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Tree species classificationwithin shelterbelts is crucial for shelterbelt management.

The large-scale satellite-based and low-altitude drone-based approaches serve as

powerful tools for forest monitoring, especially in tree species classification.

However, these methods face challenges in distinguishing individual tree species

within complex backgrounds. Additionally, the mixed growth of trees within

protective forest suffers from similar crown size among different tree species.

The complex background of the shelterbelts negatively impacts the accuracy of

tree species classification. The You Only Look Once (YOLO) algorithm is widely

used in the field of agriculture and forestry, ie., plant and fruit identification, pest

and disease detection, and tree species classification in forestry. We proposed a

YOLOv7-Kmeans++_CoordConv_CBAM (YOLOv7-KCC) model for tree species

classification based on drone RGB remote sensing images. Firstly, we constructed

a dataset for tree species in shelterbelts and adopted data augmentation methods

to mitigate overfitting due to limited training data. Secondly, the K-means++

algorithm was employed to cluster anchor boxes in the dataset. Furthermore, to

enhance the YOLOv7 backbone network’s Efficient Layer Aggregation Network

(ELAN) module, we used Coordinate Convolution (CoordConv) replaced the

ordinary 1×1 convolution. The Convolutional Block Attention Module (CBAM)

was integrated into the Path Aggregation Network (PANet) structure to facilitate

multiscale feature extraction and fusion, allowing the network to better capture

and utilize crucial feature information. Experimental results showed that the

YOLOv7-KCC model achieves a mean average precision@0.5 of 98.91%,

outperforming the Faster RCNN-VGG16, Faster RCNN-Resnet50, SSD, YOLOv4,

and YOLOv7 models by 5.71%, 11.75%, 5.97%, 7.86%, and 3.69%, respectively. The

GFlops and Parameter values of the YOLOv7-KCC model stand at 105.07G and

143.7MB, representing an almost 5.6% increase in F1metrics compared to YOLOv7.

Therefore, the proposed YOLOv7-KCC model can effectively classify shelterbelt

tree species, providing a scientific theoretical basis for shelterbelt management in

Northwest China focusing on Xinjiang.
KEYWORDS

unmanned aerial vehicle (UAV), tree species classification, image recognition, YOLO
series algorithms, coordconv, attention mechanism
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1 Introduction

Shelterbelts, encompassing both natural and artificial

woodlands, play a vital role in sustaining environmental well-

being by serving a multitude of functions. These include reducing

wind velocity, suppressing dust emissions, and enhancing

microclimatic conditions (Qiao et al., 2016). Moreover, they

contribute to increased ground vegetation coverage, modify wind

flow patterns, and improve internal air circulation within forested

areas (Liu et al., 2020). The establishment of shelterbelts emerges as

a pivotal strategy for safeguarding desert ecosystems, concurrently

standing as the most prevalent and effective method for mitigating

and controlling desertification. In the Xinjiang region, situated on

the western border of China, these protective forests play a crucial

role in alleviating ecological degradation in Xinjiang’s desert areas

(Cheng et al., 2023).

To combat desertification of northern regions in China, the

Chinese government initiated afforestation and reforestation plans

in 1978, notably through the Three-North Shelter Forest Program

(TNSFP) (Cao, 2008). The forest protection policies based on

TNSFP have significantly contributed to the increase in forest

cover in China (Viña et al., 2016; Hu et al., 2021). Managed

primarily through mixed forests, protective forests enhance

resistance to pests and diseases, thereby fortifying ecological

stability (Nilsson et al., 2006). The precise and efficient

identification of tree species within protective forests holds

paramount significance for ensuring their sustainable

management (Hościło and Lewandowska, 2019).

In the early stages, tree species classification relied on field

surveys, employing visual methods to identify tree species based on

external morphological features such as roots, stems, leaves, flowers,

fruits, and seeds (Li et al., 2021). While this method accurately

captures tree species information in specific regions, it is labor-

intensive and costly. With the rapid advancement of Unmanned

Aerial Vehicle (UAV) technology, high-resolution UAV images

have gradually replaced traditional field surveys and found

widespread applications in forestry (Aeberli et al., 2023). Wang B.

et al. (2023) utilized UAV LiDAR and hyperspectral data in the

Maoershan forest area, achieving a tree species classification

accuracy exceeding 78% through machine learning algorithms.

Raczko and Zagajewski (2017) employed support vector machine

(SVM), random forest (RF), and neural network for the

classification of the five most common tree species in the

Szklarska Poręba region using airborne hyperspectral images.

The results indicated an accuracy of 77% for the neural network

classifier, 68% for SVM, and 62% for RF. However, these studies

often face challenges in pixel-based segmentation, especially in

areas with high woodland density, leading to inter-crown

occlusion and incomplete detection of diminutive individual trees.

In recent years, the deep learning methods has bestowed upon

tree species classification a novel and effective perspective. Object

detection methods find extensive applications in forestry research.

YOLO (You Only Look Once) stands as a frequently employed

single-stage object detection algorithm, distinguished by its rapidity

and high precision (Redmon et al., 2016). Since its inception by
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Redmon et al., 2016, researchers have continuously evolved its

series, refining and devising new variants such as YOLOv2

(Redmon and Farhadi, 2017), YOLOv3 (Redmon and Farhadi,

2018), YOLOv4 (Bochkovskiy et al., 2020), YOLOv5 (Jocher et al.,

2022), YOLOX (Ge et al., 2021), YOLOv6 (Li et al., 2022), etc.

Safonova et al. (2022) conducted a comparative analysis of

YOLOv2, YOLOv3, and YOLOv4, with YOLOv4 achieving an

impressive mean average precision (mAP) of 95% in detecting

small bark beetles in Norwegian spruce trees. Jintasuttisak et al.

(2022) employed YOLOv5 to detect date palm trees through UAV

imagery, achieving a recognition accuracy of 92.34%. These studies

showcase the formidable performance of the YOLO series in the

domain of forestry applications. YOLOv7, introduced by Wang C.

et al. (2023), aims to enhance detection performance through

improved network architecture and training strategies. Wu et al.

(2022) refined the YOLOv7 model for swift detection of tea oil fruit

in camera-captured images, yielding a recognition accuracy of

96.03%. Yuan (2023) conducted a comparative evaluation of

YOLOv4 and YOLOv7 models in classifying apple buds under

high-quality image annotation requirements. Due to the limited

availability of training images, YOLOv7 attained an mAP of 80% at

100% image annotation quality and 63% at 5% image annotation

quality. The YOLOv7 model demonstrated outstanding

performance in object detection, surpassing older versions of the

YOLO detection model series in terms of training speed and

accuracy. At present, there is a paucity of research addressing the

issue of imbalanced distribution of tree species samples, as machine

learning models tend to favor categories with a higher quantity,

thereby impacting the predictive accuracy of minority categories.

Additionally, the challenge of achieving accurate tree species

classification in protective forests under complex background

conditions, including lighting differences in UAV data collection,

remains a significant topic worthy of research.

To address these above challenges, this study aims to develop a

swift and precise model for tree species classification in protective

forests. Specifically, we employed two data enhancement methods—

(ie, geometric transformation and color transformation) —to

address the issue of mixed tree species in shelterbelts and the

uneven distribution of samples. The study proposes an improved

YOLOv7 network, namely YOLOv7-KCC. Firstly, the K-means++

algorithm is adopted to cluster anchor boxes for all tree species

labels in the dataset. This helps alleviate concerns related to the

undue concentration or dispersion of initial clustering centers,

thereby improving the quality and stability of the clustering

results and expediting the model’s convergence during the

training process. Secondly, the Coordinate Convolution

(CoordConv) replaces specific convolutional layers in the feature

extraction network. This integration facilitates the addition of

corresponding coordinate information of tree species crowns with

analogous features into the primary network. Such augmentation

enhances the model’s capability to extract effective features without

the introduction of superfluous parameters, thereby increasing the

accuracy of the detection module’s localization regression. Finally,

the Convolutional Block Attention Module (CBAM) is introduced

to amplify feature extraction capabilities, mitigating interference
frontiersin.org
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from crown adhesion, occlusion, and background noise. The

YOLOv7-KCC method aims to enhance the overall performance

of the model in accurately classifying and detecting tree species

within protective forests, particularly in complex and varied

background conditions.
2 Study area and dataset

2.1 Study area overview

The study area is located at the northern foot of the Tianshan

Mountains, in the southern part of the Junggar Basin, at the 150th

regiment of the Moxowan Reclamation Area (Wang et al., 2022),

Xinjiang Uygur Autonomous Region (45°10′N, 85°56′E, see

Figure 1). Under the action of the northwest wind, the crescent-

shaped sand dunes at the edge of the regiment are a typical windy

landform, and the forest coverage of the regiment is 38%. The

windbreak and sand-fixing shelterbelts are composed of a

combination of tree species, including Populus bolleana, Ulmus

pumila, Elaeagnus angustifolia, Haloxylon ammodendron, Tamarix

chinensis, Alhagi sparsifolia and dead trees, with the aim of

stabilizing sand dunes and protecting cultivated land. The Ulmus

pumila and mixed broadleaf forests are distributed along both sides

of the road. The vertical structure of the windbreak and sand-fixing

shelterbelts includes a canopy layer, a shrub layer, and an herb layer.

The primary focus of this paper is to investigate and classify tree

species, including Ulmus pumila, Elaeagnus angustifolia, Populus

bolleana, Haloxylon ammodendron, and dead trees. For dead trees,

the relevant departments of forestry management will subsequently
Frontiers in Plant Science 03
remove and replant them. Therefore, we have not specified the type,

but have categorised it uniformly as dead trees.
2.2 Data acquisition

In this study, the DJI M300RTK multi-rotor grade UAV is used,

as shown in Figure 2. The RGB sensor employed is the DJI P1, a

high-performance, multi-purpose aerial survey payload, equipped

with a 45-megapixel full-frame image sensor. The sensor

incorporates a DJI DL 35mm F2.8LS ASPH Lens with a focal

length of 35mm, and the ground sample distance (GSD) and

shooting distance (L) establish a relationship of GSD=L/80.

On August 1st, 2022, between 5:00 PM and 6:00 PM,

experimental data were collected under cloudy weather conditions

using the DJI M300RTK. This time period was chosen because

between 1:00 PM and 2:00 PM that day had harsh sunlight, which

resulted in poor image quality with excessive exposure, leading to

numerous white spots and less distinct features in the tree canopy

imagery. Therefore, the flight at 5:00 p.m. was selected when it was

cloudy. The UAV flew at a relative altitude of 100m and a speed of

13.7m/s, with a ground sampling distance (GSD) of 1.25cm/pixel.

The gimbal shooting angle was vertical to the ground, and the

heading and side overlap rates were 75%. A total of 1003 RGB

visible remote sensing images were obtained, each with dimensions

of 8192 pixels × 5460 pixels. Following the acquisition of the UAV

image data, a field survey of tree species information was conducted

in the experimental area, which involved gathering and recording

information on the latitude and longitude, sampling photos and

tree species.
AB

C

FIGURE 1

Schematic diagram of study area. (A) Topographic map of the study area; (B) Red underlined areas are the studied forest strips; (C) Details of
tree species.
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2.3 Data preprocessing and
dataset construction

The images captured by UAVs and processed by the Pix4D

Mapper software generate digital orthophoto map (DOM), digital

surface models (DSM), and point cloud datasets. Aerial

triangulation calculations are employed to generate the point

cloud models, and the images are automatically calibrated to

produce visible orthophotos and DSM images. The visible

orthophotos obtained are stored in TIF file format. After non-

forested areas, such as black edge fill, cotton fields, bare ground

roads, and farmlands, are removed from the images, a Python script

is used to randomly crop the TIF images, which are then saved in

JPG format. The result is 396 images of the protective forest belt,

each with a resolution of 640×640 pixels. The images are annotated

using the labelImg tool in the Pascal VOC dataset labeling format

(Shetty, 2016), which produces an XML label file containing

information on the target location, anchor frame size, and labels

for different tree species. To effectively train deep neural networks, a

significant amount of data is required. Small datasets are prone to

overfitting (Wu et al., 2022), which can compromise the robustness

and generalization ability of neural network models (Chen et al.,
Frontiers in Plant Science 04
2022). To mitigate this issue, data augmentation of the acquired

data is necessary (Jia et al., 2017). In this study, we utilize the Python

language to invoke the OpenCV image processing library

(Gollapudi, 2019). This enables us to flip, rotate, adjust contrast,

add gaussian noise, and apply other techniques to enhance the

collected images. Furthermore, we perform synchronous

transformation on the corresponding annotation file of each

image, which significantly expands the sample set of images to

4356. These images are then randomly divided into a training set of

3048, a validation set of 872, and a test set of 436, according to a

7:2:1 ratio. The distribution and number of datasets are outlined in

Table 1. Also, Table 2 shows the number of different tree species in

our dataset.

Additionally, prior to feeding the dataset into the neural

network model for training, 80% of the training set is randomly

selected for Mosaic data augmentation, followed by random

selection of 80% of the Mosaic-augmented training set for Mixup

data augmentation. The Mosaic data augmentation method,

proposed in YOLOv4 as an improvement to the CutMix data

augmentation method (Bochkovskiy et al., 2020), involves

random selection of four images, random scaling, and random

distribution for splicing, to increase the number of targets in a single

image and enrich the detection dataset. In particular, random

scaling adds many small targets, improving the robustness of the

network. Directly computing the data from four images reduces the

required Mini-batch size and effectively reduces GPU memory

usage (Bochkovskiy et al., 2020). MixUp is a data augmentation

strategy based on mixing classes, allowing for the combination of

images from different classes to expand the training dataset. In our

model, the input training set is first enhanced with Mosaic data at a

settable ratio, and then the images after being Mosaic enhanced are

later enhanced with MixUp at a settable ratio.
3 Improved YOLOv7 tree species
classification model design
for shelterbelts

Although YOLOv7 performs well in real-time object detection

(Zhao et al., 2023), however its detection performance on small

targets such as dead trees and Haloxylon ammodendron, which are

affected by complex backgrounds, may fall short of expectations.

Additionally, for large canopy trees such as Elaeagnus angustifolia

and Ulmus pumila, crown overlap can result in false positives or

misclassifications. To accurately identify small targets in complex

backgrounds and precisely classify complex overlapping canopy
FIGURE 2

DJI M300 RTK UAV Platform.
TABLE 1 The partitioning of the dataset.

Name Proportion Number of Picture Number of Trees

Dataset

Training Set 70% 3048 28113

Validation Set 20% 872 7866

Test Set 10% 436 4116

Total 100% 4356 40095
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species, we introduce in this section an improved YOLOv7-KCC

model based on the native YOLOv7 network. Figure 3 shows all the

structures of the YOLOv7-KCC model, which consists of four parts:

Input, Backbone, Neck, and Head. Additionally, we provide the

composition structure of each module in detail.

The CBS module, comprises Convolution (Conv), Batch

Normalization (BN), and the Silu activation function. Conv

represents the convolutional layer, BN stands for the Batch

Normalization layer, and Silu is an activation function.

Additionally, ELAN_Coord is our novel module, an enhancement

based on the Efficient Layer Aggregation Network (ELAN), which

we will elaborate on in the subsequent sections, discussing the

improvement concepts and implementation. MP-1 is an

undersampling transition module. It consists of a combination of

MaxPool and convolutional layers (Conv) to alter feature channel

dimensions. MaxPool is a type of pooling operation, typically

employed in Convolutional Neural Networks, aimed at reducing

spatial dimensions and feature extraction. The CBAM module,

denoting Convolutional Block Attention Module, will also be
Frontiers in Plant Science 05
extensively detailed in forthcoming sections, including the

rationale behind its inclusion and implementation. UpSample is

an operation used for upscaling the spatial dimensions of images or

feature maps. This operation corresponds to downscaling

operations such as MaxPool and is employed to restore the

resolution of images or feature maps to a higher level. SPPSPC is

an abbreviation for Spatial Pyramid Pooling and Spatial Attention

Module. SPPSPC combines two techniques. The Spatial Pyramid

Pooling (SPP) is a pooling technique that enables the model to

extract features at different scales, effectively adapting to objects of

various sizes. The Spatial Attention Module (SPC) is an attention

mechanism designed to enhance the model’s focus on regions of

interest. RepConv consists of three branches. The uppermost

branch comprises a 3×3 Convolution layer combined with BN

(Batch Normalization) for feature extraction. The middle branch

consists of a 1×1 Convolution layer with BN, intended for feature

smoothing. The final branch is an Identity, not performing

convolution operations, and directly passing through. YoloHead

is an integral detection component within the model, responsible
TABLE 2 The number of different tree species in the dataset.

Name Ulmus pumila Populus bolleana Haloxylon ammodendron Elaeagnus angustifolia dead trees

Number of Trees 12573 4861 2371 13352 3025

Proportion 34.75% 13.43% 6.55% 36.90% 8.36%
FIGURE 3

The architecture of the YOLOv7-KCC network.
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for converting convolutional feature maps into tangible object

detection outcomes. This includes predictions of object positions

and category labels.
3.1 Refining anchors via
K-means++ clustering

The K-means algorithm, firstly proposed by Mac (1967),

partitions a dataset into various clusters, it can maximize intra-

cluster similarity while minimize inter-cluster similarity. Due to its

simplicity and efficiency have led to widespread applications in

various fields such as market analysis (Tleis et al., 2017), feature

learning (Tang et al., 2017), document clustering (Sardar and

Ansari, 2018), and image segmentation. In terms of object

detection, anchor boxes play a crucial role as rectangular frames

for predicting object positions and sizes. Traditionally, the number

and dimensions of anchor boxes are manually configured, but this

may not be the optimal choice. The initial anchor boxes in the

YOLO series algorithm are obtained through k-means clustering on

the MS COCO 2017 dataset (Lin et al., 2014). The COCO dataset

comprises three parts, consisting of the COCO train-2017 training

set, COCO val-2017 validation set, and COCO test-2017 test set.

With over 33GB of images and instances of over 200,000 objects, it

encompasses 80 categories of common everyday items. The K-

means algorithm proves suitable for objective clustering in datasets

with multiple categories or samples. However, these anchor boxes

may not suit the tree species dataset in this study, emphasizing the

importance of prudent anchor selection for improved position

prediction accuracy.

The traditional K-means algorithm randomly select cluster

center points, which can lead to convergence heavily dependent

on the initialization of cluster centers. K-means++ has some

improvements based on the K-means, it has follow steps: (a)

randomly selecting a target box from the training set as the first
Frontiers in Plant Science 06
cluster center point, (b) calculating the distance from each

remaining target box to existing cluster center points and

selecting the farthest target box as the next cluster center point,

(c) repeating step (b) until all cluster center points are determined,

(d) assigning all target boxes to the cluster to which the nearest

cluster center point belongs, obtaining a collection of target boxes

for each cluster, (e) assigning all target boxes to the cluster to which

the nearest cluster center point belongs, obtaining a collection of

target boxes for each cluster, and (f) returning the width and height

of all anchor boxes as the final set of anchor boxes. One of the

primary advantages of K-means++ is achieving better centroids in

initial iterations, facilitating faster convergence of the entire

algorithm. In terms of computational complexity, the initial

centroid selection process in K-means++ is relatively more

intricate compared to regular random selection. Therefore, on

large datasets, the initial centroid selection may become time-

consuming. Nevertheless, this overhead is typically offset

throughout the iteration of the entire K-means algorithm.

The K-means++ algorithm is applied to our dataset, we obtained

a more accurate and representative set of 9 anchor boxes: (60, 76),

(110, 81), (91, 92), (84, 139), (141, 87), (125, 125), (185, 132), (135,

189), and (210, 205). Figure 4 illustrates the clustering results. We

employed the K-means++ algorithm on our dataset, partitioning the

dataset into distinct clusters to facilitate the creation of a set of anchor

boxes. These anchor boxes represent hypothetical bounding boxes,

serving as reference points during the model’s training phase, aiding

the model in learning how to discern and localize objects within

images. The nine coordinates generated constitute the coordinates of

these anchor boxes. During the training of our object detection

model, these anchor boxes will be used to match with real object

bounding boxes, determining which should be labeled as Positive

Anchors (those with substantial overlap with real trees) or as

Negative Anchors (those with minimal overlap with real trees).

This process is instrumental in enabling the model to effectively

predict object positions and categories.
FIGURE 4

K-means++ clustering results with anchor boxes distribution.
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3.2 Updates to the recognition module

The YOLOv7 object detection algorithm, introduced in July

2022 following continuous refinement of the YOLO series (Wang

et al., 2022), maintains the exceptional speed, efficiency, durability,

and precision. The sanctioned version of YOLOv7 exhibits a

precision improvement of 120% and is 180% faster in terms of

Frames Per Second (FPS) compared to YOLOv5, and 180% faster

than YOLOX for equivalent volume (Wang et al., 2022). YOLOv7

shares similarities with its antecedents, it still employs

CSPDarknet53 (Cross Stage Partial Darknet53) in the base

network, known for enhancing accuracy, velocity, and superior

feature expression capability. CSPDarknet53, a component of the

YOLO family’s backbone network (Bochkovskiy et al., 2020), is an

extended and improved version of the Darknet53 backbone

network, designed to enhance model performance and efficiency.

The Neck network employs the PANet (Path Aggregation Network)

(Wang et al., 2019) path aggregation module, adept at aggregating

features of varying scales, thereby improving the accuracy and

robustness of target detection.

In comparison to the YOLOv5 network, YOLOv7 suggests the

ELAN structure and the MP structure. ELAN, depicted in Figure 5,

efficiently acquires more features by regulating the shortest and

longest gradient paths. It encompasses two branches: 1) The first

branch traverses a 1×1 convolution for channel number conversion,

2) the second branch first undergoes a 1×1 convolutional block for

channel number conversion, then proceeds with four 3×3

convolutional modules for feature extraction. Based on the ELAN

module, we shall obtain 2 feature maps exclusively processed by a

single CBS module, 1 feature map derived from the treatment of

three CBS modules, and 1 feature map generated through the

processing of 5 CBS modules. Finally, these four feature layers

will undergo another convolution-normalization-activation

function (CBS) for feature integration. Such a dense stacking

corresponds to a more intricate residual structure. Residual

networks are characterized by their ease of optimization and

the ability to significantly improve accuracy by increasing

depth. The internal residual blocks utilize skip connections,

mitigating the vanishing gradient problem associated with deep

neural networks.

The MP structure, illustrated in Figure 6, facilitates

downsampling through two branches. The first branch employs

max pooling for downsampling and a subsequent 1×1 convolution

for channel modification. The second branch utilizes a 1×1

convolutional operation followed by a 3×3 convolutional block
Frontiers in Plant Science 07
with a stride of 2 for downsampling. The results from both branches

are combined to obtain a more deeply downsampled outcome.

The dataset of protective forest tree species comprises a mere

4,356 images of 640×640 pixels, which is relatively diminutive in

scale and predisposed to overfitting during training. To address this,

the CBS module in the ELAN structure was replaced with the

CoordConv module (Liu et al., 2018), as depicted in Figure 7.

CoordConv incorporates positional information into the input

feature map, enhancing the convolutional layer’s ability to discern

pixel position information. This modification, replacing the

ordinary 1×1 convolution in the ELAN module with CoordConv,

allows the model to better capture positional information, thereby

improving overall performance.

Through the substitution of the 1×1 convolution in the ELAN

module with CoordConv convolution, the positional information

from the input is conveyed to the subsequent convolution operation

alongside the feature map. This enhancement renders the model

more attuned to positional information, thereby elevating its

sensitivity and overall performance.
3.3 Convolutional attention module

In convolutional neural networks, attention mechanisms have

emerged as a pivotal technique, bestowing the network with

enhanced discernment of vital features within the input, thereby

augmenting overall performance of the network. The Convolutional

Block Attention Module (CBAM), an attention mechanism

deployed in convolutional neural networks, empowers the

network to heighten its perceptual capability towards crucial

features while attenuating noise and irrelevant information

interference, thus elevating the performance of the network (Woo

et al., 2018). It is composed of two sub-modules, the Channel

Attention Module and the Spatial Attention Module, connected in

series, as illustrated in Figure 8.

The Channel Attention Module endeavors to apportion weights

to every channel of the input feature map to accentuate channels

that are more pertinent to the task. It produces channel attention

weights by means of a weighted fusion of the feature maps resulting

from global average pooling (GAP) (Equation 1) and global

maximum pooling (GMP) (Equation 2). The calculation formula

for the channel attention weights is as follows:

FGAP(xc) =
1

H �WoH
i=1oW

j=1xc(i, j) (1)
FIGURE 5

The structure of the ELAN module.
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FGMP(xc) = maxH,W
i=1,j=1 xc(i, j) (2)

In this context, xc refers to the c-th channel of the input feature

map, while H and W respectively represent the height and width of

the feature map. Subsequently, two fully connected layers (FC) and

an activation function, such as ReLU, are employed to generate the

channel attention weights (Equation 3).

Mc = s aFFC(FGAP(xc)) + bFFC(FGMP(xc))ð Þ (3)

The channel attention weights, Mc, are calculated using the

following formula, where s represents the Sigmoid activation

function and a and b are trainable parameters. Finally, the

channel attention weights that have been calculated are applied to

each channel of the input feature map, resulting in the output

feature map, (Equation 4)

yc = Mc · xc (4)

The Spatial Attention Module aims to allocate weights to each

position of the input feature map, so as to focus on spatial regions

that are more relevant to the task at hand. Firstly, the maximum

(Equation 5) and average (Equation 6) values are computed for each

feature point of the feature layer that has already been processed by

the Channel Attention mechanism. Subsequently, these two results

are stacked and the spatial attention weights are calculated through
Frontiers in Plant Science 08
a convolutional layer. The formula for computing the spatial

attention weights is as follows:

Favg(x) =
1
Co

C
c=1xc (5)

Fmax(x) = maxCc=1 xc (6)

Here, C denotes the number of channels in the input feature

map. Subsequently, the per-channel average and per-channel

maximum results are added, and the spatial attention weights are

generated through a convolutional layer. The spatial attention

weights (Equation 7):

S = Fconv Favg(x) + Fmax(x)
� �

(7)

Where Fconv denotes a convolution operation with a 7×7 kernel.

Finally, the computed spatial attention weights are applied to the input

feature map, resulting in the output feature map (Equation 8):

y   =   S☉ x (8)

Where ☉ represents element-wise multiplication.

In the ELAN module of our Backbone network, a 1×1

conventional convolutional CBS is employed, and the CBAM

attention mechanism is integrated into the Neck network. The
FIGURE 7

The structure of CoordConv convolution.
FIGURE 6

The structure of the MP.
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Backbone feature extraction network obtains three effective feature

layers, denoted as feat1, feat2, and feat3. Before passing them into

the enhanced feature extraction network for FPN construction, they

are fed into the CBAM module to automatically learn the

correlations and importance among the feature channels,

resulting in weighted feature maps that are subsequently passed

into the FPN network for convolutional operations. Additionally,

the CBAM module is applied to the feature maps of the two

upsampling layers in the FPN to further enhance the model’s

expressiveness and detection performance.
4 Experimental results

4.1 Computer environment and
parameter settings

The models were trained on a server configured with Intel (R)

Xeon CPU, GeForce RTX 2080Ti 11GB GPU, Python 3.7 software

environment and Pytorch 1. 8. 1 deep learning framework. The

experimental parameters were set as follows. In the training process,

we used the Adam optimizer without freezing the backbone, we set

300 iteration cycles (Epoch), the initial learning rate was 0.01, the

weight decay was 0.0001, the learning rate momentum was 0.937,

the learning rate descent method was cosine annealing algorithm

(COS), the batch size was 4, the non-maximum suppression (NMS)

threshold was 0.3, and the confidence threshold was 0.3. The

confidence threshold is 0.5.
4.2 The performance evaluation metrics of
the network model

For the study of tree species classification in complex

environments, the accuracy and generalization ability of the detection

network are taken into consideration. This study employs precision

(Equation 9), recall (Equation 10), F1 score (Equation 11), and mAP

(Equations 12, 13) as evaluation metrics for the detection accuracy of

the model. They are calculated using the following equation:

Precision =
TP

TP + FP
� 100% (9)
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Recall =
TP

TP + FN
� 100% (10)

F1 =
2�  Precision � Recall 
 Precision  +  Recall 

(11)

AP =
Z 1

0
P(R)dR (12)

mAP =
1
MoM

k=1AP(k)� 100% (13)

where, TP (True Positive) represents the number of correctly

detected positive samples, which refers to predicted boxes with the

same class as the labeled boxes and the Intersection over Union

(IoU) greater than 0.5. FP (False Positive) represents the number of

incorrectly detected positive samples, while FN represents the

number of incorrectly detected negative samples. Precision and

recall can be used to obtain evaluation metrics such as mAP@0.5

and F1@0.5. Where the “@” symbol in @0.5 indicates a specific

threshold. @0.5 means using an IoU threshold of 0.5 for calculation.

This is the main metric used in this study to measure the

performance of the object detection model.
4.3 Ablation experiments

To evaluate the efficacy and feasibility of the proposed model,

we conducted ablation experiments to scrutinize the impact of

different components on the network’s performance. Using

YOLOv7 as the baseline model, we investigated the influence of

three enhancement methods. Table 3 presents the results of our

ablation experiments on the protective forest tree species dataset.

As indicated in the table, we re-clustered anchor boxes of the

dataset using the K-means++ algorithm before model training.

With the 9 newly obtained pre-trained anchor boxes, our model

outperformed the native network on all 5 metrics. Substituting the

ordinary convolutions in the ELAN module with CoordConv in

YOLOv7 resulted in a 1.02% increase in mAP@0.5 and a 1.61%

increase in mAP@0.75, underscoring the efficacy of CoordConv

convolution in enhancing the detection accuracy and precision.

Introducing the CBAM attention module to the Neck network

layer, the model shows significant improvements in Recall and
FIGURE 8

The structure of the CBAM Attention Module.
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mAP, with Recall increasing by 3.13% and mAP@0.75 increasing by

2.80%. Thus, the model with added attention mechanism exhibited

notable enhancement on all 5 metrics, effectively filtering out

irrelevant information during feature extraction, prioritizing valid

information extraction, and focusing more on learning target

features. Furthermore, the combination of modules, as shown in

the table, the CoordConv+CBAM yielded the highest accuracy

improvement, achieving an F1 Score of 0.952—an excellent result.

Ultimately, after re-clustering the anchor boxes using K-means++,

replacing the main network with CoordConv convolution, and

adding the CBAM attention module for feature extraction in the

Neck network, the precision reached 97.93%. This marked a 2.99%

improvement over the native YOLOv7 network, and the mAP@0.5

increased by 3.69%. The K-means++ re-clustering of anchor boxes

optimized their selection, aligning them more closely with the

dataset’s features, thereby improving accuracy and recall while
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reducing false positives and false negatives. The combination of

CoordConv convolution with the CBAM attention module

strengthened the learning of distinctive features expressed by

various tree species in the protective forest dataset, significantly

boosting accuracy.

Figure 9 elucidates the impact of various refinement strategies

on the taxonomic classification of tree species in ablation

experiments. The inherent YOLOv7 network exhibits a tendency

to omit the classification of trees with partial crowns and

conspicuous features, exemplified by the conspicuous absence of a

Populus bolleana in the top-left corner of Figure 9A. The

incorporation of CBAM attention mechanisms and CoordConv

convolutional layers enhances the model’s capacity for feature

extraction, thereby mitigating the prospect of oversights. In

Figure 9A, a Populus bolleana erroneously classified as Ulmus

pumila in the bottom-right corner attests to the model’s initial
TABLE 3 Improved YOLOv7 ablation experiments.

Model Precision Recall F1 Score mAP@0.5 mAP@0.75

YOLOv7 94.94% 90.18% 0.924 95.22% 78.72%

YOLOv7_Kmeans++ 94.50% 92.74% 0.936 96.45% 79.87%

YOLOv7_CoordConv 94.76% 91.92% 0.934 96.24% 80.33%

YOLOv7_CBAM 94.61% 93.31% 0.938 96.86% 81.52%

YOLOv7_ Kmeans++_CBAM 94.98% 93.81% 0.942 97.40% 82.58%

YOLOv7_ CoordConv _CBAM 95.86% 94.47% 0.952 97.50% 85.66%

YOLOv7_Kmeans++_CoordConv_CBAM 97.93% 98.12% 0.98 98.91% 92.92%
A B D

E F G

C

FIGURE 9

Result diagram of the improved model. (A-G) represent the results of YOLOv7, YOLOv7_Kmeans++, YOLOv7_CBAM, YOLOv7_CoordConv,
YOLOv7_Kmeans++_CBAM, YOLOv7_CoordConv_CBAM, YOLOv7_Kmeans++_CoordConv_CBAM, respectively.
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limitations. Nevertheless, following refinements, our YOLOv7-KCC

adeptly rectifies such misclassifications.
4.4 Comparison of detection performance
with other models

To comprehensively assess the performance of the model

proposed in this paper, including detection accuracy and model

size on the protective forest tree species dataset, we compared our

improved model with 5 state-of-the-art object detectors:

FasterRCNN-VGG16, FasterRCNN-Resnet50, SSD, YOLOv4, and

the baseline network YOLOv7. We plotted a line graph using

mAP@0.5 as the metric. As shown in Figure 10, the model

training accuracy graph demonstrates that YOLOv7 has a certain

advantage in tree species classification. In the first 200 epochs, the

recognition accuracy of Faster RCNN-VGG16, SSD, and YOLOv7

steadily improved and surpassed that of Faster RCNN-Resnet50

and YOLOv4. Beyond 200 epochs, the training accuracy of YOLOv7

outpaced SSD and Faster RCNN-VGG16. Notably, YOLOv7-KCC,

enhanced based on YOLOv7, consistently demonstrated superior

performance, exhibiting smoother accuracy curves and higher

accuracy compared to other models.

Figure 11 illustrates the training loss reduction for these

detector models. While SSD approaches the detection accuracy of

the YOLOv7 series models after 200 training rounds, its

convergence speed is slow with significant early-stage fluctuations.

The Faster RCNN-Vgg16 model gradually converges in the training

and validation loss curves after the 120th epoch, and by the 270th

epoch, it has already converged and no longer varies. However, the

loss curve of Faster RCNN-Resnet50 continues to decrease during

training, and it only starts to exhibit a convergence trend at the

280th epoch, but still displays a changing trend at the 300th epoch.

The model may have architectural issues that prevent it from

converging to the optimal solution. This also explains why Faster

RCNN-Resnet50 has the lowest accuracy in the training accuracy
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change graph. Regarding the two-stage detector Faster RCNN, the

model has a higher complexity, requiring longer training time and

more computing resources, regardless of whether Vgg16 or

Resnet50 is used as the backbone network, both having more

convolutional layers and parameters. Meanwhile, as a single-stage

detector, SSD also has slow convergence speed. After 270 epochs,

the region converges, but the training loss still has small

fluctuations. Similar to the first two models, the loss curve tends

to converge but is not smooth. The improved YOLOv7-KCC model

has a significantly faster convergence speed during training than

these three models. This is because we added the CBAM attention

mechanism to the Neck network layer for feature extraction,

enhancing the weight of the object to be detected in both spatial

and channel dimensions in the feature distribution, discarding

irrelevant feature interference during fitting, and accelerating

convergence speed. The YOLOv4 model has a swift loss reduction

rate in the early stages of training, and it has already converged after

20 epochs, signifying that the YOLOv4 model can effectively learn

data features in the early stages of training and has excellent

genera l izat ion abi l i ty . However , s ince YOLOv4 uses

CSPdarknet53 as the backbone network, the model capacity is

insufficient, and the model may not learn enough features,

resulting in low training accuracy. The improved YOLOv7-KCC

model significantly enhances the model’s feature extraction

capability regarding the target object by replacing the ordinary

convolution block with the coordinate convolution block in the

ELAN multi-branch stacking module. Additionally, the dense

residual structure corresponds to so many feature layers, and the

residual network is easy to optimize and can improve accuracy by

increasing depth. Its internal residual block uses skip connections,

which alleviate the gradient vanishing problem caused by increasing

depth in deep neural networks.

We provide a comparative analysis of multiple indicators for

object detection, as shown in Table 4. Firstly, a quantitative analysis

of mAP@0.5 is conducted. The detection accuracy of the YOLOv7-

KCCmodel reaches 98.91%, which is 3.69% higher than the original

YOLOv7 model’s 95.22%, and 5.97% higher than the SSD model,

which is also a single-stage object detection method. Additionally,

the YOLOv7-KCC model is not inferior on the strict mAP@

[0.5:0.95] indicator, achieving 0.781. mAP@[0.5:0.95] represents

the average AP value at different IoU thresholds. From the table, it

can be seen that the higher complexity of the Faster RCNN-Vgg16

model sacrifices time and computing resources for accuracy.

Although its average precision reached 93.20%, the GFLOPS

(Giga Floating Point Operations Per Second) reached 370.01G,

with a parameter size of 521.8MB. This is attributed to its trade-off

between time, computational resources, and precision. Observing

that the GFLOPS of Faster RCNN-Resnet50 reached 939.36G, it is

due to the deeper network structure of ResNet50 compared to

VGG16. ResNet50 introduces residual connections, allowing for a

deeper network without the issues of vanishing or exploding

gradients. However, deeper networks typically require more

computations. Residual connections introduce additional addition

operations, increasing the computational complexity of each

residual block. Therefore, in practical applications, the choice of

backbone network needs to consider the trade-off between model
FIGURE 10

Accuracy variation of five object detectors.
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performance and computational resources. Of course, the

classification performance of the Faster RCNN-Resnet50 model is

far inferior, with an mAP@[0.5:0.95] score of 0.483, while YOLOv7

scored 0.670. We suggest that some of the loss is caused by ground

background interference, different tree growth states, and crown

overlap and occlusion. F1 can comprehensively evaluate the model’s

precision and recall indicators. YOLOv7-KCC achieved a score of

0.98 here, which is nearly 0.056 higher than YOLOv7, 0.118 higher

than SSD, and 0.176 higher than Faster RCNN-Vgg16,

demonstrating a balanced performance in precision and recall. In

summary, the proposed YOLOv7-KCC model has excellent

recognition and classification performance and outstanding

detection performance for protective forest tree species.

We chose the Average Precision (AP) metric to reflect the

classification performance of various models on different tree
Frontiers in Plant Science 12
species, as shown in Table 5. AP is a metric commonly employed

in object detection to evaluate the performance of a model on a

specific class. It measures the average performance of a model in

terms of detection accuracy and recall for a category by calculating

the area under the Precision-Recall curve. Ulmus pumila and

Elaeagnus angustifolia, both characterized by large tree crowns

and a high number of samples, exhibit similar classification

performance between the baseline model YOLOv7 and Faster

RCNN-VGG16, SSD. YOLOv7-KCC, demonstrates a significant

improvement in the classification performance of these two tree

species. Populus bolleana, distinguished from other tree species by

its upward-extending branches, conical tree shape, and distinct

color characteristics, is relatively easily classified. Consequently,

models of various types show higher classification AP for Populus

bolleana. Haloxylon ammodendron and dead trees, with fewer
TABLE 4 Comparison experiments of different models under multiple indicators.

Model Precision Recall mAP@0.5 mAP@[0.5:0.95] GFlops F1 Parameter

Faster RCNN-VGG16 72.47% 93.23% 93.20% 0.579 370.01 0.814 521.8MB

Faster RCNN-Resnet50 62.09% 89.43% 87.16% 0.483 939.36 0.732 108.3 MB

SSD 85.48% 89.50% 92.94% 0.604 61.21 0.872 92.6 MB

YOLOv4 91.12% 80.79% 91.05% 0.453 59.79 0.852 244.5 MB

YOLOv7 94.94% 90.18% 95.22% 0.670 104.83 0.924 142.4 MB

YOLOv7-KCC 97.93% 98.12% 98.91% 0.781 105.07 0.98 143.7 MB
FIGURE 11

The loss changes of the 6 models.
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samples and less distinctive features, particularly in the case of dead

trees characterized by small targets, pose challenges for

classification. Through our improvements, YOLOv7-KCC exhibits

a notable enhancement in identifying small targets such as dead

trees, with a significantly higher classification AP compared to the

contrast models.

To better understand the performance of the model, Figure 12

demonstrates the detection results of six models on randomly

selected images from the test set. As shown in the figure, both

YOLOv7 and the improved YOLOv7-KCC model have higher

recognition capabilities for small targets such as dead trees in the

orthographic tree crown images compared to other models. Faster

RCNN-VGG16 and Faster RCNN-Resnet50 have both shown false

detection and confusion, classifying Ulmus pumila crowns as Ulmus

pumila and then as Populus bolleana. This indicates that these
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models have weaker recognition capabilities for tree species with

similar color features, and are therefore not suitable for detecting

this type of dataset. Our improved YOLOv7-KCC model has

increased its confidence in detecting targets by adding an

attention mechanism, which optimizes the features of different

targets in the image and discards irrelevant information. There

are more missed detections in the SSD and YOLOv4 models, and

the YOLOv7 model also has some undetected targets. We have

highlighted these targets with red dashed circles in the figure, with

YOLOv4 having the most significant missed detections. The

improved YOLOv7-KCC model replaces the backbone network

convolution module with CoordConv convolution, which inputs

the coordinate information as an extra channel in the convolution

operation, allowing the model to learn more precise position

information when processing images. This improves the model’s
TABLE 5 AP values of different classification models in five tree species.

Model Ulmus pumila Populus bolleana Haloxylon ammodendron Elaeagnus angustifolia dead trees

Faster RCNN-VGG16 92.18% 96.92% 96.39% 90.54% 89.97%

Faster RCNN-Resnet50 84.59% 93.51% 93.28% 82.98% 81.42%

SSD 92.26% 96.9% 95.7% 91.93% 87.91%

YOLOv4 89.05% 96.04% 93.94% 90.32% 85.89%

YOLOv7 92.97% 98.6% 96.42% 94.18% 93.91%

YOLOv7-KCC 99.74% 99.97% 96.69% 99.78% 98.38%
A B

D E F

C

FIGURE 12

Test results of the 6 models. (A-F) represent the results of Faster RCNN-VGG16, Faster RCNN-Resnet50, SSD, YOLOv4, YOLOv7, and YOLOv7-
KCC, respectively.
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ability to perceive and understand target location information,

thereby improving the accuracy and robustness of target

detection. Additionally, another advantage of CoordConv

convolution is that it reduces the model’s dependence on position

information, thereby improving its generalization ability. The

YOLOv7-KCC model did not exhibit any false detection or

confusion, nor did it miss multiple targets. Therefore, the

YOLOv7-KCC model is highly suitable for the protective forest

tree species classification in this study.
5 Discussion

In this paper, we employed geometric transformations and

color transformations (rotation, mirroring, addition of Gaussian

noise, and contrast adjustment) as two data augmentation

methods to process the data. These augmentation techniques

augment the sample size, thereby elevating the model’s

generalization capacity, mitigating the risk of overfitting, and

enhancing the model’s robustness. The K-means++ algorithm

was adopted to cluster anchor boxes in the tree species dataset,

its can elevate both the training velocity and precision of the

model. Experimental findings reveal that subsequent to

implementing the K-means++ algorithm for dataset clustering,

the model’s mAP@0.5 has ascended by 1.23% in comparison to

the baseline YOLOv7 model. We have refined the original

YOLOv7 model, substituting certain convolutional layers in the

main network with CoordConv. This integration incorporates

coordinate information as supplementary features, fortifying the

model’s feature extraction capabilities. Experimental results

indicate an improvement in recognition accuracy following the

enhancement of the main network. To address issues arising from

complex backgrounds and crown overlap, we introduced the

CBAM attention mechanism into the Neck network. This

augmentation bolsters the model’s perceptual capabilities

towards features, suppressing noise and irrelevant information

in the images, thereby enhancing model performance. The three

effective feature maps extracted from the main network are

subjected to the CBAM module, enabling the learning of

channel correlations and importance, followed by convolutional

operations on the weighted processed feature maps. This approach

resolves challenges related to crown obscuration and ambiguous

delineation in the tree species layer within the dataset. Upon

evaluation on the test dataset, our YOLOv7-KCC model has

demonstrated exceptional performance compared to five other

object detection models. Its mAP@0.5 reached 98.91%, surpassing

Faster RCNN-VGG16, Faster RCNN-Resnet50, SSD, YOLOv4,

and YOLOv7 by 5.71%, 11.75%, 5.97%, 7.86%, and 3.69%,

respectively. In terms of mAP@[0.5:0.95], the improved model

achieved 0.781, an improvement of approximately 0.111 over

YOLOv7, and exhibited a nearly 5.6% improvement in the F1
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score, effectively balancing precision and recall. Additionally, our

model significantly reduces the parameter count compared to

Faster RCNN-VGG16 and YOLOv4 models, with minimal

differences from other models. We aim to investigate the

deployment of lightweight models for real-time detection

on UAVs.
6 Conclusion

In general, an improved YOLOv7_Kmeans++_CoordConv_

CBAM (YOLOv7- KCC) model based on YOLOv7 is proposed

for tree species classification in shelterbelts. Firstly, we

constructed a dataset for protective forests, augmenting its

sample size through geometric and color transformations,

thereby mitigating the risk of overfitting and enhancing the

model’s generalization capability. Second, we substituted

the conventional convolution modules with CoordConv

convolution modules to acquire supplementary coordinate

information, facilitating more precise prediction of target

positions across diverse scenarios, thereby elevating detection

accuracy and averting instances of omission or misjudgment.

Finally, by introducing an attention mechanism, we incorporated

CBAM attention modules into the feature extraction and fusion

processes, considering both channel and spatial dimensions. This

module adeptly captures local details and global contextual

information for effectively suppressing irrelevant features,

thereby enhancing the model’s capacity to discern crucial

features. Experimental outcomes demonstrate the outstanding

performance of our proposed methodology in terms of

classification accuracy, rendering it effectively deployable on

intelligent terminals for the classification of protective forest

tree species. Moreover, our research furnishes theoretical

insights for the classification of tree species in other regions

and research domains.
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