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aerial vehicles
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1School of Surveying and Land Information Engineering, Henan Polytechnic University,
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Forestry Sciences, Beijing, China, 3National Engineering and Technology Center for Information
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Plant potassium content (PKC) is a crucial indicator of crop potassium nutrient

status and is vital in making informed fertilization decisions in the field. This study

aims to enhance the accuracy of PKC estimation during key potato growth

stages by using vegetation indices (VIs) and spatial structure features derived

from UAV-based multispectral sensors. Specifically, the fraction of vegetation

coverage (FVC), gray-level co-occurrence matrix texture, and multispectral VIs

were extracted from multispectral images acquired at the potato tuber

formation, tuber growth, and starch accumulation stages. Linear regression

and stepwise multiple linear regression analyses were conducted to investigate

how VIs, both individually and in combination with spatial structure features,

affect potato PKC estimation. The findings lead to the following conclusions: (1)

Estimating potato PKC using multispectral VIs is feasible but necessitates further

enhancements in accuracy. (2) Augmenting VIs with either the FVC or texture

features makes potato PKC estimationmore accurate than when using single VIs.

(3) Finally, integrating VIs with both the FVC and texture features improves the

accuracy of potato PKC estimation, resulting in notable R2 values of 0.63, 0.84,

and 0.80 for the three fertility periods, respectively, with corresponding root

mean square errors of 0.44%, 0.29%, and 0.25%. Overall, these results highlight

the potential of integrating canopy spectral information and spatial-structure

information obtained from multispectral sensors mounted on unmanned aerial

vehicles for monitoring crop growth and assessing potassium nutrient status.

These findings thus have significant implications for agricultural management.

KEYWORDS

potato, plant potassium content, multispectral imagery, vegetation index, fraction
vegetation coverage, texture feature
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1 Introduction

Potatoes are a significant crop with versatile uses as both a food

and a vegetable. Renowned for their cold resistance, hardiness, and

adaptability to various soil conditions, potatoes are extensively

cultivated in China (Lu, 2015). Potatoes are a potassium-

demanding crop, and the potassium content in potatoes directly

influences photosynthesis efficiency and the synthesis and transport

of photosynthetic products, ultimately impacting tuber

development and quality (He et al., 2014; Zhang et al., 2021).

Potassium deficiency in potatoes is associated with stunted plant

growth, small and prematurely withering leaves, diminished

photosynthetic capacity, reduced tuber size, poor quality, and low

yields (Li, 2019). Conversely, excessive potassium levels can also

disrupt the normal development of potatoes (Hou et al., 2013).

Therefore, the efficient and accurate estimation of plant potassium

content (PKC) in potatoes is of paramount importance for

monitoring their growth and development and for making

informed fertilizer decisions in the field. Conventional approaches

for assessing PKC entail destructive sampling in the field followed

by laboratory chemical analysis. However, these methods are time-

consuming, labor-intensive, prone to lagging results, and reliant on

the representativeness of the samples. Consequently, they primarily

apply to small-scale farming plots and are challenging to extrapolate

to larger areas. In contrast, remote-sensing systems exploit various

sensors to capture crop canopy reflectance information from a

distance, enabling non-destructive monitoring of crop growth

(Battude et al., 2016; Xu et al., 2019). Valuable insights regarding

crop health and nutritional status can be extracted by analyzing and

processing the acquired canopy reflectance information.

Remote-sensing platforms, including ground-based hyperspectral

sensors, satellite platforms, and unmanned aerial vehicles (UAVs),

play a critical role in estimating crop PKC. Ground-based

hyperspectral sensors are limited for providing large-scale crop-

growth images and offer a limited monitoring range. Moreover, the

detrimental impact on crops and the substantial consumption of

human and material resources associated with this data-acquisition

method hinder its application in monitoring the physical and

chemical parameters of crops (Jimenez-Sierra et al., 2020).

Conversely, satellite-based remote-sensing platforms face challenges

in providing crop canopy images with adequate temporal and spatial

resolution due to constraints, such as weather conditions (e.g., clouds,

fog, and water vapor), specific revisit cycles, and large detection areas.

As a result, satellite remote-sensing technology cannot satisfy the

demand for real-time growth monitoring of field crops and high-

accuracy estimation of crop phenotypes (He et al., 2021). In recent

years, the UAV remote-sensing platform has emerged as a promising

tool, boasting exceptional mobility and spatial resolution to deliver

extensive, high-frequency, and precise field growth information.

UAV remote-sensing technology has found widespread application

in crop growthmonitoring, disease surveillance, and yield estimation,

offering valuable scientific and technical support for field decision

management (Tao et al., 2019; Jiang et al., 2021; Lu et al., 2023).

Remote-sensing platforms based on UAVs can carry

hyperspectral, multispectral, and RGB sensors (Yuan et al., 2017;

Jin et al., 2018). Several studies have demonstrated the potential of
Frontiers in Plant Science 02
UAV-based remote sensing platforms for monitoring the potassium

nutrient status of crops. For instance, Lu et al. (Lu et al., 2021)

developed a partial least squares model using UAV hyperspectral

reflectance to estimate potassium accumulation in rice plants.

Thomson et al. (Thomson et al., 2018) estimated the potassium

content of forest leaves by using a partial least-squares regression

model based on UAV hyperspectral reflectance. Similarly, Severtson

et al. (Severtson et al., 2016) identified potassium-deficient oilseed

rape using UAV-acquired multispectral and hyperspectral

reflectance. Lu et al. (Lu et al., 2020) further enhanced estimation

accuracy by introducing dual- and triple-band spectral indices

derived from UAV hyperspectral reflectance for estimating

potassium content in rice leaves. Although hyperspectral sensors

provide richer spectral information, their application in agricultural

production is limited by their high cost and complex data processing.

Although multispectral bands are not as numerous as hyperspectral

sensors, multispectral sensors contain Red and near-infraRed bands

that are sensitive to vegetation, and in addition, multispectral sensors

are less expensive compared to hyperspectral sensors, making them

widely used in precision agriculture. Moreover, previous studies

primarily relied on spectral information and vegetation indices

(VIs) to estimate crop potassium content, which can be hindered

by saturation in areas with dense crop canopies and the limited ability

of canopy spectra to capture lower-organ information in vertically

growing crops. Consequently, using canopy spectral information

alone often results in inaccurate estimates of the potassium

nutrient status of crops during the late stages of growth. To

accurately monitor crop physicochemical parameters at single or

multiple fertility stages, spectral information combined with textural

details and morphological parameters such as percent cover (FVC)

has been proposed to estimate crop physicochemical parameters. The

FVC reflects the nutrient status of crop growth conditions to some

extent and has been associated with nitrogen nutrient status in wheat,

maize, rice, and potatoes (Ren, 2012; Chu, 2013; Shi et al., 2020; Fu

et al., 2021; Fan et al., 2022). However, no study has yet demonstrated

that morphological parameters are suitable for monitoring crop

potassium nutrient status.

Texture analysis, which quantifies pixel variations within an

analysis window through a grayscale distribution, has been widely

used for nitrogen and biomass estimation. Combining texture

information with spectral information has shown promise for

significantly improving the accuracy of estimating rice canopy

nitrogen content (Zheng et al., 2020). Similarly, Wang et al.

(Wang et al., 2022) increased the accuracy of estimating rice

aboveground biomass by incorporating canopy reflectance and

UAV RGB image texture features into regression models.

Additionally, Liu et al. (Liu et al., 2022a) estimated the

aboveground biomass of potatoes by integrating canopy

reflectance, texture information, and potato plant height derived

from UAV RGB images using multiple stepwise regression and

extreme machine-learning modeling. Potato growth and

development differ from that of wheat, maize, and rice, with

vigorous growth of stems and leaves in the early stages, followed

by the transfer underground of aboveground dry matter during the

late growth stages when aboveground foliage begins to deteriorate.

Thus, combining VIs and the FVC, which reflect crop growth
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conditions, becomes crucial for estimating PKC and provides novel

insights (Yue et al., 2019; Yue et al., 2021). Therefore, this study

explores the performance of multispectral VIs and combinations

thereof with spatial structure features for estimating potato PKC.

Linear regression and stepwise multiple linear regression (SMLR)

models were developed using spectral features extracted from

multispectral images, FVC, and texture features. This research

thus strives to develop a method for monitoring the potassium

nutrient status of crops by using multispectral sensors and thereby

to offer valuable insights into crop management and fertilization.

The present study has the following research objectives: (1) to

assess the capacity of multispectral VIs for estimating potato PKC,

(2) to examine the potential enhancement in accuracy for

estimating potato PKC by integrating multispectral VIs with FVC

and texture features based on the gray-level co-occurrence matrix

(GLCM), and (3) to determine the optimal combination of image

features to accurately estimate potato PKC. These objectives are

crucial for advancing our understanding of the relationship between

multispectral VIs and potato PKC estimation. Furthermore,

investigating the potential synergy of combining multispectral VIs

with FVC and texture features can provide valuable insights into

improving the accuracy of PKC estimates. Ultimately, identifying

the most effective combination of image features will contribute to

developing robust and precise methods for monitoring and

managing the potassium nutrient status of potato crops.
2 Materials and methods

2.1 Experimental design

The field experiment was conducted in 2019 at the National

Precision Agriculture Research and Demonstration Base situated in

Xiaotangshan Town, Changping District, Beijing, China. The study

site is characterized by an average altitude of 36 m and a warm

temperate continental semi-humid and semi-arid monsoon climate,

exhibiting simultaneous rainfall and high temperatures during the
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same season. Potato seed tubers were sown on 28 March 2019 and

harvested on 9 July 2019. Two early-maturing potato varieties,

Zhongshu 5 (Z1) and Zhongshu 3 (Z2), were selected as the subjects

of this study. The experiment comprised three distinct experimental

zones: dense (P zone), nitrogen fertilizer (N zone), and potassium

fertilizer (K zone), with each zone having three replications, as

depicted in Figure 1. The experiment involved a total of 48 plots,

each measuring 5 m × 6.5 m. Within the P zone, three different

planting density levels were implemented: T1 (60 000 plants/hm2),

T2 (72 000 plants/hm2), and T3 (84 000 plants/hm2). The N zone

used four nitrogen fertilizer levels: N0 (0 kg/hm2), N1 (244.65 kg/

hm2), N2 (489.15 kg/hm2), and N3 (733.5 kg/hm2). Two types of

potash fertilizers were used in Area K: K0 (0 kg/hm2) and K2 (1941

kg/hm2). Notably, the planting density and nitrogen-test areas were

consistently treated with the K1 level of potash fertilizer, both N and

K plots were treated under T1 density. This comprehensive and

meticulously designed experimental setup allows the study to

investigate how planting density, nitrogen fertilizer level, and

potash fertilizer level affect the PKC of the potato plants.

Incorporating multiple treatments and replications ensures that

robust and reliable data are generated, facilitating subsequent

modeling and analysis.
2.2 Acquisition and preprocessing of UAV
multispectral images

UAV flight operations were conducted on April 20, May 28,

June 10, and June 20, 2019, to obtain digital images. To mitigate the

influence of uneven illumination on crop canopy reflectance, this

experiment meticulously selected clear and cloudless weather

conditions during the crucial stages of potato tuber formation

stage (S1), tuber growth stage (S2), and starch accumulation stage

(S3). Multispectral images were acquired between 12:00 and 14:00,

when the ambient light intensity is stable. Prior to the flight, the

spectral reflectance calibration plate associated with the

multispectral sensor was used to calibrate the brightness of
FIGURE 1

Schematic diagram of the location of the field.
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individual elements within the multispectral images, ensuring

accurate radiometric calibration. This study used an eight-rotor

UAV equipped with a Parrot Sequoia 4-channel multispectral

camera. The Parrot Sequoia camera comprises a light sensor and

a multispectral sensor, enabling the acquisition of one high-

resolution 16-megapixel RGB image along with four 1.2-

megapixel single-band images. The UAV was operated at a flight

altitude of 20 m, and both the heading overlap and side overlap were

set at 80% to ensure comprehensive coverage and minimize

information gaps. Table 1 presents the built-in waveband

parameters of the multispectral camera used in this study,

facilitating the capture of specific spectral information relevant to

the analysis of potato growth and potassium nutrient status. The

rigorous control of environmental conditions and the use of a well-

calibrated multispectral camera mounted on the UAV allow high-

quality data to be collected, thereby ensuring the accuracy and

reliability of subsequent image analysis and extracted information.

After the acquisition of UAV data and multispectral images during

each reproductive period, a series of preprocessing steps were

undertaken. Initially, the multispectral images obtained from the

UAV were carefully screened to eliminate images with abnormal

attitudes or imaging issues. The remaining high-quality multispectral

images were then imported into the DJI SmartMap software, where

single-band and band-combination images were generated and saved

in the TIF format. Next, by using the ArcGIS software, the

experimental plots were delineated and numbered based on the

predefined divisions. This spatial referencing enables accurate

association of the multispectral data with specific plot locations.

Subsequently, the average spectral reflectance for each plot was

computed for each band using ENVI5.3 software. This process

involved analyzing the multispectral data for each plot and

calculating the corresponding spectral reflectance across the relevant

bands. Additionally, VIs were derived from the spectral reflectance

data, contributing to further analysis and interpretation of the crop’s

physiological state. These steps eliminated data inconsistencies and

facilitated the extraction of meaningful information from the

multispectral images, enabling subsequent analysis and interpretation

of the potato crop’s growth and potassium nutrient status.
2.3 Acquisition of ground data

Once the UAV data were collected, meticulous ground-data

collection complemented the remote sensing observations. The

primary focus of the ground data was to determine the potato PKC

through a combined approach involving field sampling and laboratory
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chemical analysis. Within each experimental plot, three representative

plants were carefully chosen during key developmental stages: potato

tuber formation, tuber growth, and starch accumulation, following

which the selected plants were collected and transported to the

laboratory for further analysis. The collected plants underwent

meticulous processing in the laboratory, including separating stems

and leaves and thoroughly rinsing them with water. The plants were

subsequently heated in a 105°C oven for 30 minutes. The temperature

was then adjusted to 80°C, and the plants were dried for a minimum of

48 hours until a constant mass was achieved. Once the mass reached a

steady state, the plants were weighed to determine the dry weight of

each organ. Advanced laboratory techniques were employed to

measure each organ’s potassium content, notably an inductively

coupled plasma emission spectrometer (iCAP6300). This state-of-

the-art instrument allowed for precise quantification of potassium

levels in the plant samples. Finally, the PKC was calculated using

PKC =
CLK �MLD + CSK �MSD

MLD +MSD
� 100%; (1)

where CLK is the leaf potassium content (%), CSK is the

aboveground stem potassium content (%), MLD is the leaf dry

weight (g), and MSD is the aboveground stem dry weight (g).

Combining meticulous field sampling and precise laboratory

analyses, this comprehensive ground data collection process allows

for accurate estimation and understanding of the potato crop’s

potassium nutrient status. It provides essential validation and

calibration data for the UAV-based remote-sensing observations,

thereby enhancing the reliability and accuracy of the study.
2.4 Extraction of image features

2.4.1 Selection of spectral index
To construct a robust estimation model for potato PKC, nine

multispectral VIs were carefully selected for each fertility period.

These VIs were chosen based on an extensive analysis of previous

research findings and their proven efficacy in monitoring crop

potassium nutrient status, they were correlated with potato PKC

at a 0.01 significant correlation level. The selected VIs, along with

their respective definitions and formulas, are presented in Table 2.
2.4.2 Extraction of spatial structure features
In this study, two spatial structure features, namely, FVC and

the GLCM-based texture features, were used to characterize the

spatial patterns of the potato crop. These features were derived from

the UAV-acquired multispectral images and were crucial in

assessing the potato’s growth stages (Li et al., 2004). To extract

the FVC, the multispectral images corresponding to each fertility

stage were processed using image element dichotomy. Initially, the

normalized difference Vegetation Index (NDVI) was computed for

each fertility stage by employing ENVI 5.3 software. The NDVI

values were then quantified, and subsequently, the FVC was

calculated according to Equation 2, as shown below:

FVC =
NDVI − NDVISoil

NDVIVeg − NDVISoil
(2)
TABLE 1 Parametrization of multispectral sensor.

Band Central wavelength (nm) Bandwidth (nm)

Green 550 40

Red 660 40

Reg 735 10

Nir 790 40
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Where NDVISoil and NDVIVeg represent NDVI values with a

cumulative percentage of 5% and 95%, respectively.

Texture Feature Extraction: In this study comprehensive set of

eight texture features derived from the GLCM was extracted from

the multispectral images. These features, namely contrast (CON),

second-order moments (SEC), variance (VAR), mean (MEA),

correlation (COR), dissimilarity (DIS), homogeneity (HOM), and

entropy (ENT), provide valuable insights into the spatial

arrangement and variation of pixel intensities within the potato

crop (Roujean and Breon, 1995). To obtain the texture features,

GLCM calculations were performed in four directions (0°, 45°, 90°,

and 135°) using a 3×3 window size for each spectral band. Each

texture feature was computed individually from the GLCM

matrices, capturing different aspects of the spatial patterns in the

multispectral images. Furthermore, two spectral indices, namely the

NDVI and the differential vegetation index (DVI), were used in this

study. The NDVI is less affected by canopy spectral properties and

directional effects, whereas the background signal is less affected by

the DVI. Combining the advantages of both indices, the

renormalized differential vegetation index (RDVI) has been

widely used for estimating various physicochemical parameters of

crops (Roujean and Breon, 1995; He et al., 2019). To enhance the

performance of texture features for estimating potato PKC, the

texture features were combined based on the RDVI. This

integration allows us to leverage the benefits of RDVI and

optimize the texture features’ predictive capability for accurately

estimating the PKC. The RDTI is given as:Red

RDTI =
T1 − T2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T1 + T2
p (3)

where T1 and T2 stand for the extracted randomized texture

features for each fertility period from the multispectral images in

the r, g, b, Red, and Nir bands.
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2.5 Model building and validation

A total of 48 datasets were acquired at different stages of potato

development, including the potato tuber formation, tuber growth,

and starch accumulation stages. From these datasets, 32 were

selected from replicates 1 and 3 for model development, and the

remaining 16 datasets from replicate 2 were reserved for

independent validation, ensuring the reliability and robustness of

the experimental findings. A linear regression analysis determined

the relationship between multispectral VIs and potato PKC. The

SMLR model was also applied to investigate the potential

enhancement in PKC estimation accuracy by integrating

multispectral VIs with the RDTI and FVC. To evaluate the

performance of the models, the coefficient of determination (R2)

and the root mean square error (RMSE) were used as indicators of

model stability and accuracy. R2 represents the fraction of the

variance in potato PKC that the model can explain, and the

RMSE measures the average deviation between the predicted and

actual PKC. These evaluation metrics allow for a comprehensive

assessment of the model’s performance, ensuring the validity and

precision of the estimated potato PKC.
3 Results

3.1 Potassium nutrient variations and
correlation analysis of potatoes under
different experimental treatments

As shown in Figure 2, for all experimental treatments, potato

PKC decreases first and then increases with the reproductive stage,

while the highest PKC content was found in all other treatments

during tuber formation and continued to decline until starch
TABLE 2 Vegetation indices used in this study.

VIs Formula Reference

Green Green band reflectance

Red Red band reflectance

Reg Reg band reflectance

NIR Nir band reflectance

NDVI NDVI = (Nir − Red)/(Nir + Red) (Carlson and Ripley, 1997)

SAVI SAVI = 1.5×(Nir − Red))/(Nir + Red)+ 0.5) (Huete et al., 1992)

GNDVI GNDVI = (Nir − Green)/(Nir + Green) (Buschmann and Nagel, 1993)

RDVI RDVI = (Nir − Red)/(Nir + Red)1/2 (Broge and Leblanc, 2001)

OSAVI OSAVI = 1.16×(Nir − Red)/(Nir + Red + 0.16) (Rondeaux et al., 1996)

MSR MSR = (Nir/Red − 1)/(Nir/Red + 1)1/2 (Sims and Gamon, 2002)

DVI DVI = Nir − Red (Richardson and Wiegand, 1977)

RVI RVI = Nir/Red (Schlerf et al., 2005)

NLI NLI = (Nir2 − Red)/(Nir2 + Red) (Pu et al., 2008)
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accumulation, where the lowest PKC was found during

tuber growth.

Note: S1, S2, and S3 are the tuber formation stage, tuber growth

stage, and starch accumulation periods stage, respectively; the

same below.

Table 3 shows the results of the GLCM-based correlation analysis

of texture features extracted in different directions with potato PKC.

The absolute value of the correlation coefficient during the tuber

formation period was 0.81 for Green_Cor in the 90° direction. The

absolute values of the correlation coefficients at 0°, 45°, and 135° do not

differ significantly from those at 90° at the same significance level of

0.80, 0.79, and 0.74, respectively. The largest absolute value of the

correlation coefficient for the tuber growth stage was Nir_Var, with

equal magnitude in all four directions, at 0.82. The largest absolute

value of the correlation coefficient for the starch accumulation stage is

Green_MEAN, with an equal magnitude of 0.80 in all four directions.

The best-performing textural characteristics in the three reproductive

stages do not differ significantly from those of potato PKC. Thus, the

different orientations of the three fertility periods negligibly affect the

Mean and Var texture traits in the Green, Red, Reg, and Nir bands.

The multispectral VIs and the RDTI composed of texture features

based on GLCMwith different orientations were correlated with potato

PKC at each fertility stage of potato growth, and the results are shown

in Figure 3. The correlation between the VIs constructed from the

original band reflectance and PKC reach a significant 0.01 correlation

level in all three growth stages, with the absolute values of correlation

ranging from 0.46 to 0.78, respectively, with the GNDVI being the

highest. As shown in Figure 3B, the correlation between the RDTI and

potato PKC based on texture features of different orientations of

GLCM does not vary significantly, and the correlation with

multispectral VIS is comparable, indicating that the RDTI based on

texture features of different orientations of GLCM is feasible for

estimating potato PKC.

3.2 Multispectral VIs for estimating
potato PKC

In this study, based on multispectral images to extract the

canopy reflectance of potatoes at three reproductive stages, nine

VIs were calculated and linear regression modeling was used to

estimate potato PKC. Table 4 shows the estimated results. The R2

range is 0.40–0.56 and the RMSE range is 0.47%–0.56% for tuber
Frontiers in Plant Science 06
formation, 0.56–0.68 and 0.43%–0.50% for tuber growth, and 0.42–

0.51 and 0.40%–0.42% for starch accumulation, respectively. The

scatter plots of actual and predicted potato PKC values modeled by

GNDVI have R2 = 0.56, 0.68, and 0.51 and the RMSEs are 0.47%,

0.43%, and 0.40%, respectively. R2 is greater than 0.50, indicating

that GNDVI could reflect the potato PKC status to some extent.

GNDVI estimation potato PKC modeling and validation results are

shown in Figure 4. Each VI model estimates potato PKC with the

highest R2 at the tuber growth stage.
3.3 Multispectral VIs combined with spatial
structure features to estimate potato PKC

To test whether the multispectral VIs fusing the spatial

structure features of multispectral images can improve the

accuracy of estimating potato PKC, this study extracts the FVC of

potato S1–S3 based on multispectral image NDVI using image

element dichotomy and also calculates the RDTI based on GLCM

extracting texture features in the 0°, 45°, 90°, and 135° directions.

3.3.1 Multispectral VIs combined with FVC for
estimation of potato PKC

Figure 5 illustrates a pattern in potato FVC, where it initially

increases and then decreases as the growth stages progresses. Based

on the multispectral VIs used in this study, the optimal VIs were

selected and combined with FVC to estimate potato PKC using

SMLR modeling, and the results are shown in Figure 6. The

modeling R2 for the three fertility periods is 0.58, 0.79, and 0.64,

and the RMSE is 0.47%, 0.34%, and 0.35%, respectively. The R2 of

the validation set was 0.68, 0.76, and 0.69, and the RMSEs were

0.48%, 0.36%, and 0.37%, respectively. The modeled and validated

R2 of potato PKC increased in all three growth stages compared

with that of GNDVI only, with the most significant increase in the

starch accumulation stage and the decrease in the RMSEs of tuber

growth and starch accumulation stages. The SMLR model performs

best at the tuber growth stage (Table 5).

3.3.2 Multispectral VIs combined with texture
features for estimating potato PKC

Since the correlation between RDTI and potato PKC based on

the texture feature combinations extracted from GLCM with
FIGURE 2

PKC as a function of growth period for potatoes under different experimental treatments.
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different orientations was not significant in relation to the fertility

stage and was comparable to the correlation with multispectral VIS,

in this study, we chose the texture feature combinations in the 45°

orientation to screen out the RDTI with the highest absolute value

of correlation coefficient with potato PKC and GNDVI to estimate
Frontiers in Plant Science 07
potato PKC, and each fertility stage was used to the single texture

features used to construct the optimal RDTI were different for each

fertility stage, including Green-Mean and Blue-Mean for S1 stage,

Red_Con and Reg_Var for S2 stage, and Red-Mean and Green-Dis

for S3 stage, and the results of the estimation are shown in Figure 7.
TABLE 3 Correlation analysis between GLCM texture and potato PKC in different directions.

S1_GLCM S2_GLCM S3_GLCM

Plot 0° 45° 90° 135° 0° 45° 90° 135° 0° 45° 90° 135°

Green_Mean −0.75 −0.75 −0.75 −0.76 −0.78 −0.78 −0.78 −0.78 −0.80 −0.80 −0.80 −0.80

Green _Var −0.63 −0.63 −0.63 −0.64 −0.68 −0.68 −0.68 −0.68 −0.34 −0.34 −0.34 −0.34

Green _Hom 0.68 0.63 −0.33 0.71 0.46 0.32 0.04 0.31 0.21 0.11 0.11 0.20

Green _Con −0.62 −0.59 −0.38 −0.65 −0.61 −0.64 −0.54 −0.66 −0.30 −0.29 −0.33 −0.38

Green _Dis −0.64 −0.60 −0.13 −0.67 −0.56 −0.52 −0.27 −0.53 −0.22 −0.17 −0.18 −0.27

Green _Ent −0.07 −0.21 −0.16 −0.26 −0.10 −0.13 0.02 −0.12 −0.16 −0.16 −0.16 −0.18

Green _Sec 0.11 0.22 0.16 0.29 0.06 0.09 −0.07 0.08 0.17 0.16 0.15 0.18

Green _Cor −0.80 −0.79 −0.81 −0.74 −0.48 −0.49 −0.52 −0.38 −0.30 −0.45 0.15 0.12

Red_MEAN −0.67 −0.67 −0.67 −0.67 −0.74 −0.74 −0.74 −0.74 −0.56 −0.56 −0.56 −0.56

Red _Var −0.57 −0.57 −0.57 −0.58 −0.59 −0.59 −0.59 −0.60 −0.49 −0.49 −0.49 −0.49

Red _Hom 0.62 0.59 0.50 0.63 0.76 0.75 0.69 0.74 0.57 0.53 0.51 0.58

Red _Con −0.57 −0.57 −0.54 −0.59 −0.63 −0.60 −0.55 −0.60 −0.53 −0.44 −0.46 −0.56

Red _Dis −0.60 −0.59 −0.11 −0.62 −0.69 −0.67 −0.61 −0.67 −0.55 −0.48 −0.48 −0.57

Red _Ent −0.49 −0.51 −0.51 −0.54 −0.78 −0.79 −0.78 −0.79 −0.56 −0.54 −0.55 −0.57

Red _Sec 0.44 0.46 0.42 0.49 0.79 0.80 0.79 0.80 0.55 0.54 0.54 0.56

Red _Cor −0.76 −0.78 −0.77 −0.66 −0.73 −0.54 −0.71 −0.70 −0.07 −0.23 −0.34 0.13

Reg_ Mean 0.70 0.70 0.70 0.70 0.62 0.62 0.62 0.62 0.48 0.48 0.48 0.48

Reg _Var 0.54 0.54 0.54 0.54 0.68 0.68 0.68 0.67 0.48 0.48 0.48 0.48

Reg _Hom −0.32 −0.41 −0.67 −0.40 −0.59 −0.60 −0.62 −0.61 −0.44 −0.44 −0.48 −0.47

Reg _Con 0.52 0.54 0.60 0.54 0.66 0.69 0.69 0.66 0.47 0.48 0.50 0.49

Reg _Dis 0.49 0.51 0.63 0.51 0.64 0.66 0.66 0.64 0.47 0.47 0.50 0.49

Reg _Ent 0.64 0.63 0.63 0.63 0.57 0.57 0.57 0.56 0.44 0.44 0.42 0.43

Reg _Sec −0.63 −0.63 −0.63 −0.63 −0.56 −0.56 −0.56 −0.55 −0.43 −0.43 −0.41 −0.42

Reg _Cor −0.74 −0.66 −0.69 −0.73 −0.25 −0.32 −0.28 −0.11 0.03 0.02 0.01 −0.18

Nir_ Mean 0.70 0.70 0.70 0.70 0.77 0.77 0.77 0.77 0.60 0.60 0.60 0.59

Nir _Var 0.63 0.63 0.63 0.62 0.82 0.82 0.82 0.82 0.63 0.63 0.63 0.63

Nir _Hom 0.56 0.28 −0.79 0.43 −0.68 −0.68 −0.68 −0.68 −0.49 −0.52 −0.55 −0.52

Nir _Con 0.48 0.71 0.83 0.55 0.81 0.81 0.80 0.81 0.61 0.63 0.65 0.63

Nir _Dis 0.30 0.64 0.83 0.39 0.78 0.78 0.76 0.77 0.57 0.61 0.62 0.60

Nir _Ent 0.62 0.57 0.59 0.54 0.61 0.60 0.61 0.60 0.44 0.43 0.40 0.42

Nir _Sec −0.55 −0.50 −0.52 −0.49 −0.60 −0.59 −0.59 −0.58 −0.41 −0.39 −0.36 −0.38

Nir _Cor −0.59 −0.72 −0.80 −0.57 −0.12 −0.04 −0.23 −0.02 0.20 0.06 0.01 0.06
frontie
Green_Mean is the mean texture feature of Green, and others analogously.
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The modeled R2 for the three fertility periods is 0.62, 0.75, and 0.55,

and the RMSE is 0.44%, 0.37%, and 0.39%, respectively. The SMLR

model performed best in the tuber growth stage (Table 5).
3.3.3 Multispectral VIs combined with FVC and
texture features for estimating potato PKC

Based on the optimal VIs selected in this study, the extracted

FVC and RDTI were used to estimate potato PKC using SMLR

modeling. Figure 8 shows the results of the fusion modeling of

GNDVI, FVC, and RDTI to estimate potato PKC. The modeling R2

is 0.63, 0.84, and 0.80, respectively, and the RMSE is 0.44%, 0.29%,

and 0.25%, respectively. The validation R2 is 0.78, 0.86, and 0.80,

and the RMSE is 0.36%, 0.30%, and 0.35%, respectively. The

modeling and validation R2 values are greater than those

estimated from GNDVI, GNDVI combined with FVC, and

GNDVI combined with RDTI for potato PKC over the three

growth stages, whereas the RMSE was lower than those estimated

using GNDVI, GNDVI combined with FVC, and GNDVI

combined with RDTI. GNDVI was combined with RDTI to

estimate the RMSE of potato PKC, and the SMLR model has the

highest accuracy in the tuber growth phase (Table 5).
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4 Discussion

4.1 Effect of different experimental
treatments on PKC and canopy structure
of potato

The experimental design used in this study encompasses

various gradients of potassium fertilizer dosage, plant density, and

nitrogen fertilizer dosage, enabling an investigation of their effects

on the growth and development of potato plants. The findings

reveal distinct patterns in potato PKC across the growth stages

advance, consistent with the research conducted by Liu Keli et al.

(Liu et al., 2003). During the tuber formation stage, potato plants

are in an early developmental phase, and applying fertilizer

contributes to a higher PKC. This is attributed to the fact that the

plants were not yet fully developed, so the nutrients supplied

through fertilization had a pronounced impact on PKC during

this stage. As the potato plants progress to the late tuber formation

and early tuber growth stages, rapid growth occurs primarily

through stem and leaf expansion, whose dilution affects the PKC.

Consequently, the PKC gradually decreases during this phase.

However, during the late tuber growth period, the aboveground
BA

FIGURE 3

Correlation analysis: (A) is the correlation between multispectral VIs and potato PKC, and (B) is the correlation between RDTI and potato PKC
composed of texture features based on different orientations of GLCM.
TABLE 4 Multispectral VIS modeling estimation of potato PKC in three growth stages.

VIS S1 S2 S3

R2 RMSE (%) R2 RMSE (%) R2 RMSE (%)

DVI 0.42 0.55 0.57 0.50 0.42 0.42

MSR 0.43 0.54 0.62 0.47 0.44 0.41

NDVI 0.40 0.56 0.56 0.51 0.43 0.42

NLI 0.42 0.55 0.59 0.49 0.43 0.42

OSAVI 0.41 0.55 0.56 0.50 0.43 0.42

RDVI 0.41 0.55 0.57 0.50 0.43 0.42

RVI 0.44 0.54 0.65 0.45 0.44 0.41

SAVI 0.41 0.55 0.57 0.50 0.43 0.42

GNDVI 0.56 0.47 0.68 0.43 0.51 0.40
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growth of potato plants, including stems and leaves, reaches its

peak, and the rate of growth begins to slow. At this stage, the potato

plants transition from pure nutrient-driven growth to a

combination of nutrient assimilation, reproductive growth, and

material accumulation. This phase represents the peak of potato

growth and development. Importantly, nutrients relocate from

aboveground parts to the underground tubers, resulting in the

lowest PKC levels during the tuber growth period (Liu et al., 2022a).

This study used a selection of nine multispectral VIs relevant to

potato PKC and analyzed their correlation with PKC at three crucial

growth stages. As depicted in Figure 3, all VIs correlate significantly

with PKC at a significance level of 0.01, which reflects the suitability

of the selected multispectral VIs for estimating PKC in potatoes.

The correlation between multispectral VIs and PKC initially

increases, followed by a decrease from the tuber formation stage

to the starch accumulation stage. The results of potato PKC

estimation using multispectral VI modeling (Table 4) reveal that

the most accurate PKC estimation occurs during the tuber growth

stage. This result is attributed to the inherent mechanisms

governing potato growth, development, and fertilization. During

the tuber formation and tuber growth stages, potato plants undergo

vigorous growth, and the extracted canopy spectra are less

influenced by soil interference, allowing the VIs to more

accurately reflect the PKC. However, in the late growth period, as

potato plants start to senesce and yellow, the extracted canopy

spectra become more susceptible to soil background effects, leading

to a less accurate representation of PKC. Additionally, spectral

saturation during this stage reduces the VI sensitivity to PKC,

lowering the estimation accuracy. Orientation does not affect the

correlation between the MEAN and RDTI constructed based on

GLCM texture and potato PKC under a 3×3 window. Generally, the

MEAN texture feature correlates better with potato PKC, and the

constructed RDTI correlates more strongly compared with

individual texture features. This result is explained by the smallest

window size being the best to capture canopy texture variations at

different potato growth stages. Furthermore, the smaller window

size avoids exaggerating differences within the window or

excessively smoothing texture variations (Zheng et al., 2019). The

MEAN texture feature, which represents the average of target and

background moving windows, contributes to image smoothing and

reduces interference from the soil background (Zheng et al., 2019).

By combining the advantages of normalized VIs and difference VIs,
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RDTI effectively mitigates the effects of soil background, solar

altitude angle, and azimuth while enhancing the correlation with

potato PKC by smoothing the canopy structure (Haboudane et al.,

2004; Eckert, 2012).
4.2 VIs combined with spatial structural
features to estimate potato PKC

The transition in canopy structure from simple to complex

during the potato tuber formation and starch accumulation stages

corresponds to changes in the FVC with fertility. Morphological

parameters have been widely used for monitoring the

physicochemical parameters of crops (Bendig et al., 2015; Stevens

et al., 2020). However, the relationship between morphological

parameters and potato PKC at different growth stages remains

unclear. From tuber formation to the initial stage of tuber growth,

potato growth is primarily characterized by stem and leaf

development, which gradually reaches completion. Consequently,

the FVC gradually increases, reaching a saturation point after which

it no longer changes significantly (Wan et al., 2020; Qiao et al.,

2022). During the late tuber growth and starch accumulation stages,

the FVC decreases due to the gradual transfer of nutrients from

aboveground to below-ground parts of the plant. Additionally,

aboveground stems and leaves begin to wither and yellow. These

observations suggest that the FVC may be associated with potato

PKC. To investigate whether the FVC can enhance the accuracy of

estimating potato PKC, we extracted the FVC at three different

potato growth stages using the image dichotomy method. The best-

performing VIs were then fused to model potato PKC. The highest

model accuracy was observed during the tuber growth stage. This

result can be attributed to the close correspondence between potato

growth and nutritional status during this stage, leading to more

accurate extracted FVC values. Conversely, the starch accumulation

stage is characterized by reproductive growth, with potassium

continuously being transferred to the tuber. As a result, the

accuracy of the extracted FVC values diminishes during this stage.

The changes in potato canopy structure, which are influenced

by fertility variations, also result in variations in the extracted

GLCM textures. Specifically, Green_Con, Red_Con, Reg_Con,

and Nir_Con correlate to various extents with potato PKC and

fertility, suggesting their association with canopy structure.
FIGURE 4

Predicted PKC plotted versus measured PKC to show effect of GNDVI modeling and verification.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1265132
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ma et al. 10.3389/fpls.2023.1265132
Previous studies on wheat and maize have shown a monotonic

increase in texture characteristics throughout the reproductive

period (Yue et al., 2018; Zhu et al., 2021). However, in the case of

potato canopy texture, an increasing trend followed by a decreasing

trend occurs (Liu et al., 2022b), which implies that potato canopy

texture characteristics correlate with potato PKC. Comparing

Figures 4, 7 shows that integrating VIs with RDTI in the

modeling and validation stages increases R2 and decreases RMSE

across all three fertility periods. The highest model accuracy occurs

during the tuber growth period. Furthermore, comparing Figures 6,

7 reveals that, during the tuber formation stage, the accuracy of VIs

combined with RDTI is superior to that of VIs combined with the

FVC. Conversely, the accuracy of VIs combined with FVC is greater

than that of VIs combined with RDTI during the tuber growth

stage. This discrepancy is attributed to the influence of soil

background on the accuracy of FVC extraction during the tuber

formation stage. However, RDTI effectively mitigates the

interference caused by the soil background. The tuber growth

period represents the peak of potato growth and development,

where the canopy structure is less affected by the soil background.

Consequently, the extracted FVC more accurately reflects the

potassium nutrient status of the potato.

The statistical analysis conducted in this study demonstrates

that integrating multispectral VIs with FVC or texture features

enhances the accuracy of potato PKC estimates compared with

using multispectral VIs alone. This finding underscores the

significance of incorporating FVC and texture features for
Frontiers in Plant Science 10
accurate potato PKC estimation. The results presented in Figure 8

indicate that the combination of multispectral VIs with FVC and

texture features further improves the accuracy of potato PKC

estimation. Multispectral VIs contribute valuable spectral

information about the potato canopy, while FVC provides

essential structural information. Additionally, texture features

offer high-frequency information pertaining to the canopy.

Integrating these diverse sets of information provides a more

comprehensive understanding of potato PKC variation. This

fusion approach facilitates the capture of complementary details

regarding potato PKC and enables a more comprehensive

assessment of its variations.
4.3 Strengths and weaknesses of this study

This study shows that the fusion of multispectral VIs with

morphological parameters and texture features enhances the

accuracy of potato PKC estimation. This finding is consistent with

previous research, which found that the fusion of spectral VIs with

morphological parameters and texture features improves the accuracy

of estimating biomass (Yue et al., 2018; Zheng et al., 2019), the leaf area

index (Li et al., 2019), and nitrogen (Zheng et al., 2020; Fan et al., 2022).

The SMLR model, which combines the strengths of spectral features,

morphological parameters, and texture features, proves advantageous

in improving potato PKC estimation accuracy. Moreover, this model is

particularly suitable for agricultural managers with limited budgets
FIGURE 5

FVC extraction results.
FIGURE 6

GNDVI combined with FVC to estimate potato PKC.
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who seek to utilize multispectral sensors. Note that multispectral

sensors may not be ideal for extracting morphological parameters

and texture features due to their lower spatial resolution. In this study,

only one crop and one potato location were examined over a single

year. Therefore, validating the model across different locations, crops,

and years is essential. Although the UAV platform used in this study is

suitable for small-scale operations, it is susceptible to flight instability

caused by wind and flight velocity. Additionally, its limited endurance

creates difficulties for large-scale monitoring of crop physicochemical

parameters. However, with the rapid advancement of UAV technology,

commercial fixed-wing UAVs now offer longer flight durations (e.g., X-

1 Chimera, 4). As a result, the method proposed herein for monitoring

the potassium nutrient status in crops provides valuable insights and

reference value for future applications.
5 Conclusion

This study proposes a method for monitoring potato PKC at

critical growth stages using UAV-based multispectral sensors. The

study focuses on extracting canopy spectral features, FVC, and

GLCM texture features from multispectral images of potatoes

during critical fertility periods. The study aimed to explore how

combining VIs with FVC, VIs with GLCM texture features, and the

fusion of VIs, FVC, and GLCM texture features affect the accuracy

of potato PKC estimation when using the SMLR model. The results

lead to the following conclusions: (1) The accuracy of estimating
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potato PKC using VIs extracted from multispectral images alone

was moderate. Among the VIs tested, the GNDVI performed the

best, with modeling R2 = 0.56, 0.68, and 0.51 and RMSE = 0.43%,

0.43%, and 0.40% for the three fertility periods of potato tuber

formation, tuber growth, and starch accumulation, respectively. (2)

Combining GNDVI with FVC during the three fertility periods

improved potato PKC estimation accuracy. The modeling R2 values

are 0.58, 0.79, and 0.64, and the corresponding RMSE values are

0.47%, 0.34%, and 0.35% for the three fertility periods of potato

tuber formation, tuber growth, and starch accumulation,

respectively. (3) The RDTI, composed of two random textures,

correlates with potato PKC more than with single texture features.

Combining GNDVI with RDTI also enhanced the accuracy of

estimating potato PKC. The modeling R2 values for the three

fertility periods are 0.62, 0.75, and 0.55 and the corresponding

RMSE values are 0.44%, 0.37%, and 0.39%, respectively. (4) The

fusion of GNDVI, FVC, and RDTI further improves the accuracy of

the SMLRmodel for estimating potato PKC. The resulting R2 values

for the three fertility periods are 0.63, 0.84, and 0.80 and the

corresponding RMSE values are 0.44%, 0.29%, and 0.25%,

respectively. Overall, this study provides valuable insights into

using UAV-based multispectral sensors for monitoring the

potassium nutrient status of crops. These findings contribute to

reducing agricultural production costs and enhancing precision

agricultural management practices. Further research is needed to

validate the proposed method for different locations, crops, and

years to ensure its applicability in diverse agricultural settings.
FIGURE 7

GNDVI combined with RDTI estimation of potato PKC.
TABLE 5 Estimation of potato PKC modeling and verification analysis with different model parameters in three growth periods.

S1 S2 S3

R2 RMSE (%) R2 RMSE (%) R2 RMSE(%)

VIs Calibration 0.56 0.47 0.68 0.43 0.51 0.40

Validation 0.53 0.58 0.74 0.39 0.58 0.42

VIs+FVC Calibration 0.58 0.47 0.79 0.34 0.64 0.35

Validation 0.68 0.48 0.76 0.36 0.69 0.37

VIs+RDTI Calibration 0.62 0.44 0.75 0.37 0.55 0.39

Validation 0.77 0.54 0.81 0.37 0.71 0.24

VIs+FVC+RDTI Calibration 0.63 0.44 0.84 0.29 0.80 0.25

Validation 0.78 0.36 0.86 0.30 0.80 0.35
f
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