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Genetic diversity of Coffea
arabica L. mitochondrial
genomes caused by repeat-
mediated recombination
and RNA editing

Yang Ni †, Xinyi Zhang †, Jingling Li †, Qianqi Lu, Haimei Chen,
Binxin Ma and Chang Liu*

Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical
Sciences, Peking Union Medical College, Beijing, China
Background: Coffea arabica L. is one of the most important crops widely

cultivated in 70 countries across Asia, Africa, and Latin America. Mitochondria

are essential organelles that play critical roles in cellular respiration, metabolism,

and differentiation. C. arabica’s nuclear and chloroplast genomes have been

reported. However, its mitochondrial genome remained unreported. Here, we

intended to sequence and characterize its mitochondrial genome to maximize

the potential of its genomes for evolutionary studies, molecular breeding, and

molecular marker developments.

Results:We sequenced the total DNA of C. arabica using Illumina and Nanopore

platforms. We then assembled the mitochondrial genome with a hybrid strategy

using Unicycler software. We found that the mitochondrial genome comprised

two circular chromosomes with lengths of 867,678 bp and 153,529 bp, encoding

40 protein-coding genes, 26 tRNA genes, and three rRNA genes. We also

detected 270 Simple Sequence Repeats and 34 tandem repeats in the

mitochondrial genome. We found 515 high-scoring sequence pairs (HSPs) for

a self-to-self similarity comparison using BLASTn. Three HSPs were found to

mediate recombination by the mapping of long reads. Furthermore, we

predicted 472 using deep-mt with the convolutional neural network model.

Then we randomly validated 90 RNA editing events by PCR amplification and

Sanger sequencing, with the majority being non-synonymous substitutions and

only three being synonymous substitutions. These findings provide valuable

insights into the genetic characteristics of the C. arabica mitochondrial

genome, which can be helpful for future study on coffee breeding and

mitochondrial genome evolution.

Conclusion: Our study sheds new light on the evolution of C. arabica organelle

genomes and their potential use in genetic breeding, providing valuable data for
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developing molecular markers that can improve crop productivity and quality.

Furthermore, the discovery of RNA editing events in the mitochondrial genome

of C. arabica offers insights into the regulation of gene expression in this species,

contributing to a better understanding of coffee genetics and evolution.
KEYWORDS

Coffea arabica, mitochondrial genome, repetitive sequence analysis, homologous
recombination, RNA editing
1 Introduction

Coffea arabica L. belongs to the family Rubiaceae (Noir et al., 2004).

It was widely distributed in tropical and subtropical regions of Asia,

Africa, and Latin America (Ferreira T. et al., 2019). C. arabica is an

essential agricultural crop mainly grown as a cash crop in tropical

countries (Vidal et al., 2010). Caffeine is the main active ingredient of

coffee and has many bioactive effects, such as neuroprotection,

improving vascular function, reducing blood sugar, and protecting the

liver (Cano-Marquina et al., 2013; Bhupathiraju et al., 2014;

Kolahdouzan and Hamadeh, 2017). The first draft genome sequence

of C. canephora, a close relative of C. arabica, was assembled to provide

insights into the evolution of caffeine biosynthesis (Denoeud et al., 2014).

Lashermes et al. studied the molecular characterization and origin of the

C. arabica genome, revealing specific sequences and conserved regions.

Mekbib et al. found that the SNPs might contribute to the genetic

variations associated with important agronomic traits such as caffeine

content, yield, disease, and pest in C. arabica (Mekbib et al., 2022). Min

et al. (2019) and Park et al. (2019) reported the chloroplast genome of C.

arabica and developed the molecular markers. However, the C. arabica

mitochondrial genome remains unreported.

Mitochondria are semi-autonomous, membrane-bound

organelles (Margulis and Bermudes, 1985). According to the

endosymbiosis theory, they originated from an engulfed alpha-

proteobacterium, which eventually formed a symbiotic relationship

with the host cells (Poole and Penny, 2007). Their primary functions

involve providing ATP to cells via oxidative phosphorylation (Shtolz

and Dan, 2019) and synthesizing metabolic precursors (Scott and

Logan, 2007). Moreover, mitochondria play vital roles in cell

differentiation, growth, division, and programmed cell death

(Zamzami et al., 1997; Valero, 2014).

The mitochondrial genome structure of angiosperms varies

significantly among species (Handa, 2003; Sloan et al., 2012).

Higher plant mtDNA is abundant in repeat sequences, which

mediate homologous recombination and contribute to the

evolution of plant mitochondrial genomes (Chevigny et al., 2020).

Homologous recombination is essential for maintaining genomic

stability, enhancing genomic diversity, driving genomic evolution,

and adapting to environmental changes. The location, frequency,

and type of recombination can influence genome structure and

evolution (Gualberto and Newton, 2017). This widespread

homologous recombination results in the complexity of plant

mitochondrial genomes (Chevigny et al., 2020).
02
Earlier studies have demonstrated that mtDNA exhibits intricate

and dynamic structures, including linear and branched chromosomes,

which may be intermediates in replication or recombination and

represent multiple genome isoforms (Backert et al., 1997). In some

cases, mtDNAs were found as a master circular molecule (Cheng et al.,

2021; Fang et al., 2021; Ni et al., 2022), such as in Panax ginseng (Jang

et al., 2021) and Vitex rotundifolia (Bendich, 1996). In the Coriandrum

sativum, the mitochondrial genomes consist of two circular molecules

(lengths 82,926 bp and 224,590 bp) (Kozik et al., 2019), while

experiments by Kozik et al. revealed that the predominant form of

mitochondrial DNA molecules in Lactuca sativa (Kozik et al., 2019) is

simple and branched linear.

RNA editing refers to the phenomenon that the base changes

occur at the molecular level of the mRNA produced by

transcription, including the insertion, deletion, and replacement

of nucleotides and other different ways, resulting in its sequence

cannot complement the gene coding sequence and the amino acid

composition of the protein produced by translation also changes,

which is a supplement to the central dogma (Gott and Emeson,

2000). Three study groups first documented RNA editing in

flowering plant mitochondria 30 years ago (Covello and Gray,

1989; Araya et al., 1995). It was soon discovered that RNA editing

in plants also occurs in chloroplasts (Hoch et al., 1991), but there

are generally fewer RNA base changes in angiosperms than in

mitochondria. Comparison of organelle RNA sequences with their

corresponding mtDNA sites shows that editing events most often

occur at the first or second codon position and may affect the amino

acids defined by the mitochondrial genome (Lenz et al., 2018a).

Many of these nucleotide changes lead to codon changes that

specify amino acids highly conserved in evolution (Mower, 2005;

Sloan, 2017; Edera et al., 2018; Lenz et al., 2018b; Brenner et al.,

2019). RNA editing predominantly affects non-synonymous

positions of protein-coding regions (Picardi et al., 2010; Grewe

et al., 2014; Grimes et al., 2014), changing the resulting amino-acid

sequences (Gualberto et al., 1989).

The Rubiaceae family, a diverse and significant group in the

plant kingdom, has garnered attention for its mitochondrial

genome variations and peculiarities. Damnacanthus indicus

showcases dynamic evolution with unique gene and intron

content, serving as the first reference mitochondrial genome for

the Rubiaceae family (Han et al., 2021). TheNeolamarckia cadamba

mitochondrial genome not only revealed its phylogenetic position

within the Gentianales order but also shed light on its taxonomic
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relationship within the Rubiaceae family (Wang et al., 2021).

Oldenlandia corymbosa’s smaller mitochondrial genome size

compared to other family members indicates variations in size

and content within the Rubiaceae species (Julca et al., 2023). The

intricacies of the Psychotria viridis mitochondrial genome,

presented through multiple mitogenome structures and evidence

of heteroplasmy, enrich our understanding of mitochondrial

genome organization (Varani et al., 2022). Meanwhile, the

mitogenome of Scyphiphora hydrophyllacea stands out due to its

intricate intron content and its phylogenetic positioning within the

Gentianales (Chen Y. et al., 2020). These studies collectively offer

invaluable insights into the mitochondrial genomes of Rubiaceae

species, furthering the understanding of their evolution

and diversity.

Here, we first sequenced the complete C. arabicamitochondrial

genome. The coffee mitochondrial genome contained multiple

conformations resulting from recombination mediated with

repetitive elements. In addition, we identified 54 fragments that

were likely to originate from the chloroplast genome. Lastly, we

identified 90 RNA editing sites. These results demonstrated

multiple mechanisms that led to the diversity of C. arabica

mitochondrial genome. This study provides a theoretical basis for

the evolut ion of C. arabica organe l le genomes and

molecular breeding.
2 Materials and methods

2.1 Plant materials, DNA extraction,
and sequencing

We collected C. arabica plants from the Shunlong Nursery

Farm, located in Baojingyuan Village, Hongyang Town, Puning

City, Jieyang City, Guangdong Province, China. The geographic

coordinates are Longitude: 116.25001 and Latitude: 23.43801. The

altitude of the collection site is 55 meters above sea level. The soil at

the collection site of C. arabica plants is classified as “Wuni Ditian”,

or “Black Clay Paddy Soil”, primarily found in the regions of

Guangdong province such as Huiyang, Zhanjiang, Maoming,

Zhaoqing, Guangzhou, and Shaoguan (http://vdb3.soil.csdb.cn/)

and cleaned the fresh leaves with DPEC water. For NGS

sequencing, we extracted DNA using the Magnetic Plant

Genomic DNA Kit (Tiangen, China) and constructed a short-

read DNA library with an insert size of 350 bp using the

TIANSeq Fast DNA Library Kit (catalog number NG102,

Illumina, California, USA). We sequenced this library on an

Illumina HiSeq X sequencer (Illumina, USA).

For long-read sequencing using Oxford Nanopore technology,

we extracted DNA with the NEB Monarch HMW DNA Extraction

Kit (catalog number: T3060L, New England Biolabs, Massachusetts,

USA). We then constructed a DNA library with 10 kb fragment

insert sizes using the DNA Library Kit (catalog number: SQK-

LSK110, TIANGEN) and sequenced it on a PromethION sequencer

(Novogene Co., Ltd., Beijing, China).
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2.2 Organelle genome assembly
and annotation

The organelle genomes were assembled using a hybrid assembly

strategy (Figure S1). In step 1, we extracted the cpgenome reads

with the parameters “-R 15 -k 21,45,65,85,105 -F embplant_pt” and

the mitochondrial genome reads with the parameters “-R 20 -k

21,45,65,85,105 -P 1000000 -F embplant_mt” using GetOrganelle

software (Jin et al., 2020) from Illumina data (SRA Accession

Number: SRR17345023). In step 2, the short reads were de novo

assembled using the SPAdes software (Bankevich et al., 2012)

embedded in Unicycler software (Wick et al., 2017) into a unitig

graph. In step 3, the double bifurcating structures (DBS) in the

unitig graph were resolved by mapping the Nanopore long reads

(SRA Accession Number: SRR17345007) using Unicycler software

(Wick et al., 2017). The hybrid assembly strategy could minimize

the false assemblies generated in the polishing step resulting from

the interference from Nuclear Mitochondrial DNAs (NUMTs) and

Mitochondrial Plastid DNAs (MTPTs) sequences (Timmis et al.,

2004; Hazkani-Covo et al., 2010).

We annotated the cpgenome using the CPGAVAS2 web server

with database 2 (Shi et al., 2019), and the annotation was checked by

the CPGView web server (Liu S. et al., 2023). The C. arabica

mitochondrial genome was annotated with the Geseq web server

(Michael et al . , 2017) and IPMGA webserver (http://

www.1kmpg.cn/mga/). The mitochondrial genome annotation

results were visualized using the OGdraw web server (Stephan

et al., 2019). The annotation errors were manually corrected with

Apollo software (Lewis et al., 2002).
2.3 Tandem repeat elements analysis

We identified two kinds of tandem repeat elements. The Simple

Sequence Repeat (SSRs) were detected using the Misa web server

(Beier et al., 2017) with default parameters. The tandem repeats

were identified using the TRF (Tandem repeats finder) webserver

with default parameters (Benson, 1999). The distribution of these

repeat elements was visualized by the Circos package (Zhang et al.,

2013) embedded in the TBtools (Chen C. et al., 2020).
2.4 Identification and validation of
repeats able to mediate
homologous recombination

We used bioinformatic analysis and experimental methods to

verify the possible presence of repeat-mediated recombination

products of the mitochondrial genome. For the bioinformatics

method, we mapped the long reads (Nanopore data of WGS) to

the sequences corresponding to the hypothetical recombination

products. We first identified the high-scoring sequence pairs (HSPs)

using the BLASTn program (Chen et al., 2015). It should be pointed

out that the sequences from a HSP can be considered a pair of
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dispersed repeat units with low level of sequence similarity. Then,

we extracted 1,000 bp long flanking sequences on both sides of each

HSP sequence. The resulting two sequences corresponded to two

conformations (c1 and c2). Then we recombined the two sequences

in silico to create sequences corresponding to the two recombined

conformations (c3 and c4). We mapped the Nanopore reads to the

sequences corresponding to c1-4. If there were long reads spanned

the repeat region of a conformation, we considered the

corresponding conformation present.

The presence of recombination products around these repeats

was further validated using the PCR amplification and Sanger

sequencing methods. The IDT SciTools (Owczarzy et al., 2008)

was used for designing the primers specific to amplify each

conformation using PCR. The primer sequences are listed in

Table S1. We used approximately 1 ml DNA, 1 ul 10 m M each of

the forward and reverse primer, 13 ml 2× Taq PCR Master Mix, and

10 ml ddH2O for PCR with the following conditions: 94°C for 3 min;

35 cycles of 94°C for 30 s, 60°C for 30 s and 72°C for 1 min; 72°C for

10 min. Lastly, the PCR products with the expected size were further

sequenced using the Sanger method.
2.5 Identification of mitochondrial plastid
DNAs and phylogenetic analysis

To identify potential MTPTs, we conducted a reciprocal

BLASTn search between the complete plastome (OL789882) and

mitochondrial genomes (OL789880-OL789881). The objective was

to discern segments with sequence similarity. In the initial analysis,

the entire plastome served as the “query” sequence, while the

mitochondrial genome, comprising both chromosome sequences,

acted as the “subject” sequence. For the reciprocal analysis, we

reversed these roles, using the mitochondrial genomes as the

“query” and the plastome as the “subject”. Results from both

searches were then combined. The specific parameters we

employed for this BLASTn search were “-evalue 1e-5 -outfmt 6”

(Chen et al., 2015). The mapping results of reads to the MTPT

regions were visualized using Tablet software (Milne et al., 2012)

and examined manually.

We used 18 mitochondrial genomes for phylogenetic analysis

and selected the two Lamiaceae species Scutellaria barbata

(NC_065025.1) and Scutellaria franchetiana (NC_065026.1) as

outgroups. All mitochondrial genomes were downloaded from the

RefSeq database with the following accession numbers: C. arabica

(OL789880.1, OL789881.1), N. cadamba (MT320890.1-

MT364442 .1 ) , P. se rpens (NC_069806 .1) , P. v i r id i s

(NC_066984.1), S. hydrophyllacea (NC_057654.1), D. indicus

(MZ285075.1), O. corymbose (OX459128.1), Gentiana crassicaulis

(OM320814.1), Gentiana straminea (OM328072.1), Hoya

lithophytica (MW719051.1), Rhazya stricta (NC_024293.1),

Asclepias syriaca (NC_022796.1), Trachelospermum jasminoides

(OR333986.1), Cynanchum wilfordii (MH931257.1-MH931259.1)

Cynanchum auriculatum (MH410146.1-MH410148.1), Gelsemium

elegans (MN388837.1). The CDS sequences were extracted from

Genbank format files using the PhyloSuite software (Zhang et al.,
Frontiers in Plant Science 04
2020) and aligned with MAFFT software (Katoh and Standley,

2013). The aligned sequences were used to construct the

phylogenetic tree using IQTREE2 (Hoang et al., 2017) with the

maximum-likelihood method. Subsequently, the bootstrap analysis

was evaluated using UFBoot with 1,000 replicates (Hoang et al.,

2017). Finally, the phylogenetic tree was visualized using the iTOL

website (Letunic and Bork, 2019).
2.6 Collinearity and gene content analysis

We conducted a collinearity analysis on the mitochondrial

genomes of closely related species of C. arabica within the

Rubiaceae family, as identified in the phylogenetic analysis.

Initially, we downloaded the reference genomes from NCBI for

this analysis. Subsequently, we employed the online version of

MAFFT at https://mafft.cbrc.jp/alignment/server/ for sequence

alignment and Dotplot visualization (Katoh and Standley, 2013).

Considering the potential annotation errors in the record, we re-

annotated all the genome files using IPMGA webserver to initiating

the gene statistical analysis. Following this, we utilized a custom

script to tally the annotation results.
2.7 RNA editing sites analysis

We used the Deepred-mt software to predict RNA editing

events using the convolutional neural network (CNN) model

(Edera et al., 2021). We retained predictions with probability

values greater than 0.9. Subsequently, we randomly validated the

prediction results of RNA editing events with PCR amplification

and sanger sequencing. The PCGs were amplified with cDNA

(complementary DNA) and gDNA (genomic DNA) to identify

those RNA editing sites. The protein-coding genes (PCGs) were

extracted from Genbank format files using the PhyloSuite software

(Zhang et al., 2020). The IDT web server (Owczarzy et al., 2008) was

used for designing the PCR primer of all PCGs. The primers used to

validate the RNA editing sites are shown in Table S2. The PCR

experiment conditions were the same as those described in sub-

section 2.4. The PCR products were sequenced using the Sanger

method and mapped to the protein-coding sequences to validate the

RNA editing sites.
3 Results

3.1 Mitochondrial genome
assembly and annotation

We generated 11.1 Gb Nanopore sequencing data (SRA

Accession Number: SRR17345007) and 6 Gb Illumina sequencing

data (SRA Accession Number: SRR17345023) in total. The

mitochondrial genome reads extracted from Illumina data were

assembled using SPAdes (Bankevich et al., 2012; Jin et al., 2020) into

a unitig graph. The unitig graph contained 13 double-bifurcating
frontiersin.org
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structures (DBS) (Figure S2). We mapped the long Nanopore reads

to each DBS to resolve these DBS using the Unicycler software

(Figure S2). We defined the major conformations as the two

reverse-complementing conformations mapped with more long

reads. After retaining only the major conformation, the final

assembly contained two mitochondrial genome chromosomes

(MC): MC1 and MC2, which were 867,678 bp and 153,529 bp,

respectively (Figure 1). The total GC content of the C. arabica

mitochondrial genome MC1 and MC2 was 44.6% and 44.7%,

respectively. To compare the mitochondrial genomes of C.

arabica with those of other Rutaceae species, we analyzed the

basic information of 14 released mitochondrial genomes in the

NCBI database of Rutaceae, which included C. arabica (Table 1).

Among them, Neolamarckia cadamba , which has two

chromosomes like C. arabica, has a much smaller mitochondrial

genome (Total length: 414,980 bp). The C. arabica mitochondrial

genome is the largest among the 13 species, 104,888 bp larger than

the second largest, Psychotria serpens (NC_069806.1/MT528155.1).

The significant difference in mitochondrial genome size could be

attributed to extensive rearrangements and sequence migration

during the evolution of the Rutaceae mitochondrial genome

(Kitazaki and Kubo, 2010).

All the 24 core PCGs of the plant mitochondrial genome have

been found in the mitochondrial genome (Figure 1; Table 2). These

included five ATP synthase genes (atp1, atp4, atp6, atp8, and atp9);

nine NADH dehydrogenase genes (nad1, nad2, nad3, nad4, nad4L,

nad5, nad6, nad7, and nad9), four cytochrome c biogenesis genes

(ccmB, ccmC, ccmFc, ccmFn), three cytochrome C oxidase genes (cox1,
Frontiers in Plant Science 05
cox2, and cox3), one protein transport subunit (mttB), one maturase

(matR) and one cytochrome oxidase (cob). The core genes atp1, atp6,

and atp9 had two copies in the mitochondrial genome. Besides, there

were 12 variable genes in the mitochondrial genome, including three

genes encoding the ribosomal protein large subunit genes (rpl5, rpl10,

and rpl16), seven genes encoding the ribosomal protein small subunit

genes (rps1, rps3, rps4, rps7, rps10, rps12, and rps13), and one succinate

dehydrogenase gene (sdh3, sdh4). The variable genes rps1 and rps12

had two copies in the mitochondrial genome. In addition, we

identified three rRNA genes and 26 tRNA genes, corresponding to

18 unique genes, in the C. arabica mitochondrial genome.
3.2 Tandem repeat elements analysis

Simple sequence repeats (SSR), or microsatellite sequences,

were tandem repeats with shorter repeat units than six bp

(Bhattarai et al., 2021). In this study, we used the Misa web server

(Beier et al., 2017) to detect the SSRs in the C. arabica mitochondrial

genome. We identified 270 SSRs in total (Table S3). MC1 and MC2

contained 206 and 64 SSRs, respectively. The most abundant type of

SSRs were the tetramer SSRs, accounting for 37.41% of the total

SSRs. The pentamer and hexameric SSRs were only found in MC1

(Table S3).

For the long tandem repeat sequences, twenty-eight were

identified by TRF (Benson, 1999) in MC1, and six were found in

MC2 (Table S4). The tandem repeat with a length of 9 bp from

553,613 to 553,656 had the largest copy numbers (4.9 times).
FIGURE 1

A schematic representation of the C. arabica mitochondrial genome. The gene distribution of C. arabica mitochondrial genome was shown in
different colors based on their functional classification.
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3.3 Dispersed repeat analysis and repeat
mediated recombination analysis

A previous study has shown that dispersed repeats can mediate

homologous recombination (Li et al., 2021). These dispersed repeats

can vary significantly in terms of the percentage of sequence

identity. As a result, we used BLASTn to compare the

mitochondrial genome sequences to themselves. The resulting

similar sequences were called High-scoring sequence pairs (HSP).

They are equivalent to the dispersed repeats and were named “R,”

followed by their HSP numbers.

We found 515 HSPs in MC1 (OL789880) and MC2 (OL789881)

(Table S5). We then compared the DBS sequences with these HSP

sequences. We found all thirteen DBS sequences identical to some

HSP sequences (Table S5). We then mapped the long reads to the

four conformations of these 13 DBS/HSP. However, the mapping

results supported the recombined conformation for only eight HSP

(Table S6). Among them, six HSPs: R1 (DBS06), R22, R30 (DBS09),

R175, R278, and R285, were found in MC1 of C. arabica, and the
Frontiers in Plant Science 06
R406, R462 were found shared between the MC1 and MC2

(Table S6).

We defined the recombination frequency (RF) as the percentage

of reads mapped to the minor conformations divided by those

mapped to all four conformations. The RFs for all HSPs were less

than 0.22, except for R1, which was 0.54. The HSPs could have

contributed to the complex structure of plant mitochondrial

genomes and increased the diversity of plant mitochondrial

genomes (André et al., 1992).

In addition to bioinformatics analysis methods, we used PCR

amplification and Sanger sequencing methods to verify the presence

of the recombination products corresponding to the minor

conformations. We obtained PCR products for those associated

with repeats R1, R30, and R406. It should be pointed out that the R1

and R30 corresponded to the bs01 and bs09 found in the unitig

graph. The schematic representation of the location of the primers

used to amplify the fragments associated with R1 and R30 is shown

in Figures 2A, B. The electrophoretic results of these recombination

products are shown in Figure 2C.
TABLE 1 Basic information on mitochondrial genomes of Rubiaceae.

Genome
Number

Species Chromosome
Number

Accession
Number

Length Shape GC
content

1 Coffea arabica chromosome 1 OL789880.1 867,678
bp

Circular 44.6%

Coffea arabica chromosome 2 OL789881.1 153,529
bp

Circular 44.7%

2 Damnacanthus indicus var.
indicus

NA MZ285071.1 417,815
bp

Circular 44.5%

3 Damnacanthus indicus var.
indicus

NA MZ285072.1 419,010
bp

Circular 44.5%

4 Damnacanthus indicus var.
indicus

NA MZ285073.1 419,435
bp

Circular 44.5%

5 Damnacanthus indicus var.
indicus

NA MZ285074.1 419,429
bp

Circular 44.5%

6 Damnacanthus indicus var.
indicus

NA MZ285075.1 417,661
bp

Circular 44.5%

7 Damnacanthus indicus var.
indicus

NA MZ285076.1 417,816
bp

Circular 44.5%

8 Neolamarckia cadamba chromosome 1 MT320890.1 109,836
bp

Circular 45.5%

Neolamarckia cadamba chromosome 2 MT364442.1 305,144
bp

Linear 45%

9 Psychotria serpens NA NC_069806.1 916,319
bp

Circular 44.2%

11 Psychotria viridis NA NC_066984.1 615,370
bp

Circular 44.4%

12 Psychotria viridis NA ON064100.1 570,344
bp

Circular 44.4%

13 Scyphiphora hydrophyllacea NA NC_057654.1 354,155
bp

Circular 44.4%

14 Oldenlandia corymbosa NA OX459128.1 258,274
bp

Circular 44%
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In Figure 2C, we obtained the PCR products for R1, R30, and

R406. The PCR products were sequenced with the Sanger methods.

And the results are shown in Supplementary Files 1–3. Three pairs

of repetitive sequences divided the genome into six contigs (contigs

1-6). Recombination mediated by R1 could rearrange contigs 1 and

2 to form the minor conformation Mic01 (Figure 3; Supplementary

File 1). Similarly, the recombination of R30 could cause the

rearrangement of contigs 2 and 3 to form the minor

conformation Mic02 (Figure 3; Supplementary File 2). In

contrast, MC1 and MC2 were combined by the recombination-

mediated with the direct repeat R406 to form the minor

conformation Mic03 (Figure 3; Supplementary File 3).
3.4 Identification of foreign DNAs in
the mitochondrial genome

The plant mitochondrial genome could incorporate chloroplast

and nuclear DNA during its evolution (Kang et al., 2021). There

were 32 and 10 homologous DNA fragments in MC1 and MC2

(Figure 4; Table S7). The total length was 26,096 bp, 2.55% of the
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whole mitochondrial genome. The longest fragment was 4,117 bp in

MC1, and the shortest was only 31 bp in MC2. We annotated those

DNA fragments, and ten complete genes (rps7, psaA, trnN-GUU,

trnP-UGG, trnW-CCA, trnD-GUC, trnH-GUG, trnN-GUU, trnI-

CAU) were found in those DNA fragments (Table S7). All the

MTPTs were visualized and checked manually. The presence of

long reads spanning the MTPTs supports that these sequences were

indeed in the mitochondrial genome (Figures S3-44).
3.5 Phylogenetic analysis

We conducted the phylogenetic analysis of the mitochondrial

genomes of the Rubiaceae, Gentianaceae, Apocynaceae, Gelsemiaceae

and Lamiaceae species. thirty-eight common PCGs were identified

from these genomes, namely, atp1, atp4, atp6, atp8, atp9, ccmB, ccmC,

ccmFC, ccmFN, cob, cox2, cox3, matR, mttB, nad1, nad2, nad3, nad4,

nad4L, nad5, nad6, nad7, nad9, rpl2, rpl5, rpl10, rpl16, rps1, rps2,

rps3, rps4, rps7, rps10, rps12, rps13, rps14, rps19 and sdh3. The best

model was GTR+F+R2, according to the BIC. The phylogenetic tree

showed that C. arabica and S. hydrophyllacea were clustered together

with 100% bootstrap values in the context of the currently available

mitochondrial genome (Figure 5).
3.6 Comparative mitogenomic analysis
in the Rubiaceae family

By analyzing the protein-coding gene count of the Rubiaceae

family, we observed that eight mitochondrial genomes all possess 24

core genes (Table S8). Yet, when it comes to variable genes, the

protein-coding genes are not conserved. For instance, C. arabica, S.

hydrophyllacea, and N. cadamba have one copy of the sdh3 gene,

with S. hydrophyllacea containing two copies, while other species

lack the sdh3 gene. P. viridis has lost the rps1 gene, and both P.

viridis and P. serpens are missing the rps4 gene. Hence, in the

Rubiaceae family, although core genes remain relatively conserved,

there is a marked disparity in variable genes across different species.

Utilizing collinearity analyses, we observed a non-conserved

mitochondrial genome structure within the Rubiaceae family, as

evidenced by the limited number of conserved blocks presented in

Figure S45. Intra-genomic comparisons of C. arabica highlighted

the presence of a 7804 bp reverse repeat block. Contrastingly, when

juxtaposed with other species, with the sole exception of O.

corymbosa, C. arabica exhibited a reverse repeat block spanning

an approximate length of 6000-7000 bp. Notably, O. corymbosa

mitogeome uniquely presented a collinear block around 3500 bp.

Such observations underscored the substantial structural

diversifications the mitochondrial genomes within the Rubiaceae

family have encountered throughout evolutionary processes. It is

plausible that these genomic rearrangements are tethered to distinct

environmental acclimations, intricate biological interplays, or

speciation events.
TABLE 2 Genome composition in the C. arabica mitochondrial genome.

Group of
genes Name of genes

ATP Synthase atp1 (x2), atp4, atp6 (x2), atp8, atp9 (x2)

Cytochrome c
Biogenesis ccmB, ccmC, ccmFc, ccmFn

Cytochrome b cob

Cytochrome
Oxidase cox1, cox2, cox3

Maturase matR

Protein
Transport
Subunit mttB

NADH
Dehydrogenase nad1, nad2, nad3, nad4, nad4L, nad5, nad6, nad7, nad9

Ribosomal
Protein Large
Subunit rpl5, rpl10, rpl16

Ribosomal
Protein Small
Subunit rps1 (x2), rps3, rps4, rps7, rps10, rps12(x2), rps13

Succinate
Dehydrogenase sdh3, sdh4

Ribosomal
RNA

rrn5, rrn18, rrn26

Transfer RNA

trnC-GCA (x2), trnD-GUC, trnE-UUC, trnF-GAA (x2),
trnfM-CAU, trnG-GCC, trnH-GUG (x2), trnI-GAU, trnI-
CAU, trnK-UUU (x2), trnN-GUU (x4), trnP-UGG (x2),
trnQ-UUG, trnS-GCU, trnS-UGA, trnV-GAC, trnW-CCA,
trnY-GUA
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3.7 RNA editing site identification

Using the Deepred-mt program, 472 RNA editing events were

predicted (Table S9). Of these 472 predicted RNA editing events,
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the nad4 gene, ccmB gene and ccmC gene were edited most

frequently, with 36, 34 and 33 editing site respectively. The sdh3

gene was edited the least for only once (Figure S46). To further

explore the amino acid changes before and after editing, we counted
A

B

D

C

FIGURE 2

Validation of the repeat mediated recombination products in C arabica mitochondrial genome. The purple dots represent junction sites. The red
arrows represent the intervals and directions of the repeated sequences. Arrows of other colors represent primer positions. The orange line segment
represents the interval that can be inverted. (A) The primers were designed for the junction site validation of the R1. Since the repeat sequence, R1, is
longer than 5000 bp, it was difficult to obtain PCR products spanning the entire repetitive sequence. Therefore, we only performed PCR to verify the
boundaries of R1. (B) The primers were designed to validate the major and minor conformations of R30. (C) The primers were designed for the
major and minor conformations of R406. (D) The electrophoresis results of the PCR products for the fragments associated with R1, R30, and R406.
The lane numbers and PCR primer names are shown above each panel.
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the amino acid composition before and after RNA editing. Of these

472 RNA editing events, mainly non-synonymous substitutions

occurred for 447 times, and synonymous substitutions occurred for

a total of 25 times. The most abundant amino acid conversion was

Ser to Leu, with a total of 110 times. In addition to this, we found

that the atp6 (CAA to UAA) and the atp9 genes (CGA to UGA)

gained a stop codon through the RNA editing event (Figure S47).

To validate that these predicted RNA editing sites were real, we

used PCR to amplify all the PCGs of the coffee mitochondrial

genome from genomic DNA and cDNA. The products were then

sequenced using the Sanger method. A comparison of the results

helped us to identify the RNA editing sites. The primers used for the
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RNA editing site validation can be found in Table S2. Finally, we

obtained 103 sanger sequencing results of short DNA fragments for

the 21 PCGs. We identified 90 RNA-edited events in 14 PCGs. All

RNA editing events were of “C to U” and “G to A” types (Figure 6;

Figures S48, 49). The “G to A” type is a symmetric type of the “C to

U” type, as discussed before (Wu et al., 2017).

Among the 90 RNA editing events, 87 were non-synonymous

substitutions, and only three (ccmFC-378, nad2-252, and nad7-531)

were synonymous substitutions. Among the synonymous

substitution, the ccmFC-378 and nad2-252 edited the codon from

UUC (F) to UUU (F), and nad7-531 edited the codon from UCC (S)

to UCU (S). Most of the resulting amino acid changes were from Ser
FIGURE 3

Hypothetical products generated by recombination mediated by repeats R1, R30, and R406 on the chromosomes of C. arabica mitochondrial
genome. The repeats mediate the structure of the hypothetical recombination products. The circles represent the mitochondrial genome, and the
different colored lines represent the regions between the repeated sequences. The black arrows represent the repeat sequence. The original
electropherogram of the PCR amplification can be found in Supplementary File 5.
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to Leu, which occurred 25 times. The mttB and nad2 genes had the

most edited sites, including fourteen (Table S10). All the RNA editing

sites of ccmFc were in the first exon. The cox2 gene had only one RNA

editing site: cox2-278. All the Sanger sequencing results of gDNA and

cDNA can be found in the Supplementary File 4. The chromatograms

of the 90 RNA-editing sites are shown in Figure 6 and Figures S48, 49.

Interestingly, all these 87 validated sites were successfully predicted by

the Deep-mt program. The three sites with synonymous substitutions

were not successfully predicted by the Deep-mt program.
4 Discussion

4.1 Mitochondrial genome assembly
is the current bottleneck in plant
mitochondrial genome study

Studies on plant mitochondrial genomes lags behind that of

cpgenomes due to the relatively complex structures of plant

mitochondrial genomes (Gualberto et al., 2014; Skippington et al.,

2015; Skippington et al., 2017). It has been shown that the plant

mitochondrial genomes might contain multiple-circular, linear, and

branched chromosomes (Kozik et al., 2019; Li et al., 2021; Yang

et al., 2022). These intricate structures contribute to challenges in

assembling plant genomes.

Two assembly strategies have been proposed for mitochondrial

genomes assembly. The first one is similar to the nuclear genome
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assembly strategy, which uses long reads for de novo assembly and

short reads for polishing the assembled results (Yu et al., 2011).

However, this approach has two major limitations: (1) it cannot

restore the complex structure of the mitochondrial genome and

often yields a simplified assembly result, such as a single circular

molecule (Liu J. et al., 2023); (2) it can introduce false positive

results due to the presence of homologous DNA fragments shared

between the mitochondrial genomes and the nuclear genomes and

the plastomes, such as NUMTs and MTPTs. For example, the reads

derived from plastid DNA fragments homologous to MTPT

sequences might be used to polish the MTPT sequences,

mistakenly changing the MTPT sequences (Yang H. et al., 2022;

Jiang et al., 2023; Yang et al., 2023).

A second strategy, which is called the hybrid strategy, has been

developed to overcome the above limitations. This strategy

assembled the short reads into a unitig graph with different kmer

lengths (Jin et al., 2020). Then, the long reads were used to resolve

the double bifurcating structures in the unitig graph caused by

repetitive sequences in the genome (Park et al., 2018; Wang et al.,

2018; Yang et al., 2018; Kim et al., 2020). In our study, we obtained

the short mitochondrial genome reads by employing the seed reads

extension method through the GetOrganelle software. We utilized

this hybrid assembly approach to assemble the C. arabica

mitochondrial genome, which we discovered contains two

chromosomes. We advocate using hybrid strategies to unravel the

major conformations of complex plant mitochondrial

genome structures.
FIGURE 4

The DNA transfer between the C. arabica mitochondrial genome and plastome. The blue arcs represent the mitochondrial genome, and the green arcs
represent the chloroplast genome. The purple link in the middle connects the homologous regions between the mitochondrial genome and the plastome.
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4.2 The complex structure and
representation of the plant
mitochondrial genomes

Previous studies have shown that the mitochondrial genomes

might have circular, linear and multi-branch structures (Gualberto

et al., 2014; Chevigny et al., 2020). We found that the coffee

mitochondrial genomes can be represented as a unitig graph and

two independent chromosomes after splitting the unitig graph

based on the mapping results of long reads. However,

representing the complex structures of the mitochondrial

genomes is a challenging problem. There are two primary

methods for addressing this issue.

The first method uses a graph to represent the intricate

structure of plant mitochondrial genomes (graph-based method).

After assembling the long reads into a graph, the mitochondrial

genome structure is represented as multiple connected contigs (Li

et al., 2022). This approach has been employed in numerous studies.

For example, the mitochondrial genomes of the three species,

Selaginella nipponica, Abelmoschus esculentus, and Picea

sitchensis, all use this format to represent their mitochondrial

genomes and annotate the mitochondrial genomes according to

the corresponding mitochondrial contigs (Jackman et al., 2020;

Kang et al., 2020; Li et al., 2022).

The second method follows the convention of using circular or

linear conformations to represent the mitochondrial genomes

(conformation-based method). This approach is based on the

understanding that a genome may consist of multiple

conformations. Long reads can resolve the unitig graph, resulting

in conformations that can undergo homologous recombination

mediated by repetitive sequences (André et al., 1992; Alverson

et al., 2011). This process can lead to various alternative genomes

conformations, typically of low-frequency and referred to as minor
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conformations. For example, in the Prunus salicina mitochondrial

genome (Fang et al., 2021), nine repeat sequences were involved in

homologous recombination, resulting in two low-frequency

chromosomes. Similar findings were observed in the

mitochondrial genomes of Ipomoea batatas (Yang Z. et al., 2022)

and Scutellaria tsinyunensis (Li et al., 2021), where direct repeats led

to the division of the mitochondrial genome into smaller

chromosomes corresponding to minor conformations. In the

Cannabissativa mitochondrial genome (Liu J. et al., 2023), the

major conformation is a circular molecule. However, it can form

multiple minor conformations through recombinations mediated

by 15 repeat sequences. Salvia officinalis has three repeat sequences

in the genus Salvia (Yang et al., 2023), which can mediate

homologous recombination, while there are nine pairs of such

repeat sequences in S. miltiorrhiza (Yang H. et al., 2022).

Taraxacum mongolicum has five pairs of repeat sequences

confirmed to mediate homologous recombination, producing

multiple minor conformations (Jiang et al., 2023).

Both methods have some limitations. Firstly, there are several

issues with the graph-based representation of the mitochondrial

genome. Until now, most analytic methods and tools for genomes

were developed based on the assumption that the genome is a

simple circular or linear molecule. Very few methods and tools can

be used to analyze a genome represented by a graph (Kang et al.,

2020). Secondly, the graph representations of the plant

mitochondrial genomes are mostly generated from bioinformatics

analysis (Kang et al., 2020). Although the repeat sequences involved

could be validated by PCR amplification and Sanger sequencing

(Lai et al., 2022), the complete graphic structures of the plant

mitochondrial genomes are difficult to validate. Lastly, there is a

lack of comparative tools to compare genomes represented as

graph. As a result, it would be difficult to conduct comparative

genomic studies if the genomes were represented with graph.
FIGURE 5

Phylogenetic relationships of C. arabica and other 17 species. The black branches represent the phylogenetic relationships constructed by the shared
mitochondrial genes. The number on each branch node represents the bootstrap number. The mitochondrial genome NCBI accession number for
each species follows the Latin name. The families of these species are shown on the right side.
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Secondly, there are several issues with the conformation-based

representation of the mitochondrial genome. Firstly, when resolving

the unitig graph, the most abundant conformation was selected at

each DBS point. However, whether or not the most abundant

conformation forms a chromosome remains to be confirmed.
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Secondly, the dependence among different repetitive sequences

for recombination is not clear. At present time, the minor

conformations were generating based on the assumption that the

repeat-mediated recombinations are independent of each other. As

a result, the exact set of conformation cannot be determined. As a
FIGURE 6

Validation of RNA editing sites in the atp4, ccmFc, cox1, and cox2 genes of C. arabica mitochondrial genome. Chromatograms showing the sequences
before and after editing at the hypothetical RNA-editing sites. For each RNA editing site, the name is shown on the top. The results from the genomic
DNA (gDNA) and complementary DNA (cDNA) are shown in the middle and bottom. Black dashed rectangles framed the RNA editing sites.
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result, the representation of the complex mitochondrial genome

structures requires further investigation (de Abreu et al., 2023).
4.3 The RNA editing sites “C” to “U.”

RNA editing is a widely observed phenomenon in plant

mitochondria (Varré et al., 2019). This process involves modifying

the information in transcripts of nearly all angiospermmitochondrial

protein-coding genes (Mower and Palmer, 2006). In our study, we

first identified the RNA editing sites using a convoluted neural

network-based method: deepred-mt. we validated 90 RNA editing

events in the coffee mitochondrial genome, which involved the

conversion of cytidine (C) to uridine (U). We had not been able to

obtain unambiguous sequencing results for the other nine unigenes

after multiple attempts. The likely reasons are that the amplification

of the sequences is interfered with highly homologous sequenes such

as MTPT or NUMT and etc.

Studies on the model plant Arabidopsisthaliana have reported

more than 400 RNA editing events involving the substitution of

cytidines with uridines in the mitochondrial genome (Bentolila

et al., 2013). In T. mongolicum, a total of 278 RNA-editing sites were

predicted and 213 were validated (Jiang et al., 2023). In C. sativa

mitochondrion, RNA editing was found to be tissue specific (Liu J.

et al., 2023). Using PCR amplification and Sanger sequencing

methods, 113 of the 126 RNA editing sites from 11 PCGs were

validated in the S. officinalis. In the S. miltiorrhiza, 225 “C to U” sites

in the protein coding regions were discovered (Wu et al., 2017). In

the present study, we predicted 472 RNA editing sites, all of which

were edited from C to U, which is consistent with the number and

type of RNA editing times previously reported.

During plant mitochondrial RNA editing, non-synonymous and

synonymous substitutions have different biological significance and

impact (Lu et al., 1998). Non-synonymous substitutions involve

changes in the amino acid sequence and, therefore, may affect the

structure and function of the protein. These changes may result in

enhanced, diminished, or complete loss of protein function (Yates and

Sternberg, 2013). Of the 472 predicted sites, 447 were non-

synonymous. Of the validated 90 sites, 87 were non-synonymous.

Only nad7-531, ccmFC-378, and nad2-252 were synonymous.

Notably, we found that the stop codons of atp6 and atp9 genes

were created by RNA editing events from the prediction results of

Deepred-mt program. Previous study reported the atp6 gene

premature termination expression in maize, sorghum and

Oenothera (Kumar and Levings, 1993). The transcripts of atp9 gene

have a stop codon create by the RNA editing events in rapeseed

(Handa, 1993). There may be the same possibility of that the same

type of (non-synonymous substitution) editing occurred in the coffee.

The function of these non-synonymous substitutions, if there are any,

still needs to be further investigated.
5 Conclusions

In this study, we sequenced and analyzed the C. arabica

mitochondrial genome. We identified 40 PCGs, 3 rRNA genes, 26
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tRNA genes, 270 SSRs, and 34 tandem repeats. In particular, we

found three repeats mediating recombination, 54 fragments

originating from the chloroplast genome, and 90 RNA-editing

sites. We showed that the C. arabica mitochondrial genome had a

complex structure caused by a plethora of molecular mechanisms.
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