

(GBW10016) was digested using the same procedure as the

sample to validate the analytical method, the analysis was

performed three times and each value was calculated as the

average of the three measurements, the validation results of the

standard sample were shown in Supplementary Table 1.
2.6 Determination of soil
elemental content

Based on previous studies, this study further determined C, Ca,

K, Mg, Mn, P, S and Al contents in the soil. The collected soil

samples were air-dried at room temperature, ground and passed

through a 75mm nylon mesh. A soil sample of 0.5 g was taken and

digested according to the digestion method for tea tree leaves in

materials and methods (2.5 Determination and quantitative analysis

of multi-element content of leaves), and the digested solution was

used for ICP-MS determination. Three independent replicates were

set up for each sample. The conditions for ICP-MS were the same as

those for ICP-MS determination of tea tree leaf digested solution in

materials and methods (2.5 Determination and quantitative analysis

of multi-element content of leaves). Soil element content was

compared using the soil standard substance (GBW07403). The

standard substance and sample were subjected to the same

digestion procedure and determination method. Three

independent replicates were performed for each sample. The test

results of C, Ca, K, Mg, Mn, P, S and Al in the soil standard

substance were shown in Supplementary Table 2.
2.7 Determination and quantitative analysis
of leaf hormone metabolome

The tea tree leaf samples were individually ground to powder for

hormone metabolome assays with three replicates for each sample.

The specific assay method was as follows: weigh 50 mg of ground

sample, add 10 mL of internal standard mixing solution at a

concentration of 100 ng/mL, 1 mL of methanol/water/formic acid

(15:4:1, v/v/v) extractant, vortex mixing for 10 min, centrifuge for

5 min at 4°C and 12,000 r/min, and then take the supernatant to be

concentrated and fixed with 80% methanol aqueous solution to 100

mL, passed through 0.22 mm filter membrane, and used for LC-MS/

MS analysis (Floková et al., 2014; Li et al., 2016).

Data acquisition instrumentation systems for chromatography

mass spectrometry consisted primarily of Ultra Performance Liquid

Chromatography (ExionLC™ AD, AB Sciex, Concord, Canada) and

Tandem Mass Spectrometry (QTRAP® 6500+, AB Sciex, Concord,

Canada). Liquid phase conditions were (Xiao et al., 2018),

chromatographic column: Waters ACQUITY UPLC HSS T3 C18
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column (1.8 μm, 100 mm×2.1 mm i.d.); mobile phase: phase A,

ultrapure water (containing 0.04% acetic acid); phase B, acetonitrile

(containing 0.04% acetic acid); gradient elution program: at 0 min A/

B. The gradient elution program: 95:5 (V/V) for A/B at 0 min, 95:5

(V/V) for A/B at 1.0 min, 5:95 (V/V) for A/B at 8.0 min, 5:95 (V/V)

for A/B at 9.0 min, 95:5 (V/V) for A/B at 9.1 min, 95:5 (V/V) for A/B

at 12.0 min; flow rate 0.35 mL/min; The flow rate was 0.35 mL/min;

the column temperature was 40°C; the injection volume was 2mL. The
mass spectrometry conditions were (Šimura et al., 2018), Electrospray

Ionization (ESI) temperature 550°C, mass spectrometry voltage

5500 V in the positive ion mode, mass spectrometry voltage

-4500 V in the negative ion mode, and Curtain Gas (CUR) 35 psi.

in Q-Trap 6500+, each ion pair was scanned based on optimized

declustering potential (DP) and collision energy (CE).

Standard solutions of different concentrations of 0.01 ng/mL,

0.05 ng/mL, 0.1 ng/mL, 0.5 ng/mL, 1 ng/mL, 5 ng/mL, 10 ng/mL, 50

ng/mL, 100 ng/mL, 200 ng/mL, 500 ng/mL were prepared (of which

L-tryptophan and salicylic acid 2-O-b-glucoside were 20 times of

the above concentrations, i.e., the range of standardized

concentration was 0.2-10000 ng/mL). The LC-MS/MS detection

method was the same as described above, and the corresponding

quantitative signal peak intensity data of each concentration

standard were obtained sequentially; the standard curves of

different hormones were plotted with the external standard to

internal standard concentration ratio (Concentration Ratio) as the

horizontal coordinate and the peak area ratio of the external

standard to the internal standard (Area Ratio) as the vertical

coordinate (Supplementary Table 3), and the integrated peak area

ratios of all detected samples were substituting into the linear

equations of the standard curves for the calculations, and finally,

the hormone content in the actual samples was obtained.
2.8 Statistical analysis

Excel 2017 software was used to categorize raw data and

calculate mean and variance. Rstudio 3.3 software was used to

create box plots, principal component plots, heat plots, volcano

plots, bubble characteristic plots and OPLS-DA model analysis,

redundancy analysis, and interaction network analysis.
3 Results and discussion

3.1 Effect of soil pH on physicochemical
indexes of rhizosphere soils of tea trees

In this study, we analyzed the effect of soil pH on the

physicochemical indexes of tea tree rhizosphere soil and found

that (Table 1), the differences of tea tree rhizosphere soils with

different pH were not significant in TN, TP, and TK content,

whereas there was a significant difference in AN, AP, and AK

content. It was shown that with the increase of soil pH (3.29 to

5.32), AN, AP and AK content in the rhizosphere soil of tea tree

increased from 35.23 to 91.38 mg/kg, from 3.13 to 15.12 mg/kg and

from 49.25 to 127.95 mg/kg, respectively. It has been reported that
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there is a significant correlation between soil pH and nutrient

availability in the rhizosphere soil of tea trees, and that an

appropriate increase in soil pH is conducive to promoting

nutrient transformation in the rhizosphere soil of tea trees,

increasing the content of available nutrients and thus enhancing

root activity of tea trees, and promoting tea tree growth (Jia et al.,

2023; Ye et al., 2023c). It can be seen that increasing soil pH can

effectively promote soil nutrient transformation and increase the

available nutrient content of rhizosphere soil of tea trees.
3.2 Effect of soil pH on physiological
indexes of tea tree leaves

In this study, we analyzed the effect of soil pH on physiological

indexes of tea trees and found that photosynthetic physiological

indexes including photosynthetic rate, stomatal conductance,
Frontiers in Plant Science 05
intercellular CO2 concentration, transpiration rate, and

chlorophyll content of tea leaves showed an increasing trend with

increasing soil pH (Figure 1A). Among the physiological indexes of

resistance in tea leaves, superoxide dismutase, catalase, peroxidase

activity and soluble sugar content showed a significant increasing

trend with the increase of soil pH, while malondialdehyde content

showed a significant decreasing trend (Figure 1B). Tea tree is an

acidophilic plant, when the soil pH is too low, it is very easy to affect

the growth of tea trees, reduce the physiological resistance of tea

trees, and then reduce tea yield and quality (Chen et al., 2021; Ye

et al., 2022). It has been reported that when soil pH < 4.5, the root

growth of the tea tree is inhibited, and the number and area of

nascent roots decrease significantly, which in turn contribute to a

significant decrease in the biomass of the tea tree (Sun et al., 2020).

Damage to the root system of the tea tree directly affects the uptake

and utilization of nutrients by the tea tree, which in turn reduces the

yield and quality of tea (Ding et al., 2022; Wang et al., 2022). While
TABLE 1 Basic physicochemical indexes of rhizosphere soil of tea tree.

P1 P2 P3

Total nitrogen (TN, g/kg) 2.46 ± 0.12 a 2.53 ± 0.09 a 2.49 ± 0.14 a

Total phosphorus (TP, g/kg) 1.24 ± 0.13 a 1.15 ± 0.08 a 1.13 ± 0.09 a

Total potassium (TK, g/kg) 6.84 ± 0.39 a 7.42 ± 0.43 a 7.38 ± 0.65 a

Available nitrogen (AN, mg/kg) 35.23 ± 1.87 c 84.95 ± 1.74 b 91.38 ± 2.86 a

Available phosphorus (AP, mg/kg) 3.13 ± 0.22 c 10.41 ± 0.46 b 15.12 ± 0.77 a

Available potassium (AK, mg/kg) 49.25 ± 2.13 c 113.24 ± 2.94 b 127.95 ± 2.75 a
P1: Soil pH 3.29; P2: Soil pH 4.74; P3: Soil pH 5.32; Means ± standard error (SE) from three replications for each sample is shown; Different lowercase letters indicate that the difference between
different samples reaches the p < 0.05 level.
B

A

FIGURE 1

Effect of soil pH on physiological indexes of tea tree leaves. P1: Soil pH 3.29; P2: Soil pH 4.74; P3: Soil pH 5.32; (A) Effect of soil pH on
photosynthetic physiological indexes of tea leaves; (B) Effect of soil pH on resistance physiological indexes of tea leaves.
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increasing soil pH is conducive to promoting the growth of tea tree

roots, enhancing the root activity and nutrient absorption capacity

of tea trees, and improving tea production. It was also found in this

study that soil pH significantly affects the physiological

characteristics of tea trees, and an appropriate increase in soil pH

is beneficial to improve the resistance and photosynthetic capacity

of tea trees. It can be seen that the increase in soil pH (3.29-5.32) is

conducive to promoting the growth of the root system of the tea tree

and improving the nutrient absorption capacity of the tea tree,

which in turn improves the photosynthetic capacity and

physiological resistance of the tea tree.
3.3 Effect of soil pH on multi-element
content of tea tree leaves

Nutritional elements required for normal growth and

development of plants are divided into essential elements and

beneficial elements; and essential elements includie massive

elements and trace elements, and beneficial elements refer to

certain elements required for normal growth and development of

plants (Kirkby, 2023). The overall growth and development of

plants requires the participation of different elements, which can

effectively improve the photosynthesis and respiratory metabolism

of plants, increase plant tolerance to various abiotic and biotic

stresses, and promote plant growth (Kaur et al., 2023). In this study,

it was found that a total of 61 elements were detected in tea tree

leaves of soils with different pH, and the total amount of elements in

tea tree leaves showed a significant (p < 0.05) increasing trend with

the increase of soil pH (P1-P3), as shown that at soil pH values of
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3.29 (P1), 4.74 (P2), and 5.32 (P3), the elemental content of tea tree

leaves was 87.81 mg/g, 129.23 mg/g, and 142.06 mg/g (Figure 2A).

The results of principal component analysis showed

(Supplementary Figure 1) that the two principal components

effectively distinguished soils with different pH, with a total

contribution of 72.3%. It can be seen that soils with different pH

can significantly affect the elemental content in tea tree leaves.

Accordingly, this study further analyzed the elemental content of

tea tree leaves from soils with different pH using volcano diagrams,

and the results showed (Figures 2B, C) that the content of 22

elements showed a significant increasing trend, while the content of

14 elements showed a significant decreasing trend, with the increase

of soil pH. This study further constructed the OPLS-DA model for

soils with different pH values based on the elemental contents in tea

tree leaves. The results of the goodness-of-fit analysis of the OPLS-

DA model showed (Figure 2D) that after 200 random simulations,

the goodness-of-fit R2Y value was 0.999 and the predictability Q2

value was 0.991, which were at highly significant levels (p < 0.005).

It can be seen that the OPLS-DA model constructed in this study

has a good fit and high confidence, which can effectively distinguish

different samples and can be used for further analysis. The score

plot analysis differences between groups of the OPLS-DA model

showed (Supplementary Figure 2) that the OPLS-DA model could

effectively distinguish samples in different regions, and the

difference between groups of different samples reached 72.1%. It

can be seen that there are significant differences in the elemental

content of tea leaves from soils with different pH. The results of S-

Plot analysis of OPLS-DA model for soils with different pH showed

(Figure 2E) that a total of 24 key differential elements were screened

and obtained for soils with different pH. The results of content
B C

D E F

A

FIGURE 2

Effect of soil pH on multi-element content of tea tree leaves and screening of key elements. P1: Soil pH 3.29; P2: Soil pH 4.74; P3: Soil pH 5.32;
(A) Effect of soil pH on the total elemental content of tea tree leaves; (B) Volcano plot analysis of the elemental content of tea tree leaves between
P2 and P1; (C) Volcano plot analysis of the elemental content of tea tree leaves between P3 and P2; (D) OPLS-DA model test for screening of key
elements in tea samples from soils with different pH; (E) S-Plot analysis of element contents of tea samples from soils with different pH based on the
OPLS-DA model; (F) Analysis of the content of key elements in the leaves of tea trees from soils with different pH.
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analysis of key elements showed (Figure 2F) that the content of 18

elements showed an increasing trend with the increase of soil pH,

while the remaining 6 elements showed a decreasing trend. Further

bubble characteristic map of 24 key elements in tea tree leaves

obtained a total of 8 significantly different characteristic elements

(Figure 3A), of which the contents of 7 elements (C, Ca, K, Mg, Mn,

P, and S) showed a significant upward trend with the increase of soil

pH, and the content of 1 element (Al) showed a significant

downward trend (Figure 3B).

On this basis, this study further determined the contents of eight

characteristic elements of tea tree rhizosphere soils at different pH

values. The results showed (Supplementary Table 4) that the contents

of C, Ca, K, Mg, Mn, P, S, and Al were not significantly different

among rhizosphere soils with different pH, which varied in the ranges

of 135.845~143.257 mg/kg, 2456.275~ 2561.476 mg/kg,

7410.268~7568.327 mg/kg, 89.267~94.365 mg/kg, 24.185~26.184

mg/kg, 128.539~131.287 mg/kg, 286.469~300.432 mg/kg,

358.036~368.186 mg/kg. It can be seen that the differences in the

content of the characteristic elements in the leaves of the tea tree are

not related to the content of the element in the soil, leading to changes

in the content of the key to changes in soil pH caused by changes in

the ability of the tea tree to absorb and accumulate the element.

Carbon is an important element for plant growth. It has been

reported that an increase in carbon content is conducive to increasing

the uptake of elements such as K, Ca, Mg, Mn, P, etc., which is

conducive to increasing the photosynthesis capacity and antioxidant

capacity of plants (Hu et al., 2022). In this study, it was found that C,

Ca, K, Mg, Mn, P, and S in tea tree leaves showed a significant

increase with increasing soil pH. It can be seen that increasing soil pH

is conducive to increasing C content in tea tree leaves, enhancing

plant C metabolism, and promoting the absorption of Ca, K, Mg, Mn,

P, and S. K, Ca, Mg, Mn, P and S are all required for plant growth, of

which K is an activator of many enzymes in the plant and improves

the plant’s ability to photosynthesize and cope with external
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environmental stresses (Ahammed et al., 2022). Ca is beneficial for

improving plant resistance, enhancing the photosynthetic capacity of

plants, and promoting plant growth (Huang et al., 2022). Mg and Mn

are involved in various physiological and biochemical processes such

as photosynthesis, respiratory metabolism, nucleic acid metabolism,

etc., and are closely related to crop growth, development and yield

(Islam et al., 2022; Kleczkowski and Igamberdiev, 2023). P and S are

essential components in the metabolism of nucleic acids and proteins,

and are involved in plant respiration and chlorophyll formation,

which are important for plant growth (Chtouki et al., 2022; Narayan

et al., 2022). It can be seen that with increasing soil pH, the tea tree’s

ability to absorb Ca increases, improving the tea tree’s own resistance.

The increase in K content is conducive to the activation of a variety of

enzyme activities in the tea tree, which in turn promotes the

metabolism of the tea tree. The increase of P and S content

promotes the synthesis of nucleic acids, proteins, and chlorophyll

in the leaves of the tea tree, which in turn promotes the growth and

development of the tea tree. However, the increase in Mg and Mn

content promotes the photosynthetic capacity of tea trees.

In addition, this study also revealed that Al content showed a

significant decreasing trend in tea tree leaves with soil pH increases.

Al is not essential for plant growth, and accumulation of Al can

damage plant DNA, inhibit root growth, affect plant nutrient

uptake, and reduce plant respiration and photosynthesis, thus

preventing normal plant growth (Hajiboland et al., 2022).

Increasing soil pH reduces the concentration of Al3+ in the soil

and decreases the uptake and enrichment of Al by plants, while a

decrease in the concentration of Al3+ also contributes to alleviating

soil P fixation and an increasing the uptake of P by plants (Penn and

Camberato, 2019). It can be seen that the increase of soil pH is

beneficial to increase the accumulation of C, K, Ca, Mg, Mn, P and S

in the leaves of tea trees, and reduce the content of Al, which in turn

improves the resistance and photosynthesis ability of tea trees and

promotes the growth of tea trees.
B
A

FIGURE 3

Screening of characteristic elements in tea tree leaves from soils with different pH. P1: Soil pH 3.29; P2: Soil pH 4.74; P3: Soil pH 5.32; (A) Screening of
characteristic elements of tea tree leaves from soils with different pH based on bubble characteristic plot; (B) Content analysis of characteristic elements.
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3.4 Effect of soil pH on the hormone
metabolome of tea tree leaves

Phytohormones are key signaling compounds that regulate

plant growth, development, and environmental stress responses

(Wahab et al., 2022). In response to different types of abiotic

stresses, plants need synthesize different types of hormones for

self-regulation to adapt to their environment and thus safeguard

their growth (Waadt et al., 2022). Acidification is also an abiotic

stress on the tea tree itself, leading to reduced tea yield and quality

(Ye et al., 2023a). In this study, we found that a total of 59 hormones

were detected in tea tree leaves from soils with different pH values,

and the hormone content showed a significant increase with the

increase of soil pH, which was manifested by the total hormone

content of 5.99 mg/g, 11.49 mg/g, and 15.41 mg/g when soil pH

values were 3.29, 4.74, and 5.32, respectively (Figure 4A). Secondly,

the results of the principal component analysis of the hormone

content of tea tree leaves from soils with different pH showed

(Supplementary Figure 3) that the two principal components could

effectively differentiate the different samples, with 76.5%

contribution from principal component 1 and 16.4% from

principal component 2, giving a total contribution of 91.9%.

Further analysis revealed that the 59 hormones detected could be

categorized into eight groups, of which the content of auxin,

cytokinin, gibberellin, and salicylic acid in tea tree leaves showed
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an increasing trend with the increase of soil pH, while the content of

abscisic acid, ethylene, jasmonic acid, and strigolactone showed a

decreasing trend (Figure 4B). PCA analysis showed (Figure 4C) that

the content of auxin, cytokinin, gibberellin, and salicylic acid was

significantly correlated with P1, whereas the content of abscisic

acid, ethylene, jasmonic acid, and strigolactone was significantly

correlated with P3. Further volcano plot analysis (Figure 4D)

showed significant changes in the content of 47 hormones, with

19 hormones showing a decreasing trend and 28 hormones showing

an increasing trend with the increase of soil pH. Further categorical

and PCA analysis of the 47 hormones showed (Supplementary

Figure 4) that they could be classified into eight categories and still

showed that the contents of auxin, cytokinin, gibberellin, and

salicylic acid were significantly correlated with P1, whereas the

contents of abscisic acid, ethylene, jasmonic acid, and strigolactone

were significantly correlated with P3.
3.5 Screening of characteristic
hormones in tea tree leaves from
soils with different pH

The OPLS-DA model can be effectively used to screen for key

indexes of major changes between samples. In this study, based on

the hormone content in tea tree leaves, we further constructed the
B C

D

A

FIGURE 4

Hormone content analysis of tea tree leaves from soils with different pH. P1: Soil pH 3.29; P2: Soil pH 4.74; P3: Soil pH 5.32; (A) Effect of soil pH on
the total hormone content of tea tree leaves; (B) Classification and content analysis of hormones in tea tree leaves; (C) PCA analysis of different
categories of hormones in tea tree leaves; (D) Volcano and hot plot analysis of different hormone contents of tea tree leaves at different pH.
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OPLS-DA model for soils with different pH, analyzed the model fit,

differences between groups and screened for key hormones. The

results of the OPLS-DA model fit analysis showed (Figure 5A) that

after 200 random simulations, the goodness-of-fit R2Y value was 1,

and the predictability Q2 value was 0.999, both of which reached

highly significant levels (p < 0.005). It can be seen that the OPLS-

DA model constructed in this study has a good fit and high

confidence, which can effectively distinguish different samples and

can be used for further analysis. The results of the score plot analysis

of differences between groups of the OPLS-DA model showed

(Figure 5B) that the OPLS-DA model could effectively distinguish

samples, and the difference between groups of different samples

reached 89.7%. It can be seen that there was a significant difference

in the hormone content in the leaves of tea tree from soils with

different pH. The results of the S-Plot analysis of the OPLS-DA

model of the hormone content of tea tree leaves from soils with

different pH values showed (Figure 5C) that a total of 30 key

differential hormones were screened and obtained, of which, the

contents of 21 hormones showed an increasing trend with the

increase of soil pH, while the contents of the remaining 9 hormones

showed a decreasing trend. Further bubble characteristic map of the

30 key hormones obtained a total of 10 significantly varying
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characteristic hormones (Figure 5D), of which 6 hormones

(Tryptamine, 2-oxindole-3-acetic acid, indole-3-acetic acid,

salicylic acid, salicylic acid 2-O-b-glucoside, and trans-zeatin-O-

glucoside) showed a significant increasing trend with the increase of

soil pH, while 4 hormones (5-Deoxystrigol, (±)strigol, abscisic acid,

and 1-aminocyclopropanecarboxylic acid) showed a significant

decreasing trend (Figure 5E).

Salicylic acid is a kind of phytohormone, which is mainly stored

in the form of salicylic acid 2-O-b-glucoside in the plant, and

increasing its content is conducive to the promotion of plant

growth, and the improvement of the plant’s defense and disease

resistance ability (Berim and Gang, 2022; Liu et al., 2023b). It can be

seen that an increase in soil pH favors an increase in the synthesis of

salicylic acid in the tea tree, which in turn induces an increase in the

resistance of the tea tree, while the synthesized excess salicylic acid

is stored in the leaves of the tea tree in the form of salicylic acid 2-O-

b-glucoside. Tryptamine is a precursor for the synthesis of indole-3-

acetic acid, which is oxidized to 2-oxindole-3-acetic acid, both of

which can regulate plant growth and photosynthesis, and at the

appropriate concentration can promote plant growth and improve

the ability of plant photosynthesis (Bělonožnıḱová et al., 2022;

Tivendale and Millar, 2022). Trans-Zeatin-O-glucoside belongs to
B C

D E

A

FIGURE 5

Characteristic hormone screening for significant changes in tea tree leaves in soils with different pH. P1: Soil pH 3.29; P2: Soil pH 4.74; P3: Soil pH
5.32; (A) OPLS-DA model test for screening of key hormones of tea tree leaves in soils with different pH; (B) Score plots of differences between
groups of the OPLS-DA model for hormone content of tea tree leaves in soils with different pH; (C) S-Plot analysis of the OPLS-DA model for
hormone content of tea tree leaves in soils with different pH; (D) Screening of characteristic hormones of tea tree leaves in soils with different pH
based on bubble characteristic plot; (E) Content analysis of characteristic hormones.
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the phytokinin, which is beneficial to increase the proliferation of

plant cells, and at the same time can increase the photosynthesis

ability of plants (Abdouli et al., 2022). It can be seen that with the

increase of soil pH, the content of tryptamine in tea tree leaves

increased, providing a large amount of precursor substances for the

synthesis of indole-3-acetic acid, and the oxidation of indole-3-

acetic acid increased the content of 2-oxindole-3-acetic acid, which

in turn promoted the growth of leaves and buds of the tea tree, and

improved the yield of tea leaves. At the same time, increased content

of trans-Zeatin-O-glucoside promoted the proliferation of tea tree

cells and the growth of tea trees.

Secondly, it was also found in this study that the content of

abscisic acid, 1-Aminocyclopropanecarboxylic acid, 5-deoxystrigol

and (±)strigol in the leaves of tea tree was significantly reduced with

increase in soil pH. Abscisic acid is commonly used to evaluate

plant resistance to adversity stress, with higher levels indicating

lower plant resistance to adversity (Muhammad Aslam et al., 2022).

1-Aminocyclopropanecarboxylic acid is a precursor to ethylene

synthesis in plants, and its content increased significantly under

adverse stresses (Gong et al., 2022). It can be seen that with the

increase of soil pH, the content of abscisic acid and 1-

Aminocyclopropanecarboxylic acid in the leaves of tea trees

decreased, and the senescence of tea trees slowed down, which

was conducive to improving the tea trees’ own resistance and

guaranteeing the normal growth of tea trees. While, the main

function of 5-deoxystrigol and (±)strigol is to stimulate the

growth of parasitic plants in the periphery of the plant, and

lowering their content is favorable to promote plant growth and

increase plant yield (Hao et al., 2023; Zan et al., 2023a). Increasing

soil pH reduced the content of 5-deoxystrigol and (±)strigol in tea

tree leaves, which in turn affected the growth of the parasitic plants,

reduced the competition for resources between the parasitic plants

and the tea tree, and favored the promotion of tea tree growth.
3.6 Interaction analysis

During growth, plants require a number of essential components

from the external environment, including many elements, which are

involved in the induction, synthesis and accumulation of

phytohormones (Li et al., 2022). For example, Si activates

phytohormone signaling mechanisms, Zn and Cu promote plant

growth hormone production, and Cr promotes plant jasmonate

synthesis (Awasthi et al., 2022; López-Bucio et al., 2022; Khan et al.,

2023). Accordingly, on the basis of the previous study, this study

further analyzed the interactions among tea tree leaves physiological

indexes, characteristic elements, hormones and physicochemical

indexes in soils with different pH. Redundancy analysis showed that

six hormones in tea tree leaves, including salicylic acid, salicylic acid

2-O-b-glucoside, tryptamine, 2-oxindole-3-acetic acid, indole-3-

acetic acid, trans-zeatin-O-glucoside, were significantly correlated

with soil physicochemical indexes such as available nitrogen,

available phosphorus, available potassium (Figure 6A), with

photosynthetic physiological indexes such as photosynthetic rate,

stomatal conductance, intercellular CO2 concentration,
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transpiration rate, chlorophyll content (Figure 6B), with resistance

indexes such as superoxide dismutase, catalase, peroxidase, soluble

sugar (Figure 6C), and with the content of Ca, Mg, C, S, K, Mn, and P

(Figure 6D). Secondly, four hormones, 5-deoxystrigol, (±)strigol,

abscisic acid, 1-aminocyclopropanecarboxylic acid, from tea tree

leaves, were significantly correlated with malondialdehyde, total

phosphorus and Al content.

Environmental changes have been reported to affect the uptake

of mineral elements by plants and to alter the synthesis of different

classes of hormones in plants, which in turn affects plant growth

(Ulger et al., 2004). Keskin et al. (2022) found that indole-3-acetic

acid, salicylic acid, cytokinin, and zeatin contents in plants were

significantly and positively correlated with the contents of P, Mn,

Ca, S, K, and Mg, as well as the activities of catalase, peroxidase, and

superoxide dismutase, and significantly and negatively correlated

with abscisic acid content. Liu et al. (2023a) found that under

drought stress, plants inoculated with arbuscular mycorrhizal fungi

effectively increased their uptake of P, K, Ca, Mg, and Mn, which in

turn increased the content of brassinolide and indole-3-acetic acid

in the plants, and promoted plant growth. Alp et al. (2023) found

that at high concentrations of heavy metal stress, plant uptake of P,

Mn, Ca, S, K, and Mg was reduced, and levels of hormones such as

indole-3-acetic acid, cytokinin, and salicylic acid in plants were

decreased, antioxidant enzyme activities in plants were reduced,

photosynthesis capacity was decreased, and plant growth was

impeded. This study found (Figure 6E, Supplementary Figure 5)

that six hormones in tea tree leaves, including salicylic acid, salicylic

acid 2-O-b-glucoside, tryptamine, 2-oxindole-3-acetic acid, indole-

3-acetic acid, trans-zeatin-O-glucoside, were significantly correlated

with soil available nutrient content such as available nitrogen,

available phosphorus, available potassium, with photosynthetic

physiological indexes such as photosynthetic rate, stomatal

conductance, intercellular CO2 concentration, transpiration rate,

chlorophyll content, with resistance indexes such as superoxide

dismutase, catalase, peroxidase, soluble sugar, and with the content

of Ca, Mg, C, S, K, Mn, and P; while four hormones, 5-deoxystrigol,

(±)strigol, abscisic acid, 1-aminocyclopropanecarboxylic acid, from

tea tree leaves were significantly correlated with malondialdehyde, a

physiological index of resistance, and significantly correlated with

Al content. It can be seen that the increase of soil pH was conducive

to improving the rhizosphere soil available nutrient content of the

tea tree, promoting the growth of the tea tree root system, and then

improving the tea tree’s absorption and accumulation of Ca, Mg, C,

S, K, Mn, P in the soil, and enhancing the synthesis and

accumulation of hormones in the tea tree leaves such as salicylic

acid, salicylic acid 2-O-b-glucoside, tryptamine, 2-oxindole-3-acetic

acid, indole-3-acetic acid, trans-zeatin-O-glucoside, which in turn

improved the tea tree’s own resistance and photosynthesis ability

and promoted the growth of the tea tree.
4 Conclusion

In this study, we analyzed the effects of soils with different pH on

soil physicochemical indexes, physiological indexes, multi-element
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content, hormone metabolome of tea tree leaves and their

interactions. The results showed (Figure 7) that with the increase of

soil pH, the available nutrient content of the rhizosphere soil of the

tea tree rose, which was conducive to promoting root growth of the

tea tree. At the same time, it promoted the uptake and accumulation

of C, K, Ca, Mg, Mn, P and S in the tea tree, and reduced the

enrichment of Al. It enhanced the synthesis and accumulation of
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hormones in the leaves of tea trees such as salicylic acid, salicylic

acid 2-O-b-glucoside, tryptamine, 2-oxindole-3-acetic acid,

indole-3-acetic acid, trans-zeatin-O-glucoside, and reduced the

content of 5-deoxystrigol, (±)strigol, abscisic acid, 1-

aminocyclopropanecarboxylic acid, which in turn enhanced the

resistance of the tea tree to the environment, increased the

antioxidant enzyme activity and photosynthesis capacity of the tea
B

C D
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A

FIGURE 6

Interactions between tea tree leaves characteristic hormones, characteristic elements, physiological indexes and soil physicochemical index. P1: Soil pH
3.29; P2: Soil pH 4.74; P3: Soil pH 5.32; (A) Redundancy analysis of characteristic hormones and soil physicochemical indexes; (B) Redundancy analysis of
characteristic hormones and photosynthetic physiological indexes; (C) Redundancy analysis of characteristic hormones and resistance physiological
indexes; (D) Redundancy analysis of characteristic hormones and characteristic elements; (E) Interactions between different indexes. ―Red lines
represent significant positive correlations; ―Green lines represent significant negative correlations; ―Gray lines represent not significant correlations.
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tree, and promoted the growth of the tea tree. This study analyzed the

effects of soil pH on tea tree growth from the perspectives of

physiological properties, elemental uptake and hormone

metabolomes, which is of great significance for soil remediation of

acidified tea plantations and exogenous regulation of tea tree growth.
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